Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Роль руководителя в инновационном управлении А должен ли директор преподавать
  • Управление стоимостью проекта на основе затрат
  • Использование тематических выставок в группе детского сада для социального развития дошкольников
  • Презентация к уроку "как помочь птицам зимой" Распилить я попросил
  • Радиоизотопный термоэлектрический генератор гонг. Инциденты с ритэг на территории снг. Типы и общие технические требования

    Радиоизотопный термоэлектрический генератор гонг. Инциденты с ритэг на территории снг. Типы и общие технические требования

    Радиоизотопные источники энергии - устройства использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию.

    Радиоизотопные термоэлектрические генераторы
    (radioisotope thermoelectric generator (RTG, RITEG)

    Радиоизотопный термоэлектрический генератор (РИТЭГ) преобразует тепловую энергию, выделяющуюся при естественном распаде радиоактивных изотопов, в электроэнергию.
    РИТЭГ состоят из двух основных элементов: источника тепла, который содержит радиоактивный изотоп, и твердотельных термопар, которые преобразуют тепловую энергию распада плутония в электричество. Термопары в РИТЭГе используют тепло от распада радиоактивного изотопа для нагрева горячей стороны термопары и холода пространства или планетарной атмосферы для получения низкой температуры на холодной стороне.
    По сравнению с ядерными реакторами РИТЭГи значительно компактнее и проще конструктивно. Выходная мощность РИТЭГ весьма невелика (до нескольких сотен ватт) и небольшой КПД. Зато в них нет движущихся частей и они не требуют обслуживания на протяжении всего срока службы, который может исчисляться десятилетиями.
    В усовершенствованном типе РИТЭГа − The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), который стал применяться в последнее время, был изменен состав термопары. Вместо SiGe в MMRTG для термопар применяется PbTe/TAGS (Te, Ag, Ge, Sb).
    MMRTG предназначен для производства 125 Вт электроэнергии в начале миссии, с падением до 100 Вт после 14 лет. При массе 45 кг MMRTG обеспечивает около 2.8 Вт/кг электроэнергии в начале жизни. Конструкция MMRTG способна работать как в вакууме космического пространства, так и в планетарных атмосферах, например, на поверхности Марса. MMRTG обеспечивает высокую степень безопасности, минимизацию веса оптимизацию уровней мощности в течение минимального срока службы в 14 лет.
    NASA также работает над новой технологией RTG, называемой Advanced Stirling Radioisotope Generator ASRG (Радиоизотопный генератор Стирлинга). ASRG, как и MMRTG, преобразует тепло распада плутония-238 в электричество, но не использует термопары. Вместо этого тепло распада заставляет газ расширяться и осциллировать поршень, подобно двигателю автомобиля. Это перемещает магнит назад и вперед через катушку более 100 раз в секунду, генерируя электричество для космического корабля. Количество вырабатываемой электроэнергии больше, чем у MMRTG, примерно на 130 ватт, с гораздо меньшим количеством плутония-238 (примерно на 3.6 кг меньше). Это результат более эффективного преобразования цикла Стирлинга. Если для миссии требуется больше энергии, можно использовать несколько ASRG, чтобы генерировать больше энергии. На сегодняшний день нет запланированных миссий, которые будут использовать ASRG, но они разрабатываются для 14-летней миссии.
    Существует концепция подкритических РИТЭГ. Подкритический генератор состоит из источника нейтронов и делящегося вещества с как можно большей критической массой. Нейтроны источника захватываются атомами делящегося вещества и вызывают их деление. Очень важное место при выборе рабочего изотопа играет образование дочернего изотопа, способного к значительному тепловыделению, так как цепь ядерного преобразования при распаде удлиняется и соответственно возрастает общая энергия, которую можно использовать. Наилучшим примером изотопа с длинной цепью распада и с энерговыделением на порядок большим, чем у большинства других изотопов, является уран-232. Основное преимущество такого генератора в том что энергия распада реакции с захватом нейтрона может быть гораздо выше энергии спонтанного деления. Соответственно, потребное количество вещества гораздо ниже. Количество распадов и радиационная активность в пересчете на тепловыделение также ниже. Это снижает вес и размеры генератора.

    Требования к характеристикам радиоизотопов, использующихся в РИТЭГах, к сожалению часто противоречивы. Для того, чтобы достаточно долго поддерживать мощность для выполнения задачи период полураспада радиоизотопа должен быть достаточно велик. С другой стороны, у него должна быть достаточно высокая объёмная активность для получения значительного энерговыделения в ограниченном объёме установки. А это означает, что период полураспада у него не должен быть слишком мал, ибо удельная активность обратно пропорциональна периоду распада.
    У радиоизотопа должен быть удобный для утилизации вид ионизирующего излучения. Гамма-излучение и нейтроны достаточно легко покидают конструкцию, унося заметную часть энергии распада. Высокоэнергетичные электроны β-распада хотя и неплохо задерживаются, однако при этом образуется тормозное рентгеновское излучение, уносящее часть энергии. Кроме того, гамма-, рентгеновское и нейтронное излучения зачастую требуют специальных конструктивных мер по защите персонала (если он присутствует) и близкорасположенной аппаратуры.
    Предпочтительным для радиоизотопной генерации энергии является альфа-излучение.
    Не последнюю роль в выборе радиоизотопа является его относительная дешевизна и простота его получения.
    Типичные периоды полураспада для радиоизотопов, используемых в РИТЭГ, составляют несколько десятилетий, хотя изотопы с более короткими периодами полураспада могут использоваться для специализированных применений.

    Маломощные и малогабаритные радиоизотопные источники питания

    Бета-вольтаические источники питания
    (Betavoltaic power sources)

    Также существуют нетермические генераторы, похожие по принципу работы на солнечные батареи. Это бета-гальванические и оптико-электрические источники. Они малогабаритны и предназначены для питания устройств, не требующих больших мощностей.
    В бета-вольтаическом источнике питания изотопный источник испускает бета-частицы, которые собираются на полупроводнике. В результате генерируется постоянный ток. Процесс преобразования энергии, который аналогичен процессу фотогальванической (солнечной) ячейки, происходит эффективно даже в экстремальных условиях окружающей среды. Выбирая количество и тип изотопа, можно создать настраиваемый источник питания с заданным выходом и временем жизни. Такие батареи практически не дают гамма-лучей, а мягкое бета-излучение задерживается корпусом батарей и слоем фосфора. Бета-вольтаические источники обладают высокой плотностью энергии и сверхнизкой мощностью. Это позволяет бета вольтаическому устройству функционировать дольше, чем конденсаторам или батареям для маломощных устройств. Длительность работы, например бета-вольтаического источника на оксиде прометия примерно два с половиной года, а 5 мг оксида прометия дают энергию в 8 Вт. срок службы бета-вольтаических источников может превышать 25 лет.

    Бета-вольтаический эффект. Работа бета-вольтаического преобразователя основана на том, что излученные при распаде электроны или позитроны высоких энергий, попадая в область
    p-n перехода полупроводниковой пластины, генерируют там электронно-дырочную пару, которая затем пространственно разделяется областью пространственного заряда (ОПЗ). Вследствие этого на n и p- поверхностях полупроводниковой пластины возникает разность электрических потенциалов. Принципиально механизм преобразования напоминает тот, который реализован в полупроводниковых солнечных батареях, но с заменой фотонного облучения на облучение электронами или позитронами бета-распада радионуклидов.

    Пьезоэлектрический радиоизотопный микроэлектрогенератор
    (The Radioisotope Thin-film Mkropower Generator)

    Сердце этого элемента питания - кантилевер, тонкая пластина из пьезокристаллического. Коллектор на кончике кантилевера захватывает заряженные частицы, испускаемые из тонкопленочного радиоактивного источника. За счет сохранения заряда, радиоизотопная пленка остается с равными и противоположными зарядами. Это приводит к электростатическим силам между кантилевером и радиоактивным источником, изгибу кантилевера и преобразованию излучаемой источником энергии в запасенную механическую энергию. Кантилевер все больше изгибается и наконец кончик кантилевера вступает в контакт с радиоактивной тонкой пленкой, а накопленные заряды нейтрализуются посредством переноса заряда. Это происходит периодически. При подавлении электростатической силы кантилевер высвобождается. Внезапное высвобождение возбуждает колебания, которые приводят к зарядам, индуцированным в пьезоэлектрическом элементе у основания кантилевера. Сигнал переменного тока от пьезоэлектрического источника питания можно использовать непосредственно через импеданс нагрузки или выпрямлять с помощью диодов и фильтровать через внешний конденсатор. Поднятое таким образом напряжение смещения используется для управления маломощными датчиками и электроникой.

    Основная область применения изотопных источников – космические исследования. Изучение «глубокого космоса» без использования радиоизотопных генераторов невозможно, так как при значительном удалении от Солнца уровень солнечной энергии, который можно было бы использовать для производства электричества, необходимого для функционирования аппаратуры и передачи радиосигналов, очень мал. Химические источники также не оправдали себя.
    На Земле радиоизотопные источники нашли применение в навигационных маяках, радиомаяках, метеостанциях и подобном оборудовании, установленном в местности, где по техническим или экономическим причинам не было возможности воспользоваться другими источниками электропитания. В частности, в СССР выпускались термоэлектрические генераторы нескольких видов. В качестве радиоактивных изотопов в них использовались 90 Sr и 238 Pu. Однако у них очень большой период достижения безопасной активности. Они выработали свой срок службы, составляющий 10 лет, и в настоящее время должны быть утилизированы. В настоящее время, в связи с риском утечки радиации и радиоактивных материалов, практику установки необслуживаемых радиоизотопных источников в малодоступных местах прекратили.
    Радиоизотопные источники энергии применяются там, где необходимо обеспечить автономность работы оборудования, компактность, надёжность.

    Радиоизотопы и их использование

    С развитием и ростом ядерной энергетики цены на важнейшие генераторные изотопы быстро падают, а производство изотопов быстро возрастает. В то же время стоимость изотопов, получаемых облучением (U-232, Pu-238, Po-210, Cm-242 и др.), снижается незначительно. В связи с чем изыскиваются способы более рациональных схем облучения мишеней, более тщательной переработки облучённого топлива. Большие надежды на расширение производства синтетических изотопов связаны с ростом сектора реакторов на быстрых нейтронах. В частности, именно реакторы на быстрых нейтронах с использованием значительных количеств тория позволяют надеяться на получение больших промышленных количеств урана-232.
    При использовании изотопов во многом разрешается проблема утилизации отработанного ядерного топлива, и радиоактивные отходы из опасного мусора превращаются не только в дополнительный источник энергии, но и в источник значительного дохода. Практически полная переработка облучённого топлива способна приносить денежные средства, сопоставимые со стоимостью энергии, выработанной при делении ядер урана, плутония и других элементов.

    Плутоний-238, кюрий-244 и стронций-90 являются чаще всего используемыми изотопами. Кроме них их в технологии и медицине используют еще около 30 радиоактивных изотопов.

    Некоторые освоенные практикой радиоизотопные источники тепла
    Изотоп Получение (источник) Удельная мощность для чистого изотопа. Вт/г T 1 / 2
    60 Со Облучение в реакторе 2.9 5.271 года
    238 Pu атомный реактор 0.568 87.7 лет
    90 Sr осколки деления ~2.3 28.8 лет
    144 Ce осколки деления 2.6 285 дней
    242 Cm атомный реактор 121 162 дня
    147 Pm осколки деления 0.37 2.64 года
    137 Cs осколки деления 0.27 33 года
    210 Po облучение висмута 142 138 дней
    244 Cm атомный реактор 2.8 18.1 года
    232 U облучение тория 8.097 68.9 лет
    106 Ru осколки деления 29.8 ~371.63сут

    238 Pu У 238 Pu период полураспада 87.7 года (потеря мощности 0.78 % в год), удельная мощность для чистого изотопа 0.568 Вт/г и исключительно низкие уровни гамма- и нейтронного излучения. 238 Pu имеет самые низкие требования к экранированию. Требуется менее 25 мм свинцового экранирования для блокирования излучения 238 Pu. 238 Pu стал наиболее широко используемым топливом для РИТЭГов, в форме оксида плутония (PuO 2).
    В середине прошлого века 236 Pu и 238 Pu применялись для изготовления радиоизотопных электрических батареек для питания кардиостимуляторов срок службы которых достигал 5 и более лет. Однако вскоре вместо них стали применять нерадиоактивные литиевые батарейки, срок службы которых доходит до 17 лет.
    238 Pu должен быть специально синтезирован; его мало (~1% - 2%) в ядерных отходах, изотопное его выделение затруднительно. Чистый 238 Pu может быть получен, например, с помощью облучения нейтронами 237 Np.
    Кюрий. Два изотопа 242 Cm и 244 Cm являются альфа-излучателями (энергия 6 МэВ); Они имеют относительно короткие периоды полураспада 162.8 дней и 18.1 года и производят до 120 Вт/г и
    2.83 Вт/г тепловой энергии соответственно. Кюрий-242 в виде окиси применяется для производства компактных и чрезвычайно мощных радиоизотопных источников энергии. Однако 242 Cm очень дорог (около 2000 долларов США за грамм). В последнее время все большую популярность приобретает более тяжелый изотоп кюрия − 244 Cm. Так как оба эти изотопы практически чистые альфа-излучатели, проблема радиационной защиты остро не стоит.
    90 Sr. 90 Sr β-излучатель с незначительной γ-эмиссией. Его период полураспада в 28.8 лет намного короче, чем у 238 Pu, Цепочка из двух β-распадов (90 Sr → 90 Y→ 90 Zr) дает суммарную энергию 2.8 МэВ (один грамм дает ~0.46 Вт). Поскольку выход энергии ниже, он достигает более низких температур, чем 238 Pu, что приводит к снижению эффективности термоэлектрического преобразования. 90 Sr – продукт деления ядер и доступен в больших количествах по низкой цене. Стронций является источником ионизирующего излучения высокой проницаемости, что предъявляет относительно высокие требования к биологической защите.
    210 Po. 210 Po имеет период полураспада всего 138 дней при огромном начальном тепловыделении в 142 Вт/г. Это практический чистый альфа-излучатель. Из-за малого периода полураспада 210 Po плохо подходит для РИТЭГов, а используется для создания мощных и компактных источников тепла (Половина грамма полония может нагреться до 500 °C). Стандартные источники с тепловой мощностью 10 Вт были установлены в космических аппаратах типа «Космос» и на «Луноходах» в качестве источника тепла для поддержания нормального функционирования аппаратуры в приборном отсеке.
    210 Po также широко используется там, где нужна активная антистатика. Из-за малого периода полураспада утилизация отработанных устройств с 210 Po не требует никаких особых мер. В США допустимо выбрасывать их на помойку общего назначения.
    При использовании альфа-активных изотопов с большим удельным энерговыделением часто необходимо разбавить рабочий изотоп для уменьшения тепловыделения. Кроме того, полоний весьма летуч, и требуется создание прочного химического соединения с каким-либо элементом. В качестве таких элементов предпочтительны свинец, иттрий, золото, так как они образуют тугоплавкие и прочные полониды.
    241 Am. В связи с дефицитом 238 Pu, альтернативой ему в качестве топлива для РИТЭГов может стать 241 Am. У 241 Am период полураспада 432 года. Он практически чистый альфа-излучатель. 241 Am находится в ядерных отходах и почти изотопически чист. Однако удельная мощность 241 Am составляет только 1/4 от удельной мощности 238 Pu. Кроме того от продуктов распада 241 Am исходит более проникающее излучение и необходимо лучшее экранирование. Впрочем, требования к экранированию излучения для 241 Am не намного более строги чем в случае с 238 Pu.
    241 Am широко используется в детекторах дыма. В ионизационном детекторе дыма используется крошечный кусочек америция-241. Заполненное воздухом пространство между двумя электродами создает камеру, которая позволяет течению небольшого постоянного тока между электродами. Если дым или тепло поступают в камеру, электрический ток между электродами прерывается и срабатывает сигнал тревоги. Эта дымовая сигнализация является менее дорогостоящей, чем другие устройства.
    63 Ni. 63 Ni чистый β − -излучатель. Максимальная энергия электронов 67 кэВ, период полураспада 100.1 л. В начале двухтысячных годов в США и России были разработаны элементы питания, основой которых является 63 Ni. Срок работы устройств более 50 лет, а размеры меньше одного кубического миллиметра. Для получения электроэнергии используется бета-вольтаический эффект. Также ведутся работы по созданию пьезоэлектрического радиоизотопного генератра. Подобные батареи могут быть использованы в нейро- и кардиостимуляторах.
    144 Ce. Источник тепла – 144 Ce. 144 Ce чистый β − -излучатель. Период полураспада 144 Ce 285 суток, Удельная мощность для чистого изотопа 2.6 Вт/г. РИТЭГ предназначается для питания радиопередатчиков и автоматических метеостанций. Стандартная мощность 200 Вт.
    Радиоизотопы широко применяются в смеси с фосфором для обеспечения постоянного свечения в контрольных приборах на борту транспортных средств, в часах, фонарях на полярных аэродромах и в навигационных знаках и даже в ёлочных игрушках. Раньше чаще всего для этого применялся 226 Ra, период полураспада которого 1620 лет. Однако из соображений радиационной безопасности после 1970-х годов радий в этих целях не используется. В наши дни для этих целей чаще всего используют мягкими бета излучателями: прометием (147 Pm Т 1/2 = 2.64 года), криптоном (85 Kr Т 1/2 = 10.8 лет) и тритием (3 H Т 1/2 = 12.3 года). Конечно, периоды их полураспада маловаты, зато их ионизирующее излучение не проникает за оболочки устройств.

    Cтраница 1


    Радиоизотопные генераторы, применяемые на космических аппаратах, обычно работают по принципу использования энергии излучения для нагрева горячих спаев термопар, в которых происходит превращение тепловой энергии и электрическую.  

    Современные радиоизотопные генераторы имеют КПД, равный 3 - 5 %, и срок службы от 3 месяцев до 10 лет. Технико-экономические характеристики этих генераторов в будущем могут быть значительно улучшены.  

    Один из подобных генераторов - советский опытный радиоизотопный генератор Бета-1 успешно действовал в течение двух лет, питая током радиопередатчик подмосковной метеорологической станции в Химках. В качестве источника энергии в нем был использован церий-144, помещенный в противорадиационные контейнеры из вольфрама и свинца. Энергоемкость его составляла 440 квт-ч, средняя мощность равнялась 5 вт, а выходная (с накоплением) мощность при работе передатчика - 150 - 200 вт.  

    В работах были предложены различные варианты радиоизотопного генератора с двухэтапной системой преобразования ядерной энергии в электрическую, которые принадлежат семейству фотоэлектрических атомных батарей. В таком генераторе энергия фрагментов ядерного деления первоначально преобразуется в излучение посредством какого-либо процесса ядерно-стимулированной флуоресценции (например, в аэрозольном газонаполненном конверторе), а затем уже энергия фотонов преобразуется в электрическую с помощью фотовольтаического преобразователя. Такой способ преобразования энергии имеет целый ряд преимуществ по сравнению с уже имеющимися. Например, в отличие от многих наиболее широко используемых традиционных методов, он не содержит низкоэффективного теплового цикла. Таким образом, полный КПД системы может составить величину порядка 35 %, что в 3 - - 5 раз выше КПД систем с использованием теплового цикла и солнечных батарей.  

    Наиболее существенную и дорогостоящую часть программы разработки радиоизотопного генератора составляют его испытания. Можно предсказать общие характеристики того или иного элемента конструкции, но определить реальные физические параметры нового узла или системы в целом часто удается только экспериментально.  

    Схема термоэмиссионного радиоизотопного генератора с тепловой трубой, автоматически стабилизирующей тепловой поток и температуру на катоде преобразователя.  

    Но это и есть решение проблемы стабилизации теплового потока и температуры на катоде термоэмиссионного радиоизотопного генератора в условиях непрерывного падения энерговыделения в капсуле. Сброс избыточной тепловой энергии, генерируемой в изотопном топливе в начальный период эксплуатации, осуществляется с выступающего за пределы цилиндрического термоэмиссионного преобразователя участка тепловой трубы.  

    Помимо конструктивного совершенствования и повышения мощности термоэлектрических генераторных установок с ядерными реакторами в Советском Союзе ведется разработка конструкций радиоизотопных генераторов. Для генерирования электрического тока в них используется тепло, образующееся при распаде радиоактивных изотопов кобальта, кюрия, полония и др. Они имеют небольшие габаритные размеры и надежно действуют в течение длительного времени без подзарядки (в зависимости от продолжительности периода полураспада соответствующих радиоактивных элементов) и по количеству энергии, вырабатываемой на 1 кг собственного веса, превосходят электрохимические батареи.  

    Рассмотрим особенности постановки и решения задачи (9.18) для комбинированной энергетической установки, содержащей двухкаскадный ТЭГ и двухконтурный ПТП с конденсирующим инжектором и одноступенчатой турбиной, рабочим телом которого является ДФС. Подвод теплоты от радиоизотопного генератора к ТЭГ и от него к ПТП осуществляется жидкометаллическим теплоносителем.  

    Для чего нужны такие количества тяжелого изотопа кюрия. Полагают, что в радиоизотопных генераторах для космических и океанических исследований кюрий-244 сможет заменить илутоний-238. Генераторы на основе 244Сш менее долговечны, чем плутониевые, но их удельное энерговыделение примерно впятеро больше... Поэтому кюриевые генераторы в качестве стимуляторов сердечной деятельности вряд ли применимы. Но в других автономных источниках энергии кюрий-244 вполне может заменить плутоний. К тому же кюрий не так токсичен, как плутоний. А предельная мощность кюриевых генераторов (определяемая критической массой) примерно в 10 раз больше, чем плутониевых: 162 и 18 киловатт соответственно.  

    По заданию КАЭ ведется изучение потенциальных возможностей термоэлектрических генераторов на полонии-210, плутонии-238 и кюрии-244 электрической мощностью до 10 кет применительно к космическим установкам. Эта мощность рассматривается как практический предел для радиоизотопных генераторов такого назначения. Следует заметить, что КАЭ ведет разработку ракетных двигателей с изотопными источниками тепла. Тепло, выделяющееся при распаде полония-210, используется для подогрева жидкого водорода. Такой двигатель может развивать тягу до 0 11 кГ при удельном импульсе 700 - 800 сек.  

    Такой тип генератора сегодня является наиболее широко используемым для питания бортовой аппаратуры и обогрева космических летательных аппаратов. Согласно , из девяти находившихся в 1992 г. на орбите радиоизотопных генераторов в США, восемь были термоэлектрическими с изотопом Ри238 в качестве топлива. В радиоизотопном термоэлектрическом генераторе (РИТЭГ) осуществляется непосредственное преобразование тепловой энергии в электрическую на основе эффекта Зеебека.  

    Следует сказать, что в последнее время в США уделяется много внимания работам, связанным с поиском более эффективных способов преобразования тепловой энергии РИТ на плутонии-238, чем термоэлектрический. К ним в первую очередь относятся работы по созданию термофотоэлектрических радиоизотопных генераторов и радиоизотопных генераторов АМТЕС (Alkali metal thermal to electric conversion) с использованием в том и другом случае радиоизотопных источников тепла на плутонии-238, разработанных ранее для РИТЭГ космического назначения.  

    В 1965 г. в Лейпциге (ГДР) демонстрировался советский радиоизотопный гев: ератор Бета-2, также питавший электроэнергией приборы автоматической метеостанции. Бета-2 отмечен золотой медалью юбилейной Лейпциг-ской ярмарки. В том же году радиоизотопные генераторы другого типа мощностью 5 - 50 вт были применены для энергоснабжения бортовых систем нескольких искусственных спутников Земли серии Космос, запуск которых был предусмотрен программой исследований космического пространства, принятой в СССР.  

    Радиоизотопные термоэлектрические генераторы

    РИТЭГ (радиоизотопный термоэлектрический генератор ) - источник электроэнергии , использующий тепловую энергию радиоактивного распада . В качестве топлива для РИТЭГ используется стронций -90, а для высокоэнергоёмких генераторов - плутоний -238.

    Заброшенные советские РИТЭГи

    Что такое РИТЭГ

    Ритэги являются источниками автономного электропитания с постоянным напряжением от 7 до 30 В для различной автономной аппаратуры мощностью от нескольких ватт до 80 Вт. Совместно с ритэгами используются различные электротехнические устройства, обеспечивающие накопление и преобразование электрической энергии, вырабатываемой генератором. Наиболее широко ритэги используются в качестве источников электропитания навигационных знаков, маяков и световых знаков. Ритэги также используются как источники питания для радиомаяков и метеостанций.

    РИТЭГи представляют собой потенциальную опасность, так как размещаются в безлюдной местности и могут быть похищены террористами, а затем использованы в качестве грязной бомбы . Опасность вполне реальна, так как уже зафиксированы случаи разукомплектации РИТЭГов охотниками за цветными металлами .

    Радиоактивный элемент

    В ритэгах используются источники тепла на основе радионуклида стронций-90 (РИТ-90). РИТ-90 представляет собой закрытый источник излучения, в котором топливная композиция обычно в форме керамического титаната стронция-90 (SrTiO3) дважды герметизирована аргоно-дуговой сваркой в капсуле. В некоторых ритегах стронций используется в форме стронциевого боросиликатного стекла. Капсула защищена от внешних воздействий толстой оболочкой ритэга, сделанной из нержавеющей стали, алюминия и свинца. Биологическая защита изготовлена таким образом, чтобы на поверхности устройств доза радиации не превышала 200 мР/ч, а на расстоянии метра - 10 мР/ч

    Период радиоактивного полураспада стронция-90 (90Sr) - 29 лет. На момент изготовления РИТ-90 содержат от 30 до 180 кKи 90Sr. При распаде стронция образуется дочерний изотоп, бета-излучатель, иттрий-90 с периодом полураспада 64 часа. Мощность дозы гамма-излучения РИТ-90 самого по себе, без металлической защиты, достигает 400-800 Р/ч на расстоянии 0,5 м и 100-200 Р/ч в 1 м от РИТ-90.

    Радиоактивный элемент РИТ-90

    Безопасной активности РИТ-90 достигают только через 900 - 1 000 лет. По заявлению Госатомнадзора (в настоящее время - Федеральная служба по атомному надзору), «сложившаяся система обращения с ритэгами не позволяет обеспечить физическую защиту этих устройств, и ситуация с ними вполне может быть классифицирована как происшествие, выражающееся в безнадзорном хранении опасных источников. Поэтому генераторы требуют немедленной эвакуации»

    Как сообщает сайт разработчика ритэгов - Всероссийского НИИ технической физики и автоматизации (ВНИИТФА), - для высокоэнергоёмких радионуклидных энергетических установок в качестве топлива применяют плутоний-238. Однако, использование в ритэгах источников тепла на основе плутония-238 наряду с некоторыми техническими преимуществами требует значительных финансовых затрат, поэтому в последние 10-15 лет ВНИИТФА не осуществлял поставку таких ритэгов отечественным потребителям для наземных целей.

    США также использовали ритэги, в основном для космических нужд, но как минимум 10 ритэгов было установлено на удалённых военных объектах в Аляске в -1970-х годах. Однако, после того как из-за стихийного пожара в 1992 году один из ритэгов оказался под угрозой, ВВС США начали заменять их на дизель-генераторы . По классификации МАГАТЭ ритэги относятся к 1 классу опасности (strongest sources, сильнейшие излучатели).

    Проблемы безопасности

    По мнению разработчиков ритэгов, даже в случае попадания РИТ-90 в окружающую среду при аварии или несанкционированном извлечении из ритэга целостность источника может быть нарушена не иначе как в результате намеренного, принудительного его разрушения.

    «Возможно, было бы лучше их закапывать, чтобы их никто не находил. Но их устанавливали 30 лет назад, когда об угрозе терроризма не думали, кроме того, ритэги не были вандало-защищены», - считает глава департамента безопасности и чрезвычайных ситуаций Минатома РФ Александр Агапов.

    В Минатоме признают, что «есть ритэги в состоянии бесхозности». По словам Агапова, «дело в том, что организации, которые несут ответственность за эксплуатацию ритэгов, не хотят платить за их вывод из эксплуатации. Это такая же проблема, как с государствами, образовавшимися на территории бывшего СССР, - «забирайте всё плохое, всё хорошее мы оставим себе».

    Вместе с тем, по мнению генерального директора ВНИИТФА Николая Кузелёва, «не существует проблемы радиоактивного загрязнения среды, окружающей ритэг». При этом Н.Кузелёв признаёт, что «большинство мест эксплуатации ритэг не соответствуют требованиям действующих нормативных документов, о чём известно руководству эксплуатирующих организаций». «В действительности, существует проблема уязвимости ритэг по отношению к террористическим актам, заключающимся в целенаправленном использовании радиоактивного материала, содержащегося в ритэг»

    Выход стронция-90

    По мнению специалистов Гидрографического предприятия Минтранса РФ, «принципиальную радиационную опасность представляют только источники ионизирующего излучения на основе стронция-90 РИТ-90». До тех пор пока цел корпус ритэга (являющийся транспортной упаковкой РИТ-90), он не считается радиоактивным отходом. «Оказавшийся за пределами радиационной защиты РИТ-90 будет представлять собой серьёзную локальную опасность для лиц, оказавшихся в непосредственной близости от него. Радиационное загрязнение окружающей среды исключено». Подобное до настоящего времени не имело места. Экспериментальный взрыв пристыкованного к ритэгу мощного противокорабельного взрывного устройства разрушил малый ритэг (57ИК), однако входящий в его состав РИТ-90 оказался неповреждённым.

    Как заявляли представители ВНИИТФА в 2003 году, «до сих пор не было ни одного случая нарушения герметичности капсулы РИТ-90, хотя имел место ряд серьёзных аварийных ситуаций с ритэгами». Вместе с тем, комментируя имевшие место инциденты с ритэгами, официальные представители Госатомнадзора и МАГАТЭ неоднократно допускали возможность природного разрушения капсулы РИТ. Однако обследованием в июле 2004 года был зафиксирован выход в окружающую среду Sr-90 из ритэга типа ИЭУ-1, расположенного на мысе Наварин Беринговского района Чукотского автономного округа. Как отмечалось в заявлении Федеральной службы по атомному надзору (ФСАН), это «говорит о начале разрушения блока радиационной защиты, блока тепловой защиты, защитного корпуса и гнёзд гильз».

    На территории России находится около 1 000 ритэгов (по данным главы департамента безопасности и чрезвычайных ситуаций Минатома РФ Александра Агапова на сентябрь 2003 года - 998 штук), на территории других стран - около 30 штук. По данным Росатома за март 2005, в эксплуатации находятся «примерно 720 ритэгов», было снято с эксплуатации и утилизировано с международной помощью около 200.

    Предположительно всего в СССР было создано около 1 500 ритэгов. Срок службы всех типов ритэгов составляет 10 лет. В настоящее время все ритэги, находящиеся в эксплуатации, выработали свой срок службы и должны быть утилизированы.

    Владельцы и лицензирование

    Собственниками ритэгов являются Министерство обороны РФ , Министерство транспорта РФ , Росгидромет. У Минтранса РФ находится около 380 ритэгов, их учёт ведёт Гидрографическое государственное предприятие. В Министерстве обороны РФ их 535, в том числе 415 в Главном управлении навигации и океанологии.

    Госатомнадзор занимается контролем ритэгов, находящихся в собственности Министерства транспорта. Также, в соответствии с постановлением правительства 1007 и директивой Д-3 Министерства обороны от 20.01.2003, Госатомнадзор лицензирует и контролирует ритэги Миноборны как ядерные установки, не относящиеся к ядерному вооружению.

    Тем не менее, в целом надзор за радиационной и ядерной безопасностью в воинских частях с 1995 года возложен на Минобороны. Получается, что контролирующий государственный орган - Госатомнадзор РФ - к этим ритэгам часто реально не имеет доступа. По мнению представителей Государственного гидрографического предприятия Министерства транспорта РФ, для обеспечения безопасности эксплуатации ритэгов на трассах Северного морского пути , в том числе с учётом вероятности «вандализма » и «терроризма », достаточно организации периодического (от нескольких до одного раза в год) контроля за их физическим состоянием и состоянием радиационной обстановки на поверхности и вблизи ритэгов.

    Тем не менее, Госатомнадзор критикует подход Гидрографического предприятия, в том числе за крайнюю медленность работ по выводу из эксплуатации ритэгов с истёкшими сроками эксплуатации. По-прежнему остаются проблемными вопросы хранения, обеспечения физической защиты РИТЭГ и радиационной безопасности населения в местах их размещения. В Госатомнадзоре отмечают, что в сложившейся ситуации гидрографические службы Минтранса и Минобороны фактически нарушают статью 34 закона «Об использовании атомной энергии», в соответствии с которой эксплуатирующая организация должна располагать необходимыми материальными и прочими ресурсами для эксплуатации объектов атомной энергетики. Кроме того, по оценке Госатомнадзора, в структурных подразделениях Гидрографического предприятия «не хватает подготовленных специалистов для своевременного обследования и обслуживания РИТЭГ».

    Модели ритэгов

    По данным Государственного гидрографического предприятия Минтранса России, на трассе Северного морского пути эксплуатируется 381 ритэг типа «Бета-М», «Эфир-МА», «Горн» и «Гонг».

    Согласно официальным докладам Госкомэкологии, «существующая система обращения с ритэгами противоречит положениям федеральных законов «Об использовании атомной энергии» и «О радиационной безопасности населения», так как не обеспечена физическая защита этих установок. При размещении ритэгов не учитывалась возможность повреждающего воздействия на них природных и антропогенных факторов.

    Из-за недостатков в практике учёта и контроля этих установок эксплуатирующими организациями отдельные ритэги могут быть «утеряны» или «забыты». Фактически пункты размещения ритэг можно рассматривать как места временного хранения высокоактивных отходов». «Особую тревогу вызывают возможные негативные последствия утери контроля за ритэгами, находящимися в ведении Государственного гидрографического предприятия и Минобороны России». В 60 - 80х годах прошлого века ВНИИТФА разработал около десяти типов (типоразмеров) ритэгов на базе источников типа РИТ-90.

    Ритэги отличаются различными параметрами по выходному электрическому напряжению, выходной электрической мощности, массе, габаритам и др. Наиболее широко применяется ритэг типа «Бета-М», который был одним из первых разработанных в конце 60х годов прошлого века изделий. В настоящее время в эксплуатации находится около 700 ритэгов этого типа. Этот тип ритэга, к сожалению, не имеет сварных соединений и, как показала практика последних 10 лет, может быть разобран на месте эксплуатации с использованием обычного слесарного инструмента. В последние 10 - 15 лет ВНИИТФА работы по разработке новых ритэгов не ведёт.

    Типы и основные характеристики РИТЭГов советского производства
    Тип Тепловая мощность РИТ, Вт Начальная номинальная активность РИТ, тысячи Кюри Электрическая мощность РИТЭГа, Вт Выходное электрическое напряжение РИТЭГа, В Масса РИТЭГа, кгм Начало производства
    Эфир-МА 720 111 30 35 1250 1976
    ИЭУ-1 2200 49 80 24 2500 1976
    ИЭУ-2 580 89 14 6 600 1977
    Бета-М 230 35 10 - 560 1978
    Гонг 345 49 48 14 600 1983
    Горн 1100 170 60 7 (14) 1050 (3 РИТ) 1983
    ИЭУ-2М 690 106 20 14 600 1985
    Сеностав 1870 288 - - 1250 1989
    ИЭУ-1М 2200 (3300) 340 (510) 120 (180) 28 2 (3) * 1050 1990

    Учёт ритэгов

    Разработчиком конструкторской документации ритэгов являлся ВНИИТФА (Всероссийский научно-исследовательский институт технической физики и автоматизации) в Москве. Документация передавалась заводу-изготовителю. Основными заказчиками ритэгов были Минобороны, Минтранс, Госкомгидромет (ныне Росгидромет) и Мингео (бывшее Министерство геологии, функции которого переданы Министерству природных ресурсов).

    В процессе разработки ритэгов ВНИИТФА изготавливал небольшие количества опытных образцов. Серийным заводом-изготовителем ритэгов в СССР был завод «Балтиец » в городе Нарва Эстонской Советской Социалистической Республики . Этот завод в начале 1990-х годов перепрофилирован и в настоящее время не имеет отношения к ритэгам. В компании «Balti ES» (именно так теперь называется это предприятие) «Беллоне» подтвердили, что информация о том, куда поставлялись ритэги, у них не сохранилась. Тем не менее, специалисты завода участвовали в замене ритэгов на иные источники энергии на маяках в Эстонии.

    Ввод в эксплуатацию ритэгов в 1960-х осуществляла специализированная организация Министерства среднего машиностроения СССР , которая давно ликвидирована, или сами эксплуатирующие организации.

    Где находятся ритэги

    Около 80 % всех изготовленных ритэгов было направлено в гидрографические войсковые части Минобороны и гражданские гидрографические базы вдоль Северного морского пути.

    Как сообщают во ВНИИТФА, на сегодняшний день институт не имеет полной информации о количестве всех изготовленных ритэгов и о всех организациях-собственниках ритэгов, находящихся в настоящее время в эксплуатации. Учитывая сложившуюся в стране ситуацию по учёту ритэгов ВНИИТФА в течение ряда лет собирает информацию о ритэгах, находящихся в эксплуатации в России и других странах бывшего СССР. На сегодняшний день установлено, что на территории России находится около 1 000 ритэгов. Все они выработали свой срок службы и подлежат утилизации на специализированных предприятиях Минатома РФ.

    По договорам с Минтранса РФ ВНИИТФА ежегодно направляет своих специалистов для проведения обследования ритэгов на местах их эксплуатации. В 2001-2002 годах было обследовано 104 ритэга Минтранса РФ.

    В отчёте Госатомнадзора за 2003 год состояние ритэгов в Дальневосточном округе признано неудовлетворительным. В 2004 году отмечалось, что наиболее «неблагополучными» организациями, осуществляющими эксплуатацию ритэгов с серьёзными нарушениями требований безопасности, остаются Тиксинская, Провиденская гидрографические базы и Певекский лоцмейстерско-гидрографический отряд Государственного гидрографического предприятия Федерального агентства морского и речного транспорта . Отмечалось, что «состояние физической защиты РИТЭГ находится на крайне низком уровне. Обследование РИТЭГ специалистами структурных подразделений вышеуказанного предприятия проводится редко и в основном размещённых недалеко от мест расположения этих подразделений; ряд РИТЭГ не обследовались более 10 лет (в Певекском ЛГО отряде и Провиденской гидрографической базе не хватает подготовленных специалистов)».

    По разным данным, около 40 маяков с ритэгами находится вдоль побережий Сахалина, 30 - у Курильских островов. На Чукотке, по официальным данным, накопилось 150 ритэгов, причём многие бесхозны. Например, ритэги, принадлежащие Колымгидромету, были брошены на берегу залива Шельтинга и на мысе Евреинова в связи с развалом службы наблюдений. Из них 58 типа «Бета-М», 13 - «Эфир», 8 - «Горн» и 6 - «Гонг». Некоторые ритэги оказываются просто утеряны: например, в сентябре 2003 года инспекция не обнаружила ритэг типа «Бета-М» № 57 на пункте «Кувэквын», были официально высказаны предположения о возможном замывании ритэга в песок в результате сильного шторма или его хищения неизвестными.

    Не исключена возможность, что в арктическом регионе имеются утерянные генераторы. По официальным данным, в конце 1990-х годов минимум шесть из них находились в аварийном состоянии. По заключению официальной комиссии с участием специалистов Госатомнадзора, «состояние безопасности ритэгов крайне неудовлетворительно и представляет реальную опасность для флоры, фауны и акватории арктических морей. Их неправильное размещение может подвергнуть необоснованному облучению часть коренного населения Арктики».

    В республике Саха - Якутия находится около 75 ритэгов. В 2002 году была утверждена федеральная целевая программа «Национальный план действий по защите морской среды от антропогенного загрязнения в арктическом регионе Российской Федерации». Одним из пунктов плана действий по защите морской среды стали мероприятия по инвентаризации ритэгов. В Якутии полную инвентаризацию было решено провести в 2002-2003 годах. По словам начальника отдела радиационной безопасности министерства охраны природы Якутии Тамары Аргуновой, в связи с тем, что маршрут морских судов управляется космическими спутниками, необходимость в использовании ритэгов отпала, и должна быть проведена их скорейшая утилизация.

    Генераторы, расположенные на островах морей Лаптевых, Восточно-Сибирского и арктическом побережье территорий Анабарского, Булунского, Усть-Янского, Нижнеколымского улусов, относятся к зоне ответственности Хатангской, Тиксинской, Колымской гидробаз и Певекского лоцмейстерского отряда только на бумаге. Требования радиационной безопасности при эксплуатации ритэгов на трассе Северного морского пути остаются нарушенными. За 25 такими установками контроль потерян. В Сибирском федеральном округе , в основном на Таймыре , находится более 100 ритэгов.

    На побережье Баренцева и Белого морей находится около 153 ритэгов, в том числе 17 - в зоне Кандалакшского залива. По словам директора ВНИИТФА Николая Кузелёва, «100 % ритэгов на побережье Балтийского моря подвергаются ежегодным обследованиям. Вместе с тем следует признать, что обследование ритэг специалистами ФГУП ВНИИТФА на арктическом побережье Чукотского автономного округа не осуществлялось в связи с отсутствием договоров».

    Аварийный ритэг в Чукотском АО: выход 90Sr в окружающую среду

    По сообщению Дальневосточного межрегионального территориального округа Госатомнадзора России, 16 августа 2003 года при обследовании комиссией ритэгов, расположенных на арктическом побережье Чукотского автономного округа, был обнаружен аварийный ритэг типа ИЭУ-1 на мысе Наварин Беринговского района. Мощность экспозиционный дозы на поверхности генератора составляла до 15 Р/ч.

    Как установила комиссия, генератор «саморазрушился в результате некоего, пока точно не установленного по природе, внутреннего воздействия». Было выявлено радиоактивное загрязнение корпуса ритэга и почвы вокруг него. Об этом сообщалось в письме № 04-05\1603, направленном руководству Минатома РФ 20 августа 2003, генеральным директором ВНИИТФА Минатома Н. Р. Кузелёвым и ответственным чиновником Минобороны РФ А. Н. Кунаковым.

    В июле 2004 года проведено повторное обследование аварийного ритэга на мысе Наварин. В результате обследования установлено: радиационная обстановка резко ухудшилась, уровень МЭД гамма-излучения достигает 87 Р/ч; началcя выход Sr-90 во внешнюю среду, что говорит о начале разрушения блока радиационной защиты, блока тепловой защиты, защитного корпуса и гнёзд гильз (ранее эксперты ВНИИТФА многократно заявляли о невозможности выхода стронция в окружающую среду).

    Предположительно, этот ритэг был сбит вездеходом оленеводами бригады, стоявшей на Наварине в 1999 году. Генератор нагрелся внутри до 800 °C. Металлические пластины, преграждавшие путь радиации, лопнули. Пока положение спасает бетонная плита весом 6 тонн, которой закрыли генератор в прошлом году. Однако излучение в тысячи раз превышает допустимые нормы. На самом южном мысе Чукотки Наварин пасут стада оленеводы. Животных, да и людей, предупреждающие знаки не останавливают - они подходят близко к источнику радиации.

    Как упоминается в отчёте ФСАН за 2004 год, «техническое состояние РИТЭГ и динамика развития теплофизических процессов в РИТЭГ не исключает его полного разрушения», причём теплофизические процессы («распирание» внутренним давлением) остаются «неизвестными». По настоящее время Минобороны России решается вопрос его вывоза и утилизации в июле 2005 года.

    Аварийные и заброшенные ритэги

    Заброшенные ритэги в Чукотском АО
    остров Шалаур Превышение допустимого предела доз в 30 раз. Ритэг находится в бесхозном, заброшенном состоянии.
    мыс Охотничий Имеет сильные внешние повреждения. Установлен без учета влияния опасных природных явлений в непосредственной близости от термокарстовой депрессии. Обслуживающий персонал скрыл транспортную аварию, которая произошла с ритэгом в марте 1983 года.
    мыс Сердце-Камень Установлен в 3 метрах от края обрыва высотой до 100 метров. Через площадку проходит трещина скола, в связи с чем возможно падение ритэга вместе с большой массой скальной породы. Установка ритэга производилась без учета влияния опасных природных явлений (морская абразия). Хранится там незаконно.
    остров Нунэанган Внешнее излучение ритэга превышает установленные пределы в 5 раз. Причина - недостаток в конструкции. Транспортировка возможна только спецрейсом.
    мыс Чаплина Превышение предела допустимой дозы в нижней части корпуса в 25 раз. Из нижней части корпуса вывернута технологическая пробка. Ритэг расположен на территории воинской части. Причина аварии - недостаток конструкции этого типа генератора и сокрытие персоналом радиационной аварии с данным ритэг.
    остров Чеккуль Превышение на 35 % установленных пределов доз на расстоянии 1 м от поверхности ритэга.
    мыс Шалаурова изба Превышение на 80 % установленных пределов доз на расстоянии 1 м от поверхности ритэга.

    Признано, что ещё 15 ритэгов Тиксинской гидробазы подлежат вывозу в связи с отсутствием необходимости в использовании.

    Инциденты с ритэгами

    Ниже подробно описывается несколько инцидентов; о последних инциденты, имевших место в конце 2003-2004 году вы можете прочитать в таблице в конце этого подраздела.

    12 ноября 2003 года Гидрографическая служба Северного флота при проведении планового осмотра средств навигационного обеспечения обнаружила полностью разобранный ритэг типа «Бета-М» в губе Оленьей Кольского залива (на северном берегу напротив входа в Екатерининскую гавань), в районе города Полярный. Ритэг разрушен полностью, и все его части, включая защиту из обеднённого урана, похищены неизвестными похитителями. Радиоизотопный источник тепла - капсула со стронцием - был обнаружен в воде у берега на глубине 1,5 - 3 метра.

    13 ноября 2003 года этой же инспекцией, также в районе города Полярный обнаружен полностью разобранный ритэг того же типа «Бета-М», обеспечивающий электропитание навигационного знака № 437 на острове Южный Горячинский в Кольском заливе (напротив бывшего поселка Горячие Ручьи). Как и предыдущий, ритэг разрушен полностью, и все его части, включая защиту из обеднённого урана, похищены. РИТ обнаружен на суше у береговой черты в северной части острова.

    Администрацией Мурманской области произошедшее квалифицируется как радиационная авария. По заявлению администрации, «РИТ представляет собой источник повышенной радиационной опасности с мощностью излучения на поверхности около 1 000 рентген в час. Нахождение людей и животных вблизи источника (ближе 500 метров) представляет опасность для здоровья и жизни. Следует полагать, что люди, которые разобрали ритэги, получили смертельные дозы облучения. В настоящее время ФСБ и МВД осуществляют поиск похитителей и частей ритэгов в пунктах приёмки металлолома».

    Точная дата, когда произошло разграбление ритэгов, не установлена. По-видимому, предыдущая проверка этих ритэгов проводилась не позже чем весной 2003 года. Как стало известно «Беллоне», территория, где находились ритэги и где были разбросаны капсулы со стронцием, не является закрытой и доступ туда не был ограничен. Таким образом, в течение длительного времени было возможно облучение людей.

    12 марта 2003 года (в тот же день, когда министр по атомной энергии Александр Румянцев делился своими опасениями о сохранности ядерных материалов на конференции в Вене) военные Ленинградской военно-морской базы обнаружили, что разграблен один из маяков на берегу Балтийского моря (мыс Пихлисаар Кургальского полуострова в Ленинградской области).

    До обнаружения пропажи последняя плановая проверка этого маяка с генератором типа «Бета-М» была проведена в июне 2002 года. Охотники за цветным металлом унесли около 500 кг нержавеющей стали, алюминия и свинца, а радиоактивный элемент (РИТ-90) сбросили в море в 200 метрах от маяка. Горячая капсула со стронцием проплавила лёд и ушла на дно Балтийского моря. При этом мощность экспозиционной дозы гамма-излучения на поверхности почти метровой толщи льда над источником составляла более 30 Р/ч.

    Поскольку службы пограничников, в ведении которых находится маяк, недостаточно оснащены, 23 марта они обратились в Ленспецкомбинат «Радон» (Сосновый Бор) с просьбой найти и изолировать радиоактивный цилиндр. ЛСК «Радон» не имеет лицензии на данный вид деятельности (комбинат специализируется на захоронении радиоактивных отходов), и поэтому специально согласовывал извлечение стронциевой батареи из-подо льда с Госатомнадзором. 28 марта радиоактивный элемент был извлечён при помощи обычной лопаты и вил на длинных ручках и доставлен к дороге за несколько километров на обычных санках, где был погружен в свинцовый контейнер. Оболочка, в которой находится стронций, повреждена не была. После временного хранения на ЛСК «Радон» цилиндр транспортировали во ВНИИТФА.

    Аналогичный маяк в Ленинградской области был разграблен в 1999 году. Тогда радиоактивный элемент был обнаружен на автобусной остановке в городе Кингисеппе, в 50 км от места происшествия. По меньшей мере три человека, укравшие источник, погибли. Ликвидацией инцидента тогда также занимались специалисты ЛСК «Радон».

    Разграбленный в марте 2003 года маяк находился вблизи деревни Курголово Кингисепского района, недалеко от границ с Эстонией и Финляндией, на территории заказника и водно-болотного угодья международного значения. Заказник был создан в 2000 году постановлением губернатора Ленинградской области с целью защиты редких видов флоры и фауны, охраны мелководной зоны залива, где нерестятся промысловые виды рыб, а также мест обитания серого тюленя и кольчатой нерпы. На территории заказника находятся гнездовые колонии и миграционные стоянки редких водоплавающих птиц. При создании заповедника планировалось развитие туризма. Была разработана система «экологических» троп и маршрутов: природа полуострова могла бы привлечь туристов. Однако после уже двух инцидентов, связанных с потерей радиоактивного источника, сомнительно, что туристы захотят приехать в эти места.

    В мае 2001 года были похищены три радиоизотопных источника с маяков Минобороны РФ, расположенных на острове в Белом море в районе Кандалакшского заповедника в Мурманской области. Этот заповедник также является одним из центров экологического туризма. Два охотника за цветными металлами получили сильные дозы радиации, а похищенные ритэги были найдены и в июне 2001 года отправлены во ВНИИТФА. Оттуда их перевезли на комбинат «Маяк» в Челябинской области. Работы финансировались администрацией норвежской провинции Финнмарк по соглашению с администрацией Мурманской области по программе утилизации ритэгов и установки на маяках солнечных панелей.

    В 1987 году вертолёт МИ-8 Дальневосточного управления гражданской авиации по заявке в/ч 13148 Минобороны России транспортировал на подвеске в район мыса Низкий на восточном побережье Сахалина (Охинский район) ритэг типа ИЭУ-1 весом в две с половиной тонны. Как объяснили пилоты, погода была ветреная и вертолет разболтало так, что они, предотвращая падение, были вынуждены сбросить груз в море.

    В августе 1997 года другой ритэг того же типа рухнул с вертолёта в море в районе мыса Марии на севере острова Сахалин (Смирныховский район). Установка упала в воду на расстоянии 200-400 метров от берега и лежит на глубине 25 - 30 метров. Причиной, по словам военных, стало открытие на вертолете замка внешней подвески из-за неверных действий командира экипажа. Несмотря на вину гражданских авиаторов, осуществлявших транспортировку ритэгов на внешней подвеске вертолетов, вся ответственность лежит на собственнике ритэгов - на Тихоокеанском флоте Минобороны России. Военные обязаны были разработать мероприятия по предупреждению аварийных ситуаций, а также провести специальный инструктаж экипажей вертолётов, однако ничего этого сделано не было.

    Поисковая операция, обнаружившая один из ритэгов (затопленный в 1997 году) в Охотском море, состоялась только в 2004 году. Планируется, что ритэг будет поднят не ранее лета 2005 года. Экспедиция по поиску другого ритэга до сих пор не проводилась.

    В настоящее время оба ритэга лежат на морском дне. Пока в пробах морской воды в этих местах нет повышенного содержания стронция-90, однако морская среда достаточно агрессивна. Она является химически активной средой, к тому же ритэги находятся под давлением в несколько атмосфер. А в корпусах ритэгов имеются технологические разъёмы и каналы, через которые морская вода обязательно просочится внутрь. Тогда радионуклид стронций-90 попадёт в море и по пищевой цепочке «донные микроорганизмы, водоросли, рыба» - в пищу человека. В пользу вероятности такого сценария высказываются представители Магаданского отдела инспекции радиационной безопасности, представители местных отделений Госатомнадзора требуют подъёма ритэгов, при этом указывая, что разработчики ритэгов из ВНИИТФА не испытывали их на воздействие химически агрессивной морской среды. Возможность выхода радионуклидов из ритэгов у мысов Низкого и Марии официально подтверждается экспертами МАГАТЭ. Кроме того, выход стронция-90 в окружающую среду стал оцениваться экспертами как вероятный сценарий, после того как в июле 2004 года был зафиксирован выход стронция из аварийного ритэга на мысе Наварин в Чукотке. По расчётам Норвежского управления по атомному надзору (NRPA), при самом худшем сценарии выход радиоактивности в морскую воду может составлять до 500 МБк Sr-90 ежедневно; несмотря на такую цифру, NRPA считает, что риск поступления стронция по пищевой цепочке в организм человека незначителен.

    Специалисты ВНИИТФа также участвовали в ликвидации чрезвычайной ситуации, вызванной несанкционированной разборкой шести ритэгов типа «Бета-М» в Казахстане в районе города Приозерск.

    В 1998 году в поселке Ванкарем на Чукотке умерла от лейкемии двухлетняя девочка. Ещё двое детей лежали в районной больнице для подтверждения этого же диагноза. По некоторым данным, причиной облучения стал заброшенный ритэг, который валялся недалеко от поселка.

    Пока официально неподтверждённым остается факт облучения начальника станции навигационного обеспечения «Пластун» на мысе Якубовского в Приморском крае Владимира Святца. В марте 2000 года около дома Святца у маяка был сгружен повреждённый ритэг с Ольгинского участка гидрографической службы Тихоокеанского флота, имевший повышенный радиационный фон. В результате нахождения около повреждённого ритэга В.Святец заработал хроническую лучевую болезнь, однако этот диагноз гражданских врачей оспаривается руководством и врачами Тихоокеанского флота.

    Инциденты с ритэгами в России и СНГ
    1978 Аэропорт Пулково, Ленинград Случай перевозки отработавшего ритэга без транспортного контейнера.
    1983, март Мыс Нутэвги, Чукотский АО Ритэг по пути к месту установки попал в транспортную аварию и был сильно поврежден. Факт аварии, скрытый персоналом, открыла комиссия c участием специалистов Госатомнадзора в 1997 году.
    1987 Мыс Низкий, Сахалинская область При транспортировке вертолет уронил ритэг типа ИЭУ-1 весом в 2,5 тонны в море. Ритэг, принадлежавший Минобороны, остается на дне Охотского моря.
    1997 Таджикистан, Душанбе Зарегистрирован повышенный гамма-фон на территории Таджикгидромета. Три отслуживших свой срок ритэга хранились на угольном складе предприятия в центре Душанбе (поскольку существовали проблемы с отправкой ритэгов во ВНИИТФА) и были разобраны неизвестными.
    1997, август Мыс Марии, Сахалинская область Повторение событий десятилетней давности: при транспортировке вертолет уронил ритэг типа ИЭУ-1 в море. Ритэг, принадлежавший Минобороны, остается на дне Охотского моря на глубине 25 - 30 метров. Ритэг был найден в результате экспедиции осенью 2004 года, его подъём намечен на лето 2005 года.
    1998, июль Корсаковский порт, Сахалинская область В пункте приема металлолома обнаружен ритэг в разобранном виде. Похищенный ритэг принадлежал Минобороны России.
    1999 Ленинградская область Ритэг был разграблен охотниками за цветными металлами. Радиоактивный элемент (фон вблизи - 1000 Р/ч) был найден на автобусной остановке в Кингиссеппе. Увезен на ЛСК «Радон».
    2000 Мыс Малая Бараниха, Чукотский АО Доступ к ритэгу, находящемуся вблизи поселка, не ограничен. В 2000 году было установлено, что радиационный фон источника превышает естественный в несколько раз. Из-за нехватки средств не был эвакуирован.
    2001, май Кандалакшский залив, Мурманская область С маяков на острове были похищены 3 радиоизотопных источника. Все три источника обнаружены и отправлены в Москву специалистами ВНИИТФА.
    2002, февраль Западная Грузия Жители села Лия Цаленджихского района получили высокие дозы облучения, найдя в лесу ритэги. Вскоре после инцидента работавшая в Грузии комиссия МАГАТЭ установила, что всего в Грузию с завода «Балтиец» в советское время было завезено 8 генераторов.
    2003, март Мыс Пихлисаар, близ д. Курголово, Ленинградская область Ритэг был разграблен охотниками за цветными металлами. Радиоактивный элемент (фон вблизи - 1000 Р/ч) был найден в 200 м от маяка, в воде Балтийского моря. Извлечен специалистами ЛСК «Радон».
    2003, август-сентябрь Чаунский район, Чукотский АО Инспекция не обнаружила ритэг типа <Бета-М> № 57 на пункте <Кувэквын>, были официально высказаны предположения о возможном замывании ритэга в песок в результате сильного шторма или его хищения неизвестными.
    2003, сентябрь Остров Голец, Белое море Персонал Северного флота обнаружил хищение металла биологической защиты ритэга на острове Голец. Была также взломана дверь в помещение маяка. Этот маяк содержал один из наиболее мощных ритэгов с шестью элементами РИТ-90, которые похищены не были. Излучение на поверхности ритэга составляло 100 Р/ч.
    2003, ноябрь Кольский залив, губа Оленья и остров Южный Горячинский Два ритэга, принадлежащие Северному флоту, разграблены охотниками за цветными металлами, а их элементы РИТ-90 найдены неподалеку.
    2004, март Лазовский район Приморского края, близ посёлка Валентин Ритэг, принадлежащий Тихоокеанскому флоту, найден разобранным, по-видимому, охотниками за цветными металлами. РИТ-90 найден неподалеку.
    2004, июль Норильск , Красноярский край На территории воинской части 40919 обнаружено три ритэга. По словам командира части, данные ритэги остались от ранее дислоцированной на этом месте другой воинской части. По сообщению Красноярского отдела инспекций Госатомнадзора, мощность дозы на расстоянии около 1 м от корпуса ритэга в 155 раз превышает естественный фон. Вместо того, чтобы решать эту проблему внутри министерства обороны, воинская часть, в которой были обнаружены ритэги направила письмо в ООО <Квант> в Красноярск, занимающееся монтажом и наладкой радиационной техники, с просьбой взять ритэги к себе на захоронение.
    Июль, 2004 Мыс Наварин, Беринговский район Чукотского АО Повторное обследование аварийного ритэга типа ИЭУ-1 выявило, что стронций-90 начал выходить из ритэга в окружающую среду в результате <неизвестных теплофизических процессов>. Это опровергает долгое время поддерживавшийся ВНИИТФА тезис о неуязвимости капсул со стронцием. Техническое состояние РИТЭГ и динамика развития теплофизических процессов в РИТЭГ не исключает его полного разрушения. Уровень гамма-излучения достигает 87 Р/ч.
    Сентябрь, 2004 Остров Земля Бунге, Новосибирские острова, Якутия Осуществлявший транспортировку двух ритэгов типа <Эфир-МА> № 04, 05 выпуска 1982, принадлежавших ФГУП «Гидрографическое предприятие» Минтранса РФ, вертолёт МИ-8 мт произвёл аварийный сброс груза с высоты 50 метров на песчаную поверхность тундры острова Бунге. По сообщению ФСАН, в результате удара о землю целостность внешней радиационной защиты корпусов ритэгов нарушена, на высоте 10 метров над местом падения ритэгов мощность дозы гамма-излучения составляет 4 мЗв/ч. Причина инцидента - нарушение <Гидрографическим предприятием> условий транспортировки ритэгов (они перевозились без транспортных упаковочных контейнеров, которые требуются по нормам МАГАТЭ). Подъём ритэгов предполагается летом 2005 года.

    Помимо перечисленных случаев, необходимо упомянуть, что в августе 1998 года Гидрографическим предприятием был установлен факт хищения аккумуляторов с двух ритэгов типов «Бета-М» на мысе Отмелый Хатангского залива полуострова Таймыр. В августе 2002 года при инспекция Гидрографического предприятия Минтранса обнаружила исчезновение двух ритэгов типа «Гонг» на мысе Кондратьева пролива Дмитрия Лаптева. По гипотезе научного предприятия Рудгеофизика, ритэги находятся в грунте на глубине 3 - 5 метров, однако никаких действий по обнаружению ритэгов и извлечению их из грунта до настоящего момента произведено не было.

    Угроза терроризма

    Действующая с 1991 года программа Конгресса США, известная как CTR, «Совместное сокращение угрозы», или программа Нанна-Лугара, рассматривает ритэги как угрозу распространения радиоактивных материалов, которые могут быть использованы для создания «грязной бомбы».

    На сайте программы отмечается, что российское правительство не имеет достаточных данных о месторасположении всех ритэгов. Целью программы является найти их и освободить от опасного материала.

    12 марта 2003 года на конференции МАГАТЭ «Безопасность радиоактивных источников» министр по атомной энергетике Александр Румянцев признал существование проблемы. К фактам, осложняющим положение, по мнению Румянцева, «относятся и активизация различного рода террористических группировок в мире, и дезинтеграция бывшего советского пространства, приведшая к утрате контроля над источниками, а иногда и просто к утере самих источников. Примером тому являются случаи несанкционированного вскрытия местными жителями ритэгов в Казахстане и Грузии с целью использования имеющихся в них цветных металлов. И полученная в результате таких действий доза для некоторых из них оказалась чрезвычайно высокой».

    Румянцев признал, что «после распада СССР некогда целостная государственная система контроля за местонахождением и перемещением радиоактивных, ядерных материалов заново воссоздавалась в отдельных независимых государствах, что породило невиданный всплеск нехарактерных доселе преступлений, связанных, в частности, и с радиоактивными источниками».

    Согласно заявлению МАГАТЭ, «относящиеся к категории высокого риска радиоактивные источники, не находящиеся под надёжным и регулируемым контролем, включая так называемые «бесхозные» источники, создают серьёзные проблемы сохранности и безопасности. Поэтому под эгидой МАГАТЭ следует осуществить международную инициативу, направленную на содействие определению мест нахождения, возвращению и обеспечению сохранности таких радиоактивных источников во всем мире».

    Программы утилизации ритэгов

    Поскольку ритэги, которые используются в навигационном оборудовании Гидрографической службы Северного флота, выработали свой ресурс, представляют потенциальную угрозу радиоактивного загрязнения окружающей среды, администрация норвежской провинции Финмарк финансирует работы по их утилизации и частичной замене солнечными батареями. Гражданские ритэги в этот проект не входят. Об этом существует ряд договоров между администрацией Финмарка и правительством Мурманской области. При утилизации ритэги Северного флота переправляются в Мурманск для временного хранения на РТП «Атомфлот», после поступают на ВО «Изотоп» в Москве, оттуда во ВНИИТФА, где разбираются в специальной камере, после чего РИТ-90 отправляют на захоронение на ПО «Маяк». На первом этапе программы на солнечные элементы западного производства было заменено 5 ритэгов. В 1998 году первым заменили ритэг на маяке на острове Большой Айнов в Кандалакшском заповеднике, эта работа стоила 35 400 долларов. По соглашению 1998 года планировалось заменить ещё 4 ритэга (два заменили в 1999 году, один в 2000 и ещё один в 2002 на навигационном знаке Лауш на полуострове Рыбачий). В 2001 году было утилизировано 15 ритэгов (12 в обычном порядке, а также три ритэга, разобранных охотниками за цветными металлами в районе Кандалакши). В июне 2002 года был подписан договор об утилизации ещё 10 ритэгов, на эти цели было выделено ещё 200 000 долларов. В августе 2002 года «Беллона» совместно с экспертами конгресса США совершила инспекцию норвежского маяка на солнечных батареях у российской границы. «Беллона» заявила о необходимости замены российских радиоактивных маяков. 8 апреля 2003 года губернаторы Финмарка и Мурманской области подписали два контракта: по утилизации отработанных ритэгов и по тестированию российских солнечных панелей. Новая стадия утилизации ритэгов, предпринятая в 2004, стоит около 600 000 долларов. На сентябрь 2004 в рамках совместного проекта было утилизировано 45 ритэгов, при этом планировалось к концу 2004 утилизировать 60 ритэгов, 34 из них снабдив солнечными батареями. На сентябрь 2004 года норвежская провинция Финмарк уже вложила в этот проект около 3,5 млн. долларов, однако сколько эта программа будет стоить в будущем, зависит в значительной степени от того, какие усилия предпримут другие потенциальные страны-доноры. Стоимость проекта по замене ритэгов на солнечные панели составляет 36 000 долларов, зато панели эти - российского производства, они дешевле западных аналогов. Стоимость каждой панели составляет около 1 млн. рублей. Солнечная батарея устроена так, что будет накапливать электроэнергию в светлое время суток, а в тёмное - отдавать. В работах участвует краснодарский завод «Сатурн», принадлежащий Росавиакосмосу. Испытывались батареи на одном из мурманских маяков и на маяке в Финмарке.

    В августе 2004 года Норвежское управление по радиационной защите (NRPA) закончило свой независимый отчёт об утилизации российских ритэгов.

    На очередной российско-норвежской встрече в феврале 2005 года было решено до 2009 года профинансировать утилизацию оставшихся 110 маяков (около 150 РИТ, поскольку некоторые ритэги имеют несколько РИТ) Мурманской и Архангельской области, заменив их на солнечные элементы. Стоимость программы оценивается примерно в 3,5 млн. долларов.

    Усилия США

    После 11 сентября 2001 года США признали опасность ритэгов, которые могут быть использованы террористами для создания «грязной бомбы». В сентябре 2003 году, Минатом подписал техническое задание с департаментом энергетики США (DOE) на утилизацию ряда ритэгов. Согласно договорённости, до 100 ритэгов в год будет утилизироваться на «Маяке». По существующему порядку, при утилизации корпус ритэга разбирается в специальной камере ВНИИТФА. Содержащийся внутри РИТ-90 может быть использован для целей энергетики или переведён в радиоактивные отходы и отправлен на утилизацию в специальном контейнере в город Челябинск на завод «Маяк», где подвергается остекловыванию. Между тем, с 2000 года по 2003 год ВНИИТФА утилизировал всего около 100 ритэгов различного типа, выведенных из эксплуатации. В 2004 году всего по России с различных муниципальных территорий было вывезено на утилизацию 69 ритэгов Минтранса РФ. В 2005 году планируется утилизировать ещё около 50 ритэгов Минтранса РФ. Все ритэги (и Минтранса, и Минобороны) Росатом планирует утилизировать к 2012 году. Бюджет департамента энергетики на программу контроля за радиологическими рассеивающими устройствами (radiological dispersal devices), которые могут быть созданы с использованием материала, содержащегося в ритэгах, в 2004 финансовом году составлял 36 млн. долларов, а запрос на 2005 финансовый год - 25 млн. Утилизация ритэгов Минтранса России начата только в августе 2004 года, в рамках программы DOE. Тем не менее, уже после начала программы, в ноябре 2004 года, заместитель генерального директора Гидрографического предприятия Минтранса РФ Евгений Клюев заявил «Беллоне», что «никакой политики утилизации ритэгов нет, утилизируются только ритэги в самом плохом состоянии».

    В переговорах с американскими и германскими партнёрами, Минатом предусматривает и вариант, по которому содержимое ритэгов будет храниться в региональных полигонах «Радон». В частности, обсуждается план создания долговременного современного хранилища для ритэгов в районе Сибири, предположительно на территории одного или нескольких комбинатов «Радон», для того чтобы исключить их транспортировку в Москву и обратно через Сибирь на ПО «Маяк». Между тем, комбинаты «Радон» рассчитаны на обращение только с отходами средней и низкой радиоактивности, в то время как ритэги относятся к высокоактивным отходам. В марте 2005 года Росатом заявил о том, что DOE обещал рассмотреть вопрос о помощи России в строительстве на предприятии «ДальРАО» (в районе базы АПЛ в Вилючинске на Камчатке) пункта для разборки ритэгов (для исключения их отправки в Москву; захоронение предполагается производить на «Маяке»). Между тем, с американской помощью на «ДальРАО» уже начато строительство промежуточного пункта хранения ритэгов дальневосточного региона. Ориентировочная стоимость вывоза одного ритэга с места дислокации и процедуры утилизации составляет 4 млн. рублей (около 120 000 долларов, что примерно равняется стоимости нового ритэга). По данным ВНИИТФА, стоимость утилизации для ритэгов Чукотского АО составляет 1 млн. рублей (около 30 000 долларов).

    - Один из радиоизотопных генераторов зонда Кассини Радиоизотопный генератор космического аппарата New Horizons Радиоизотопные источники энергии устройства различного конструктивного исполнения, использующие энергию, выделяющуюся при радиоактивном… … Википедия

    Один из радиоизотопных генераторов зонда Кассини Радиоизотопный генератор космического аппарата New Horizons Радиоизотопные источники энергии устройства различного конструктивного исполнения, использующие энергию, выделяющуюся при радиоактивном… … Википедия

    Один из радиоизотопных генераторов зонда Кассини Радиоизотопный генератор космического аппарата New Horizons Радиоизотопные источники энергии устройства различного конструктивного исполнения, использующие энергию, выделяющуюся при радиоактивном… … Википедия Википедия

    АМС «Венера 13» Автоматическая межпланетная станция (АМС) беспилотный космический аппарат, предназначенный для полёта в межпланетном космическом пространстве (вне орбиты Земли … Википедия

    Так получилось, что в серии «Мирный космический атом» мы движемся от фантастического к распространенному. В прошлый раз мы поговорили об энергетических реакторах, очевидный следующий шаг - рассказать о радиоизотопных термоэлектрических генераторах. Недавно на Хабре был отличный пост про РИТЭГ зонда «Кассини» , а мы рассмотрим эту тему с более широкой точки зрения.

    Физика процесса

    Производство тепла
    В отличие от ядерного реактора, который использует явление цепной ядерной реакции, радиоизотопные генераторы используют естественный распад радиоактивных изотопов. Вспомним, что атомы состоят из протонов, электронов и нейтронов. В зависимости от количества нейтронов в ядре конкретного атома, он может быть стабильным, или же проявлять тенденцию к самопроизвольному распаду. Например, атом кобальта 59 Co с 27 протонами и 32 нейтронами в ядре стабилен. Такой кобальт использовался человечеством со времен Древнего Египта. Но если мы добавим к 59 Co один нейтрон (например, поместив «обычный» кобальт в атомный реактор), то получится 60 Co, радиоактивный изотоп с периодом полураспада 5,2 года. Термин «период полураспада» означает, что через 5,2 года один атом распадется с вероятностью 50%, а от ста атомов останется примерно половина. У всех «обычных» элементов есть свои изотопы с разным периодом полураспада:


    3D карта изотопов, спасибо ЖЖ пользователю crustgroup за картинку.

    Подбирая подходящий изотоп, можно получить РИТЭГ с требуемым сроком службы и другими параметрами:

    Изотоп Способ получения Удельная мощность, Вт/г Объёмная мощность, Вт/см³ Период полураспада Интегрированная энергия распада изотопа, кВт·ч/г Рабочая форма изотопа
    60 Со (кобальт-60) Облучение в реакторе 2,9 ~26 5,271 года 193,2 Металл, сплав
    238 Pu (плутоний-238) атомный реактор 0,568 6,9 86 лет 608,7 Карбид плутония
    90 Sr (стронций-90) осколки деления 0,93 0,7 28 лет 162,721 SrO, SrTiO 3
    144 Ce (церий-144) осколки деления 2,6 12,5 285 дней 57,439 CeO 2
    242 Cm (кюрий-242) атомный реактор 121 1169 162 дня 677,8 Cm 2 O 3
    147 Pm (прометий-147) осколки деления 0,37 1,1 2,64 года 12,34 Pm 2 O 3
    137 Cs (цезий-137) осколки деления 0,27 1,27 33 года 230,24 CsCl
    210 Po (полоний-210) облучение висмута 142 1320 138 дней 677,59 сплавы со свинцом, иттрием, золотом
    244 Cm (кюрий-244) атомный реактор 2,8 33,25 18,1 года 640,6 Cm 2 O 3
    232 U (уран-232) облучение тория 8,097 ~88,67 68,9 лет 4887,103 диоксид, карбид, нитрид урана
    106 Ru (рутений-106) осколки деления 29,8 369,818 ~371,63 сут 9,854 металл, сплав

    То, что распад изотопов происходит самостоятельно, означает, что РИТЭГом нельзя управлять. После загрузки топлива он будет нагреваться и производить электричество годами, постепенно деградируя. Уменьшение количества делящегося изотопа означает, что будет меньше ядерных распадов, меньше тепла и электричества. Плюс, падение электрической мощности усугубит деградация электрического генератора.
    Существует упрощённая версия РИТЭГа, в котором распад изотопа используется только для обогрева, без получения электричества. Такой модуль называется блоком обогрева или RHG (Radioisotope Heat Generator).
    Превращение тепла в электричество
    Как и в случае атомного реактора, на выходе у нас получается тепло, которое надо каким-либо образом преобразовать в электричество. Для этого можно использовать:
    • Термоэлектрический преобразователь . Соединив два проводника из разных материалов (например, хромеля и алюмеля) и нагрев один из них, можно получить источник электричества.
    • Термоэмиссионный преобразователь . В этом случае используется электронная лампа. Её катод нагревается, и электроны получают достаточно энергии чтобы «допрыгнуть» до анода, создавая электрический ток.
    • Термофотоэлектрический преобразователь . В этом случае к источнику тепла подсоединяется фотоэлемент, работающий в инфракрасном диапазоне. Источник тепла испускает фотоны, которые улавливаются фотоэлементом и преобразуются в электричество.
    • Термоэлектрический конвертер на щелочных металлах . Здесь для превращения тепла в электричество используется электролит из расплавленных солей натрия и серы.
    • Двигатель Стирлинга - тепловая машина для преобразования разности температуры в механическую работу. Электричество получается из механической работы с использованием какого-либо генератора.

    История

    Первый экспериментальный радиоизотопный источник энергии был представлен в 1913 году. Но только со второй половины XX века, с распространением ядерных реакторов, на которых можно было получать изотопы в промышленных масштабах, РИТЭГи стали активно использоваться.
    США
    В США РИТЭГами занималась уже знакомая вам по прошлому посту организация SNAP.
    SNAP-1 .
    Это был экспериментальный РИТЭГ на 144 Ce и с генератором на цикле Ренкина (паровая машина) со ртутью в качестве теплоносителя. Генератор успешно проработал 2500 часов на Земле, но в космос не полетел.

    SNAP-3 .
    Первый РИТЭГ, летавший в космос на навигационных спутниках Transit 4A и 4B. Энергетическая мощность 2 Вт, вес 2 кг, использовал плутоний-238.

    Sentry
    РИТЭГ для метеорологического спутника. Энергетическая мощность 4,5 Вт, изотоп - стронций-90.

    SNAP-7 .
    Семейство наземных РИТЭГов для маяков, световых буев, погодных станций, акустических буев и тому подобного. Очень большие модели, вес от 850 до 2720 кг. Энергетическая мощность - десятки ватт. Например, SNAP-7D - 30 Вт при массе 2 т.

    SNAP-9
    Серийный РИТЭГ для навигационных спутников Transit. Масса 12 кг, электрическая мощность 25 Вт.

    SNAP-11
    Экспериментальный РИТЭГ для лунных посадочных станций Surveyor. Предлагалось использовать изотоп кюрий-242. Электрическая мощность - 25 Вт. Не использовались.

    SNAP-19
    Серийный РИТЭГ, использовался во множестве миссий - метеорологические спутники Nimbus, зонды «Пионер» -10 и -11, марсианские посадочные станции «Викинг». Изотоп - плутоний-238, энергетическая мощность ~40 Вт.

    SNAP-21 и -23
    РИТЭГи для подводного применения на стронции-90.

    SNAP-27
    РИТЭГи для питания научного оборудования программы «Аполлон». 3,8 кг. плутония-238 давали энергетическую мощность 70 Вт. Лунное научное оборудование было выключено ещё в 1977 году (люди и аппаратура на Земле требовали денег, а их не хватало). РИТЭГи на 1977 год выдавали от 36 до 60 Вт электрической мощности.

    MHW-RTG
    Название расшифровывается как «многосотваттный РИТЭГ». 4,5 кг. плутония-238 давали 2400 Вт тепловой мощности и 160 Вт электрической. Эти РИТЭГи стояли на Экспериментальных Спутниках Линкольна (LES-8,9) и уже 37 лет обеспечивают теплом и электричеством «Вояджеры». На 2014 год РИТЭГи обеспечивают около 53% своей начальной мощности.

    GPHS-RTG
    Самый мощный из космических РИТЭГов. 7,8 кг плутония-238 давали 4400 Вт тепловой мощности и 300 Вт электрической. Использовался на солнечном зонде «Улисс», зондах «Галилео», «Кассини-Гюйгенс» и летит к Плутону на «Новых горизонтах».

    MMRTG
    РИТЭГ для «Кьюриосити». 4 кг плутония-238, 2000 Вт тепловой мощности, 100 Вт электической.


    Тёплый ламповый кубик плутония.


    РИТЭГи США с привязкой по времени.

    Сводная таблица:

    Название Носители (количество на аппарате) Максимальная мощность Изотоп Вес топлива, кг Полная масса, кг
    Электрическая, Вт Тепловая, Вт
    MMRTG MSL/Curiosity rover ~110 ~2000 238 Pu ~4 <45
    GPHS-RTG Cassini (3) , New Horizons (1) , Galileo (2) , Ulysses (1) 300 4400 238 Pu 7.8 55.9-57.8
    MHW-RTG LES-8/9 , Voyager 1 (3) , Voyager 2 (3) 160 2400 238 Pu ~4.5 37.7
    SNAP-3B Transit-4A (1) 2.7 52.5 238 Pu ? 2.1
    SNAP-9A Transit 5BN1/2 (1) 25 525 238 Pu ~1 12.3
    SNAP-19 Nimbus-3 (2), Pioneer 10 (4) , Pioneer 11 (4) 40.3 525 238 Pu ~1 13.6
    модификация SNAP-19 Viking 1 (2), Viking 2 (2) 42.7 525 238 Pu ~1 15.2
    SNAP-27 Apollo 12-17 ALSEP (1) 73 1,480 238 Pu 3.8 20
    СССР/Россия
    В СССР и России космических РИТЭГов было мало. Первым экспериментальным генератором стал РИТЭГ «Лимон-1» на полонии-210, созданный в 1962 году:

    .

    Первыми космическими РИТЭГами стали «Орион-1» электрической мощностью 20 Вт на полонии-210 и запущенные на связных спутниках серии «Стрела-1» - «Космос-84» и «Космос-90». Блоки обогрева стояли на «Луноходах» -1 и -2, и РИТЭГ стоял на миссии «Марс-96»:

    В то же время РИТЭГи очень активно использовались в маяках, навигационных буях и прочем наземном оборудовании - серии «БЭТА», «РИТЭГ-ИЭУ» и многие другие.

    Конструкция

    Практически все РИТЭГи используют термоэлектрические преобразователи и поэтому имеют одинаковую конструкцию:

    Перспективы

    Все летавшие РИТЭГи отличает очень низкий КПД - как правило, электрическая мощность меньше 10% от тепловой. Поэтому в начале XXI века в NASA был запущен проект ASRG - РИТЭГ с двигателем Стирлинга. Ожидалось повышение КПД до 30% и 140 Вт электрической мощности при 500 Вт тепловой. К сожалению, проект был остановлен в 2013 году из-за превышения бюджета. Но, теоретически, применение более эффективных преобразователей тепла в электричество способно серьезно поднять КПД РИТЭГов.

    Достоинства и недостатки

    Достоинства:
    1. Очень простая конструкция.
    2. Может работать годами и десятилетиями, деградируя постепенно.
    3. Может использоваться одновременно для обогрева и электропитания.
    4. Не требует управления и присмотра.
    Недостатки:
    1. Требуются редкие и дорогие изотопы в качестве топлива.
    2. Производство топлива сложное, дорогое и медленное.
    3. Низкий КПД.
    4. Мощность ограничивается сотнями ватт. РИТЭГ киловаттной электрической мощности уже слабо оправдан, мегаваттной - практически не имеет смысла: будет слишком дорогим и тяжелым.

    Сочетание таких достоинств и недостатков означает, что РИТЭГи и блоки обогрева занимают свою нишу в космической энергетике и сохранят её и далее. Они позволяют просто и эффективно обогревать и питать электричеством межпланетные аппараты, но от них не стоит ждать какого-либо энергетического прорыва.

    Источники

    Кроме Википедии использовались:
    • Документ «Космическая ядерная энергия: открывая последний горизонт» .
    • Тема «Отечественные РИТЭГ» на «Новостях Космонавтики».

    Теги:

    • РИТЭГ
    • МКА
    Добавить метки