Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Измерение ядерно-физических параметров реакторов. Реактор большой мощности канальный

    Измерение ядерно-физических параметров реакторов. Реактор большой мощности канальный

    : … довольно банально, но тем не менее я так и не нашел инфу в удобоваримой форме — как НАЧИНАЕТ работать атомный реактор. Про принцип и устройство работы всё уже 300 раз разжеванно и понятно, но вот то как получают топливо и из чего и почему оно не столь опасно пока не в реакторе и почему не вступает в реакцию до погружения в реактор! — ведь оно разогревается только внутри, тем не менее перед загрузкой твлы холодные и всё нормально, так что-же служит причиной нагрева элементов не совсем ясно, как на них воздействуют и так далее, желательно не по научному).

    Сложно конечно такую тему оформить не «по научному», но попробую. Давайте сначала разберемся, что из себя представляют эти самые ТВЭЛы.

    Ядерное топливо представляет собой таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 % двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции деления, характерной для ядерного взрыва требуется концентрация урана 235 более 60%.

    Двести таблеток ядерного топлива загружаются в трубку, изготовленную из металла цирконий. Длина этой трубки 3.5м. диаметр 1.35 см. Эта трубка называется ТВЭЛ- тепловыделяющий элемент. 36 ТВЭЛов собираются в кассету (другое название «сборка»).

    Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

    Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

    Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций - это минимум 107 K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

    Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

    Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции.

    Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

    Ленинградская АЭС, Реактор РБМК

    Начало работы реактора:

    В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии. Температура теплоносителя значительно меньше рабочей.

    Как мы уже тут упоминали, для начала цепной реакции делящийся материал должен образовать критическую массу, - достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов. Это можно сделать, повысив содержание урана-235 (количество загруженных ТВЭЛОВ), либо замедлив скорость нейтронов, чтобы они не пролетали мимо ядер урана-235.

    Вывод реактора на мощность осуществляется в несколько этапов. С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне. Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.

    При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.

    Регулирование твердыми, движущимися поглощающими элементами

    Для оперативного изменения реактивности в подавляющем большинстве случаев используется твердые подвижные поглотители. В реакторе РБМК управляющие стержни содержат втулки из карбида бора заключенные в трубку из алюминиевого сплава диаметром 50 или 70 мм. Каждый регулирующий стержень помещен в отдельный канал и охлаждается водой контура СУЗ (система управления и защиты) при средней температуре 50 ° С. По своему назначению стержни делятся на стержни АЗ (аварийной зашиты), в РБМК таких стержней 24 штуки. Стержни автоматического регулирования — 12 штук, Стержни локального автоматического регулирования — 12 штук, стержни ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП). Всего имеется 211 стержней. Причем укороченные стержни вводятся в АЗ с низу остальные с верху.

    Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

    Выгорающие поглощающие элементы.

    Для компенсации избыточной реактивности после загрузки свежего топлива, часто используют выгорающие поглотители. Принцип работы которых состоит в том, что они, подобно топливу, после захвата нейтрона в дальнейшем перестают поглощать нейтроны (выгорают). Причем скорости убыли в результате поглощения нейтронов, ядер поглотителей, меньше или равна скорости убыли, в результате деления, ядер топлива. Если мы загружаем в АЗ реактора топливо рассчитанное на работу в течении года, то очевидно, что количество ядер делящегося топлива в начале работы будет больше чем в конце, и мы должны скомпенсировать избыточную реактивность поместив в АЗ поглотители. Если для этой цели использовать регулирующие стержни, то мы должны постоянно перемещать их, по мере того как количество ядер топлива уменьшается. Использование выгорающих поглотителей позволяет уменьшить использование движущихся стержней. В настоящее время выгорающие поглотители часто помешают непосредственно в топливные таблетки, при их изготовлении.

    Жидкостное регулирование реактивности.

    Такое регулирование применяется, в частности, при работе реактора типа ВВЭР в теплоноситель вводится борная кислота Н3ВО3, содержащая ядра 10В поглощающие нейтроны. Изменяя концентрацию борной кислоты в тракте теплоносителя мы тем самым изменяем реактивность в АЗ. В начальный период работы реактора когда ядер топлива много, концентрация кислоты максимальна. По мере выгорания топлива концентрация кислоты снижается.

    Механизм цепной реакции

    Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Исключение составляют подкритические реакторы с внешним источником тепловых нейтронов. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

    Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах - это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону.

    Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).

    Аварийная защита:

    Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

    Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

    Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

    Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

    Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.

    Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

    Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:

    1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
    2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.

    Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

    Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

    Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:

    1. При достижении уставки АЗ по плотности нейтронного потока.
    2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
    3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
    4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
    5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
    6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

    Может кто то сможет еще менее по научному объяснить кратко как начинает работу энергоблок АЭС? :-)

    Вспомните такую тему, как и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

    Мощность реактора определяется энерговыделением в единицу вре­мени в его активной зоне. В свою очередь, скорость энерговыделения зависит от числа делений ядер топлива и, следовательно, плотности потока тепловых нейтронов, вызывающих эти деления.

    Мощность реактора связана со средней плотностью потока тепловых нейтронов соотношением:

    где N - мощность реактора, кВт;

    Ф т - средняя плотность потока тепло­вых нейтронов в топливе, н/(см 2 -с);

    a f - эффективное сечение деления 2 3 5 U, см 2 ;

    N 5 - концентрация ядер 2 35 U, см -1 ;

    V - объем активной зоны, см 3 .

    Кампания реактора - это время, в течение которого активная зона может работать на номинальной мощности с одной и той же загрузкой. Определяется кампания запасом реактивности и кончается при полном удалении из активной зоны борной кислоты, когда цепная реакция пре­кращается.

    Способность реактора выработать за время кампании определенное количество энергии характеризует его энергоресурс (энергозапас) - Q K . Использованную часть энергоресурса называ­ют энерговыработкой реактора.

    Если реактор в течение определенного времени работал на различных уровнях мощности, то его энерговыра­ботка Q выр равна сумме энерговыработок на каждом уровне мощности.

    Кампанию и энергоресурс реактора иногда выражают в эффективных сутках, т. е. в сутках работы на номинальной мощности. Одни эффек­тивные сутки для ВВЭР-1000 соответствуют энерговыработке 3000*24 = 72 ГВт*сут. Для перевода энерговыработки в эффективные сутки сле­дует использовать соотношение:

    Количество загруженного делящегося топлива в ядерном реакторе при его работе непрерывно уменьшается за счет деления ядер 235 U и радиационного захвата ими нейтронов. Этот процесс называют выго­ранием топлива .

    Выгорание связано с энерговыработкой линейной зави­симостью:

    m выг 5 = 1,23 N t

    где т выг - масса выгоревшего 235 U, г; 1,23 - расход топлива в грам­мах, соответствующий энерговыработке в 1 МВт сут, с учетом потерь энергии, радиационного захвата нейтронов и деления 235 U; N - мощность реактора, МВт; t , - время работы реактора на мощности N , сут.

    Основная часть расхода топлива определяется количеством разделив­шихся ядер 235 U за определенное время работы реактора на мощности. Масса разделившихся ядер в граммах за время t работы реактора на мощности N , т.е. при энерговыработке Q = Nt , равна

    m 5 дел = 1,05 Nt = 1,05 Q ,

    где 1,05 - масса 235 U в граммах, разделившегося при энерговыработ­ке 1 МВт сут.

    В связи с выгоранием 235 U уменьшается к эф, а следовательно, реак­тивность и запас реактивности. Изменение запаса реактивности за счет выгорания - длительный процесс. Он зависит только от энерговыработки реактора.

    Воспроизводство и отравление

    При работе ядерного реактора постепенно исчезают ядра загружен­ного топлива и появляются новые. Среди них делящиеся ядра 239 Ри , 241 Ри . Процесс накопления последних называется воспроизводством делящегося материала.

    При делении топлива образуется около 200 нук­лидов - продуктов (осколков) деления.

    Некото­рые ядра, образующиеся при делении урана и плутония, имеют большие сечения поглощения тепловых нейтронов.

    IIoглощение нейтронов теми из них, сечение поглощения которых очень велико, а концентрация которых сравнительно быстро достигает равновес­ной, называется отравлением реактора .

    Основная масса образующихся ядер, называемая шлаками, имеет сечение поглощения тепловых нейтронов не больше, чем сечение деле­ния топлива.

    В процессе накопления шлаков (при работе реактора) запас реактивности уменьшается.

    Это уменьшение запаса реактивности вследствие поглощения тепловых нейтронов шлаками называется шла­кованием реактора .

    Процесс шлакования так же, как и выгорания, мед­ленный, связанный только с кампанией (энергонаработкой) реактора.

    При эксплуатации реактора разделить процессы выгорания и шлакова­ния невозможно.

    температура теплоносителя на входе и выходе по каналам и в целом;

    давление теплоносителя в характерных точках;

    расход теплоносителя по каналам или в целом;

    тепловая мощность реактора;

    энерговыделение по объему активной зоны;

    температура оболочек твэлов и других материалов;

    реактивность реактора;

    положение стержней регулирования и компенсации;

    контроль герметичности корпуса;

    герметичности оболочек твэла;

    многообразный дозиметричес­кий контроль…

    Специфика ядерных реакторов-оперативный контроль его тепловой мощности.

    Он осуществляется: измерения по тепловому балансу ; измерение по нейтронным детекторам .

    Измерение по тепловому балансу весьма инерционно, а при низких уровнях мощности оно не обеспечивает необходимой точности либо вообще невозможно, когда разность температур теплоносителя ничтожно мала. Тепловая мощность реактора практически пропорциональна плотности потока нейтронов.

    Поэтому для оперативного контроля средней тепловой мощ­ности используются нейтронные детекторы, которые обладают достаточной чувствительностью и являются практически безынерционными.

    Нейтронные детекторы, предназначенные для оперативного контроля средней плотности потока нейтронов, размещают обычно вне активной зоны и даже за корпусом реактора.

    При таком размещении в меньшей мере сказываются локальные изменения плотности потока нейтронов в активной зоне в связи, например, с перемещением поглощающих стержней.

    Вокруг реактора устанавливают большое количест­во нейтронных детекторов, что позволяет при их параллель­ном подключении свести к минимуму локальные перекосы распределения нейтронов в активной зоне.

    Для контроля нейтронного потока (согласно требованиям ПБЯ) реактор должен быть оснащен каналами контроля таким образом, чтобы во всем диапазоне измерения плотности нейтронного потока в активной зоне от 10 -7 % до 120 % номинального контроль осуществлялся как минимум:

    а) тремя независимыми между собой каналами измерения уровня плотности нейтронного потока с показывающими приборами;

    б) тремя независимыми между собой каналами измерения скорости изменения плотности нейтронного потока.

    По крайней мере два из трех каналов контроля плотности нейтронного потока должны быть оснащены записывающими устройствами.

    7 Системы регулирования ядерным реактором.

    Все приборы, оборудование и aппаратура контроля и управления реакторной установки входят в автоматизированную систему управления технологическим процессом.

    Согласно правилам ядерной безопасности реакторных установок все системы, с помощью которых осуществляется контроль и управление реакторными установками, разделяются на системы контроля и управления и систему управления и защиты (СУЗ) .

    Системы (элементы) контроля и управления

    реакторной установки предназначены для контроля и управления системами нормальной эксплуатации реакторной установки и системами безопасности.

    Они должны обеспечивать контроль технического состояния и безопасное управление установкой при нормальной эксплуатации, нарушениях нормальной эксплуатации и проектных авариях.

    Должна быть предусмотрена также диагностика систем контроля и управления реакторной установки.

    Ещё раз напомним, что всё сказанное о технике управления реактором строго справедливо только для “холодного” реактора. С некоторыми оговорками закономерности переходных процессов в их “чистом” виде можно наблюдать и в реальных реакторах АЭС на относительно малых уровнях мощности (в совсем нехарактерных для энергетических реакторов режимах).

    В реальных энергетических реакторах, отличающихся от “холодного” реактора наличием температурных эффектов реактивности, переходные процессы изменения мощности реактора при сообщении реактивности той или иной величины и знака имеют более сложный характер.

    Анализу переходных процессов изменения тепловой мощности реактора в энергетических режимах работы реактора будет далее посвящена отдельная тема.

    Сейчас же хотелось бы сосредоточить внимание на том, что “холодный” реактор как объект регулирования является объектом неустойчивым: любое, даже самое малозаметное, возмущение по реактивности положительного или отрицательного знака заставляет такой реактор либо непрерывно увеличивать его мощность, либо неуклонно снижать её до полной остановки реактора. И если бы реальный энергетический реактор был лишён уже известного нам отрицательного температурного коэффициента реактивности, он был бы именно таким неустойчивым реактором. Вы сразу можете взять на заметку после сказанного, что реальный энергетический реактор на номинальной (100%-ной) мощности всегда более устойчив, чем на меньших уровнях мощности. Это - однозначно и должно быть понятно: чем меньше уровень тепловой мощности реактора, тем ближе по свойствам этот реактор к “холодному” (а, значит, неустойчивому) реактору. И работа оператора реакторной установки в таком случае была бы нудной пыткой, приковывающей к себе всё его внимание и заставляющей постоянно балансировать органами управления и думать только о том, как бы не заглушить реактор или, того хуже, пустить его “вразнос”.

    В связи с этим для конструкторов реактора есть, по крайней мере, две проблемы:

    Во-первых, необходимость спроектировать реактор устойчивым в любых проектных режимах его эксплуатации в любой момент кампании, причём, устойчивым на базе внутренних свойств самого реактора, опираясь на присущие самому реактору внутренние отрицательные обратные связи, обеспечивающие процесс самоподдержания мощности реактора или, что то же, - нулевой реактивности реактора в условиях реального возникновения возмущений по реактивности;

    Во-вторых, необходимость предусмотреть систему автоматического регулирования мощности реактора, освобождающую оператора от тягостных и многократно повторяющихся действий по поддержанию мощности реактора на требуемом уровне на тот случай, если в какой-то момент кампании эффективности внутренних отрицательных обратных связей окажется недостаточно для стабилизации мощности реактора.

    Система автоматического регулирования (АР) обычно предусматривает одну или две группы специально выделенных для этой цели подвижных стержней-поглотителей, попеременно работающих в активной зоне. Каждый канал АР строится по принципу измерения величины разбаланса между фактическим и заданным уровнями мощности реактора, усиления сигнала этого разбаланса и направления его для воздействия на сервопривод группы АР таким образом, чтобы перемещением группы по высоте активной зоны свести разбаланс к нулю.

    Принципиальная блок-схема канала АР приведена на рис.12.7.

    Рис. 12.7. Принципиальная схема построения канала автоматического поддержания мощности реактора.

    Электрический сигнал в виде тока от детектора-измерителя нейтронной мощности реактора (группы ионизационных камер) поступает на вход усилителя канала АР (на схеме - УАР), где усиливается до нужных для операционного воздействия величин. В задающем устройстве (ЗУ) формируется токовый сигнал, пропорциональный задаваемой мощности реактора. С выходов УАР и ЗУ токовые сигналы подаются на вход суммирующего устройства (СУ), с выхода которого сигнал, пропорциональный разбалансу фактической и заданной мощностей реактора, подаётся на управляющую обмотку синхронного реверсивного электродвигателя, вращение которого с помощью механической передачи (редуктора и реечного механизма) преобразуется в поступательное перемещение группы управляющих стержней АР.
    Направление движения стержней АР определяется полярностью сигнала разбаланса: если разница фактической и заданной мощности реактора ΔN р = N рфакт - N рзад положительна (то есть фактическая мощность превышает заданное её значение), то электродвигатель перемещает стержни вниз, сообщая реактору, тем самым, отрицательную реактивность, заставляющую реактор снижать уровень мощности до тех пор, пока он не уменьшится до заданной величины, результируя нулевую величину разбаланса Δ N р, при которой перемещение стержней прекратится. Если первоначальный разбаланс Δ N р оказывается величиной отрицательной, то есть фактическая мощность реактора ниже заданного уровня, привод перемещает стержни вверх, сообщая реактору положительную реактивность, приводящую к подъёму мощности реактора до заданной, после чего движение стержней останавливается.
    По такому принципу строятся все токовые автоматические регуляторы мощности реакторов.

    (РБМК ) - серия энергетических ядерных реакторов, разработанных в Советском Союзе. Данный реактор - канальный, уран-графитовый (графито-водный по замедлителю), кипящего типа, на тепловых нейтронах; предназначен для выработки насыщенного пара давлением 70 кг/см?. Теплоноситель - кипящая вода.
    Главный конструктор реакторной установки: НИКИЭТ, Академик Доллежаль Н. А.
    Научный руководитель проекта: ИАЭ им. И. В. Курчатова, Академик Александров А. П.
    Генеральный проектировщик (ЛАЭС): ГСПИ-11 (ВНИПИЭТ), Гутов А. И.
    Главный конструктор турбоустановки: ХТГЗ, «Турбоатом», Косяк Ю. Ф.
    Разработчик металлоконструкции: ЦНИИПСК, Мельников Н. И.
    Головная материаловедческая организация: «Прометей», Копырин Г. И.
    Проектировщик и изготовитель электромеханического оборудования СУЗ, КТО: КБ завода «Большевик», Клаас Ю. Г.

    На данный момент серия этих реакторов включает в себя три поколения.


    Головной реактор серии - 1-й и 2-й блоки Ленинградской АЭС.



    1 История создания и эксплуатации

    2 Характеристики РБМК

    3 Конструкция

    3.1 РБМК-1000

    3.2 5-й энергоблок Курской АЭС (РБМК-1000 3-го поколения)

    3.3 РБМК-1500

    3.4 РБМК-2000, РБМК-3600 РБМКП-2400, РБМКП-4800 (прежние проекты)

    3.4.1 РБМК-2000, РБМК-3600

    3.4.2 РБМКП-2400, РБМКП-4800

    3.5 МКЭР (современные проекты)

    4 Достоинства

    5 Недостатки

    6 Практика эксплуатации


    История создания и эксплуатации


    Центральный зал РБМК-1500


    (Игналинская АЭС)


    Реактор Первый в мире АЭС был именно уран-графитовым канальным реактором с водяным теплоносителем АМ-1 («Атом Мирный»), установленный на Обнинской АЭС (1954 год). Отработка технологий уран-графитовых реакторов производилась на промышленных реакторах, в том числе реакторах "двойного" назначения (на которых помимо "военных" изотопов производилась электроэнергия): А (1948 год), АИ (ПО «Маяк»), И-1 (1955 год), ЭИ-2 (1958 год), серия АДЭ (Сибирский химический комбинат). С 1960-х годов в СССР начата разработка чисто энергетических реакторов типа, будущего РБМК. Некоторые конструкторские решения отрабатывались на опытных энергетических реакторах «Атом Мирный Большой»: АМБ-1 (1964 год) и АМБ-2 (1967 год), установленные на Белоярской АЭС.


    Разработка собственно реакторов РБМК началась с середины 60-х годов и опиралась, в значительной мере, на большой и успешный опыт проектирования и строительства промышленных уран-графитовых реакторов. Основные преимущества реакторной установки виделись создателями в:

    максимальном применении опыта уран-графитовых реакторов;

    отработанных связях между заводами, налаженном выпуске основного оборудования;

    состоянии промышленности и строительной индустрии СССР;

    многообещающих нейтронно-физических характеристиках (малое обогащение топлива).

    В целом конструктивные особенности реактора повторяли опыт предыдущих уран-графитовых реакторов. Новыми стали топливный канал, сборки тепловыделяющих элементов из новых конструкционных материалов - сплавов циркония, и с новой формой топлива - металлический уран был заменён его диоксидом, а также параметры теплоносителя. Реактор изначально проектировался как одноцелевой - для производства электрической и тепловой энергии.


    Работы над проектом начались в ИАЭ (РНЦ КИ) и НИИ-8 (НИКИЭТ) в 1964 году. В 1965 году проект получил название Б-190, а его конструирование было поручено КБ завода «Большевик». В 1966 году решением министерского НТС работа над проектом была поручена НИИ-8 (НИКИЭТ), руководимому Доллежалем.


    15 апреля 1966 г. главой Минсредмаша Е. П. Славским было подписано задание на проектирование Ленинградской атомной электростанции в 70 км по прямой к западу от Ленинграда в 4 км от поселка Сосновый Бор. В начале сентября 1966 г. проектное задание было закончено.


    29 ноября 1966 г. Советом Министров СССР принято постановление № 800-252 о строительстве первой очереди ЛАЭС, определена организационная структура и кооперация предприятий для разработки проекта и сооружения АЭС.


    Первый энергоблок с реактором типа РБМК-1000 запущен в 1973 году на Ленинградской АЭС.


    При строительстве первых энергетических АЭС в нашей стране бытовало мнение, что атомная станция является надежным источником энергии, а возможные отказы и аварии - маловероятные, или даже гипотетические события. Кроме того, первые блоки сооружались внутри системы среднего машиностроения и предполагали эксплуатацию организациями этого министерства. Правила по безопасности на момент разработки либо отсутствовали, либо были несовершенны. По этой причине на первых энергетических реакторах серий РБМК-1000 и ВВЭР-440 не было в достаточном количестве систем безопасности, что потребовало в дальнейшем серьезной модернизации таких энергоблоков. В частности, в первоначальном проекте первых двух блоков РБМК-1000 Ленинградской АЭС не было гидробаллонов системы аварийного охлаждения реактора (САОР), количество аварийных насосов было недостаточным, отсутствовали обратные клапаны (ОК) на раздаточно-групповых коллекторах (РГК) и пр. В дальнейшем, в ходе модернизации, все эти недостатки были устранены.


    Дальнейшее строительство блоков РБМК предполагалось осуществлять для нужд министерства энергетики СССР. Учитывая меньший опыт работы МИНЭНЕРГО с АЭС, в проект были внесены существенные изменения, повышающие безопасность энергоблоков. Кроме того, были внесены изменения, учитывающие опыт работы первых РБМК. В том числе были применены гидробаллоны САОР, функцию аварийных электронасосов САОР стали выполнять 5 насосов, применены обратные клапаны в РГК, сделаны другие доработки. По этим проектам были построены энергоблоки 1, 2 Курской АЭС и 1, 2 Чернобыльской АЭС. На этом этапе закончилось строительство энергоблоков РБМК-1000 первого поколения (6 энергоблоков).


    Дальнейшее совершенствование АЭС с РБМК началось с проработки проектов второй очереди Ленинградской АЭС (энергоблоки 3, 4). Основной причиной доработки проекта стало ужесточение правил безопасности. В частности, была внедрена система баллонной САОР, САОР длительного расхолаживания, представленная 4 аварийными насосами. Система локализации аварии была представлена не баком-барботером, как ранее, а башней локализации аварий, способной аккумулировать и эффективно препятствовать выбросу радиоактивности при авариях с повреждением трубопроводов реактора. Были сделаны другие изменения. Основной особенностью энергоблоков 3, 4 Ленинградской АЭС стало техническое решение о расположении РГК на высотной отметке, превышающей высотную отметку активной зоны. Это позволяло в случае аварийной подачи воды в РГК иметь гарантированный залив активной зоны водой. В дальнейшем это решение не применялось.


    После строительства энергоблоков 3, 4 Ленинградской АЭС, находящейся в ведении министерства среднего машиностроения, началось проектирование реакторов РБМК-1000 для нужд министерства энергетики СССР. Как отмечалось выше, при разработке АЭС для МИНЭНЕРГО, в проект вносились дополнительные изменения, призванные повысить надежность и безопасность АЭС, а также увеличить ее экономический потенциал. В частности, при доработке вторых очередей РБМК был применен барабан-сепаратор (БС) большего диаметра (внутренний диаметр доведен до 2.6 м), внедрена трехканальная система САОР, первые два канала которых снабжались водой от гидробаллонов, третий - от питательных насосов. Увеличено количество насосов аварийной подачи воды в реактор до 9 штук и внесены другие изменения, существенно повысившее безопасность энергоблока (принципиально, уровень исполнения САОР удовлетворял не только документам, действовавшим в момент проектирования АЭС, но и, во многом, современным требованиям). Существенно увеличились возможности системы локализации аварий, которая была рассчитана на противодействие аварии, вызванной гильотинным разрывом трубопровода максимального диаметра (напорный коллектор главных циркуляционных насосов (ГЦН) Ду 900). Вместо баков-барботеров первых очередей РБМК и башен локализации 3,4 блоков ЛАЭС, на РБМК второго поколения МИНЭНЕРГО были применены двухэтажные бассейны-локализаторы, что существенно повысило возможности системы локализации аварий (СЛА). Отсутствие контаймента компенсировалось стратегией применения системы плотно-прочных боксов (ППБ), в которых располагались трубопроводы контура многократной принудительной циркуляции теплоносителя. Конструкция ППБ, толщина стен рассчитывались из условия сохранения целостности помещений при разрыве находящегося в нем оборудования (вплоть до напорного коллектора ГЦН Ду 900 мм). ППБ не охватывался БС и пароводяные коммуникации. Также при строительстве АЭС реакторные отделения строились дубль-блоком, что означает, что реакторы двух энергоблоков находятся по существу в одном здании (в отличие от предыдущих АЭС с РБМК, в которых каждый реактор находился в отдельном здании). Так были исполнены реакторы РБМК-1000 второго поколения: энергоблоки 3 и 4 Курской АЭС, 3 и 4 Чернобыльской АЭС, 1 и 2 Смоленской АЭС (итого, вместе с 3 и 4 блоком Ленинградской АЭС, 8 энергоблоков).


    В общей сложности сдано в эксплуатацию 17 энергоблоков с РБМК. Срок окупаемости серийных блоков второго поколения составил 4-5 лет.


    Вклад АЭС с реакторами РБМК в общую выработку электроэнергии всеми АЭС России составляет порядка 50 % .


    До аварии на Чернобыльской АЭС в СССР существовали обширные планы строительства таких реакторов, однако после аварии планы по сооружению энергоблоков РБМК на новых площадках были свернуты. После 1986 года были пущены два реактора РБМК: РБМК-1000 Смоленской АЭС (1990г) и РБМК-1500 Игналинской АЭС (1987). Еще один реактор РБМК-1000 5-го блока Курской АЭС находится в стадии достройки (~70-80 % готовности). После аварии на Чернобыльской АЭС были проведены дополнительные исследования и модернизация. В настоящее время реакторы РБМК не уступают по безопасности и экономическим показателям отечественным и зарубежным АЭС того же периода постройки. На сегодняшний день приемлемый уровень безопасности РБМК подтвержден на национальном уровне, а также международными экспертизами.


    Развитие концепции канального уран-графитового реактора осуществляется в проектах МКЭР - Многопетлевой Канальный Энергетический Реактор .

    Характеристики РБМК

    Характеристика РБМК-1000 РБМК-1500 РБМКП-2400
    (проект)
    МКЭР-1500
    (проект)
    Тепловая мощность реактора, МВт 3200 4800 5400 4250
    Электрическая мощность блока, МВт 1000 1500 2000 1500
    К. п. д. блока, % 31,3 31,3 37,0 35,2
    Давление пара перед турбиной, атм 65 65 65 65?
    Температура пара перед турбиной, °С 280 280 450
    Размеры активной зоны, м:
    высота 7 7 7,05 7
    диаметр (ширина?длина) 11,8 11,8 7,05?25,38 14
    192 189 220
    Обогащение, % 235U
    испарительный канал 2,6-3,0 2,6-2,8 1,8 2-3,2
    перегревательный канал - - 2,2 -
    Число каналов:
    испарительных 1693-1661 1661 1920 1824
    перегревательных - - 960 -
    Среднее выгорание, МВт·сут/кг:
    в испарительном канале 22,5 25,4 20,2 30-45
    в перегревательном канале - - 18,9 -
    Размеры оболочки ТВЭЛа (диаметр?толщина), мм:
    испарительный канал 13,5?0,9 13,5?0,9 13,5?0.9 -
    перегревательный канал - - 10?0,3 -
    Материал оболочек ТВЭЛов:
    испарительный канал Nb Zr + 2,5 % Nb Zr + 2,5 % Nb -
    перегревательный канал - - Нерж. сталь -

    Конструкция

    Схема энергоблока АЭС
    с реактором типа РБМК

    Одной из целей при разработке реактора РБМК было улучшение топливного цикла. Решение этой проблемы связано с разработкой конструкционных материалов, слабо поглощающих нейтроны и мало отличающихся по своим механическим свойствам от нержавеющей стали. Снижение поглощения нейтронов в конструкционных материалах даёт возможность использовать более дешёвое ядерное топливо с низким обогащением урана (по первоначальному проекту - 1,8 %).

    РБМК-1000

    Схема энергоблока АЭС
    с реактором типа РБМК Тепловыделяющая сборка реактора РБМК:
    1 - дистанционирущая проставка
    2 - оболочка ТВЭЛ
    3 - таблетки ядерного топлива

    Основу активной зоны РБМК-1000 составляет графитовый цилиндр высотой 7 м и диаметром 11,8 м, сложенный из блоков меньшего размера, который выполняет роль замедлителя. Графит пронизан большим количеством вертикальных отверстий, через каждое из которых проходит труба давления (также называемая технологическим каналом (ТК)). Центральная часть трубы давления, расположенная в активной зоне, изготовлена из сплава циркония (Zr + 2,5 % Nb), обладающего высокими механическими и коррозионными свойствами, верхние и нижние части трубы давления - из нержавеющей стали. Циркониевая и стальные части трубы давления соединены сварными переходниками.


    При проектировании энергоблоков РБМК, в силу несовершенства расчетных методик, был выбран не оптимальным шаг решетки каналов. В результате реактор оказался несколько перезамедлен, что приводило к положительным значениям парового коэффициента реактивности в рабочей области, превышающим долю запаздывающих нейтронов. До аварии на ЧАЭС используемая методика расчета кривой парового коэффициента реактивности (программа BMP), показывала, что несмотря на положительный ПКР в области рабочих паросодержаний, по мере роста паросодержания эта величина меняет знак, так что эффект обезвоживания оказывался отрицательным. Соответственно состав и производительность систем безопасности проектировалась с учетом этой характеристики. Однако, как оказалось после аварии на Чернобыльской АЭС, расчетное значение парового коэффициента реактивности в областях с высоким паросодержанием было получено неверно: вместо отрицательного, он оказался положительным. Для изменения парового коэффициента реактивности был выполнен ряд мероприятий, в том числе в некоторые каналы вместо топлива установлены дополнительные поглотители. В последующем, для улучшения экономических показателей энергоблоков с РБМК дополнительные поглотители извлекались, для достижения заданных нейтроно-физических характеристик стали применять топливо более высокого обогащения с дополнительным поглотителем (оксид эрбия).


    В каждом топливном канале установлена кассета, составленная из двух тепловыделяющих сборок (ТВС) - нижней и верхней. В каждую сборку входит 18 стержневых ТВЭЛов. Оболочка ТВЭЛа заполнена таблетками из двуокиси урана. По первоначальному проекту обогащение по урану 235 составляло 1,8 %, но по мере накопления опыта эксплуатации РБМК оказалось целесообразным повышать обогащение . Повышение обогащения в сочетании с применением выгорающего поглотителя в топливе позволило увеличить управляемость реактора, повысить безопасность и улучшить его экономические показатели. В настоящее время осуществляется переход на топливо с обогащением 3,0 %.


    Реактор РБМК работает по одноконтурной схеме. Циркуляция теплоносителя осуществляется в контуре многократной принудительной циркуляции (КМПЦ). В активной зоне вода, охлаждающая твэлы, частично испаряется и образующаяся пароводяная смесь поступает в барабаны-сепараторы. В барабан-сепараторах происходит сепарация пара, которая поступает на турбоагрегат. Остающаяся вода смешивается с питательной водой и с помощью главных циркуляционных насосов (ГЦН) подается в активную зону реактора. Отсепарированный насыщенный пар (температура ~284 °C) под давлением 70-65 кгс/см2 поступает на два турбогенератора электрической мощностью по 500 МВт. Отработанный пар конденсируется, после чего, пройдя через регенеративные подогреватели и деаэратор подается с помощью питательных насосов (ПЭН) в КМПЦ.


    Реакторы РБМК-1000 установлены на Ленинградской АЭС, Курской АЭС, Чернобыльской АЭС, Смоленской АЭС.

    5-й энергоблок Курской АЭС
    (РБМК-1000 3-го поколения)

    На строящемся 5-м блоке Курской АЭС (готовность на данный момент 70 – 80%), помимо прочих мероприятий по усовершенствованию РБМК, принципиальной новизной обладает конструкция графитовой кладки реактора, имеющей в сечении вид восьмигранника. За счет уменьшения объема графита изменяется отношение доли топлива к доле замедлителя, что имеет существенное влияние на паровой коэффициент реактивности. В результате, при гарантированном отрицательном паровом коэффициенте реактивности, реактор РБМК-1000 5-го блока Курской АЭС работает с минимальным ОЗР, что дополнительно увеличивает его экономическую эффективность. В будущем возможно рассмотреть вопрос о повышении обогащения топлива для РБМК 5-го блока Курской АЭС, что позволит еще улучшить его экономические показатели, сохраняя высокий уровень безопасности.


    Данный блок формально относится к 3-му поколению РБМК (к нему относится также 3-й блок Смоленской АЭС), но, по глубине произведенных изменений, правильнее было бы отнести его к поколению «3+».

    РБМК-1500

    В РБМК-1500 мощность повышена за счёт увеличения удельной энергонапряжённости активной зоны путём увеличения мощности ТК в 1,5 раза при сохранении его конструкции. Это достигается интенсификацией теплосъема с ТВЭЛ при помощи применения в ТВК специальных интенсификаторов теплообмена (турбулизаторов) в верхней части обеих ТВС. Всё вместе это позволяет сохранить прежние габариты и общую конструкцию реактора.

    Интенсификаторы ТВС РБМК-1500 следует отличать от дистанцирующих решеток, установленных на каждой ТВС в количестве 10шт., которые также содержат турбулизаторы.

    В процессе эксплуатации выяснилось, что, из-за высоких неравномерностей энерговыделения, периодически возникающие повышенные (пиковые) мощности в отдельных каналах приводят к растрескиванию оболочек ТВЭЛ. По этой причине мощность была снижена до 1300МВт.


    Данные реакторы установлены на Игналинской АЭС (Литва).

    РБМК-2000, РБМК-3600
    РБМКП-2400, РБМКП-4800
    (прежние проекты)

    В силу общей особенности конструкции реакторов РБМК, в которой активная зона, подобно кубикам, набиралась из большого числа однотипных элементов, идея дальнейшего увеличения мощности напрашивалась сама собой.

    РБМК-2000, РБМК-3600

    В проекте РБМК-2000 увеличение мощности планировалось за счёт увеличения диаметра топливного канала, числа ТВЭЛ-ов в кассете и шага трубной решетки ТК. При этом сам реактор оставался в прежних габаритах.


    РБМК-3600 был только концептуальным проектом, о его конструктивных особенностях известно мало. Вероятно, что вопрос повышения удельной мощности в нём решался, подобно РБМК-1500, путём интенсификации теплосъёма, без изменения конструкции его основы РБМК-2000 - и, следовательно, без увеличения активной зоны.

    РБМКП-2400, РБМКП-4800

    МКЭР (современные проекты)

    Проекты РУ МКЭР являются эволюционным развитием поколения реакторов РБМК. В них учтены новые, ужесточившиеся, требования безопасности и устранены главные недостатки прежних реакторов данного типа.


    Работа МКЭР-800 и МКЭР-1000 основана на естественной циркуляции теплоносителя, интенсифицируемой водо-водяными инжекторами. МКЭР-1500 ввиду больших размеров и мощности работет с принудительной циркуляцией теплоносителя, развиваемой главными циркуляционными насосами. Реакторы серии МКЭР оснащены двойной защитной оболочкой - контайментом: первая - стальная, вторая - железобетонная без создания предварительно напряженной конструкции. Диаметр защитной оболочки МКЭР-1500 составляет 56 метров (соответствует диаметру гермооболочки Бушерской АЭС). Ввиду хорошего баланса нейтронов РУ МКЭР имеют весьма низкий расход природного урана (у МКЭР-1500 он составляет 16,7 г/МВт·ч(э) - самый низкий в мире).


    Ожидаемый КПД - 35,2 %, срок службы 50 лет, обогащение 2,4 %.

    Достоинства

    Пониженное, по сравнению с корпусными ВВЭР, давление воды в первом контуре;

    Благодаря канальной конструкции отсутствует дорогостоящий корпус;

    Нет дорогостоящих и сложных парогенераторов;

    Нет принципиальных ограничений на размер активной зоны (например, она может быть в форме параллелепипеда, как в проектах РБМКП);

    Независимый контур системы управления и защиты (СУЗ);

    Широкие возможности осуществления регулярного контроля состояния узлов активной зоны (например, труб технологических каналов) без необходимости остановки реактора, и также

    высокая ремонтопригодность;

    Более легкое (по сравнению с корпусными ВВЭР протекание аварий, вызванных разгерметизацией циркуляционного контура, а также переходных режимов, вызванных отказами оборудования;

    Возможность формировать оптимальные нейтронно-физические свойства активной зоны реактора (коэффициенты реактивности) на стадии проектирования;

    Незначительные коэффициенты реактивности по плотности теплоносителя (современный РБМК);

    Замена топлива без остановки реактора благодаря независимости каналов друг от друга (в частности, повышает КИУМ);

    Возможность наработки радионуклидов технического и медицинского назначения, а также радиационного легирования различных материалов;

    Отсутствие (по сравнению с корпусными ВВЭР) необходимости применения борного регулирования;

    Более равномерное и глубокое (по сравнению с корпусными ВВЭР) выгорание ядерного топлива;

    Возможность работы реактора с низким ОЗР - оперативным запасом реактивности (современные проекты, например, строящийся пятый энергоблок Курской АЭС);

    Более дешевое топливо из-за более низкой степени обогащения, хотя загрузка топливом значительно выше (в общем топливном цикле используют переработку отработанного топлива от

    Поканальное регулирование расходов теплоносителя через каналы, позволяющее контролировать теплотехническую надежность активной зоны;

    Тепловая инертность активной зоны, существенно увеличивающая запасы до повреждения топлива во время возможных аварий;

    Независимость петель контура охлаждения реактора (в РБМК - 2 петли), что позволяет локализовать аварии в одной петле.

    Недостатки

    Большое количество трубопроводов и различных вспомогательных подсистем требует наличия большого количества высококвалифицированного персонала;

    Необходимость проведения поканального регулирования расходов, что может повлечь за собой аварии, связанные с прекращением расхода теплоносителя через канал;

    Более высокая нагрузка на оперативный персонал по сравнению с ВВЭР, связанная с большим количеством узлов (например запорно-регулирующей арматуры);

    Бо"льшее количество активированных конструкционных материалов из-за больших размеров АЗ и металлоёмкости РБМК, остающихся после вывода из эксплуатации и требующих утилизации.

    Практика эксплуатации

    МАГАТЭ, База данных PRIS.
    Кумулятивный КИУМ по всем действующим энергоблокам:
    РБМК - 69,71%; ВВЭР - 71,54%.
    Данные с начала ввода блока по 2008г.
    Российская Федерация. Только действующие блоки.

    Аварии на энергоблоках с РБМК

    Наиболее серьезные инциденты на АЭС с реакторами РБМК:

    1975 - разрыв одного канала на первом блоке ЛАЭС;

    1982 - разрыв одного канала на первом блоке ЧАЭС;

    1986 - авария с массовым разрывом каналов на четвертом блоке ЧАЭС;

    1991 - пожар в машинном зале второго блока ЧАЭС;

    1992 - разрыв одного канала на третьем блоке ЛАЭС;

    Авария 1982 была связана с действиями оперативного персонала, грубо нарушившего технологический регламент.


    В аварии 1986 года, помимо нарушений персонала, проявились опасные свойства РБМК, существенно повлиявшие на масштаб аварии. После аварии проведена большая научно-техническая работа. Проведенные мероприятия искоренили такие опасные свойства.


    Авария 1991 года в машинном зале второго блока ЧАЭС была вызвана отказами оборудования, не зависящими от реакторной установки. В процессе аварии, вследствие пожара, произошло обрушение кровли машинного зала. В результате пожара и обрушения кровли были повреждены трубопроводы подпитки реактора водой, а также заблокирован в открытом положении паросбросный клапан БРУ-Б. Несмотря на многочисленные отказы систем и оборудования, сопровождавшие аварию, реактор проявил хорошие свойства самозащищенности, что предотвратило разогрев и повреждение топлива.


    1992 - разрыв одного канала на третьем блоке ЛАЭС был вызван дефектом клапана.

    Состояние на 2010 год

    По состоянию на 2010 год эксплуатируется 11 энергоблоков с РБМК на трёх АЭС: Ленинградской, Курской, Смоленской. По политическим причинам (в соответствии с обязательствами Литвы перед Евросоюзом) остановлено два энергоблока на Игналинской АЭС, три энергоблока на Чернобыльской АЭС (ещё один прекратил существование в результате аварии). Ведётся строительство РБМК третьей очереди на пятом энергоблокеКурской АЭС.

    Список сокращений, терминология РБМК

    A3 - аварийная защита; активная зона
    АЗМ - аварийная защита (сигнал) по превышению мощности
    АЗРТ - аварийная защита реакторной установки по технологическим параметрам (cистема)
    АЗС - аварийная защита (сигнал) по скорости нарастания мощности
    АР - автоматический регулятор
    АСКРО - автоматизированная система контроля радиационной обстановки
    АЭС - атомная электростанция
    БАЗ - быстродействующая аварийная защита
    ББ - бассейн-барботер
    БИК - боковая ионизационная камера
    БОУ - блочная очистительная установка
    БРУ-Д - быстродействующее редукционное устройство со сбросом в деаэратор
    БРУ-К - быстродействующее редукционное устройство со сбросом в конденсатор турбины
    БС - барабан-сепаратор
    БЩУ - блочный щит управления
    ВИК - высотная ионизационная камера
    ВИУБ (СИУБ) - ведущий (старший) инженер управления блоком
    ВИУР (СИУР) - ведущий (старший) инженер управления реактором
    ВИУТ (СИУТ) - ведущий (старший) инженер управления турбиной
    ГПК - главный предохранительный клапан
    ГЦН - главный циркуляционный насос
    ДКЭ (р), (в) - датчик контроля энерговыделения (радиальный), (высотный)
    ДП - дополнительный поглотитель
    ДРЕГ - диагностическая регистрация параметров
    ЗРК - запорно-регулирующий клапан
    КГО - контроль герметичности оболочки (ТВЭЛ-ов)
    КД - камера деления
    КИУМ - коэффициент использования установленной мощности
    КМПЦ - контур многократной принудительной циркуляции
    КН - конденсатный насос
    КЦТК - контроль целостности технологических каналов (система)
    ЛАЗ - локальная аварийная защита
    ЛАР - локальный автоматический регулятор
    МАГАТЭ - Международное агентство по атомной энергии
    МПА - максимальная проектная авария
    НВК - нижние водяные коммуникации
    НК - напорный коллектор
    НСБ - начальник смены блока
    НСС - начальник смены станции
    ОЗР - оперативный запас реактивности (условных "стержней")
    ОК - обратный клапан
    ОПБ - «Общие положения безопасности»
    ПБЯ - «Правила ядерной безопасности»
    ПВК - пароводяные коммуникации
    ПН - питательный насос
    ППБ - плотно-прочный бокс
    ПРИЗМА - программа измерения мощности аппарата
    ПЭН - питательный электронасос
    РБМК - реактор большой мощности канальный (кипящий)
    РГК - раздаточно-групповой коллектор
    РЗМ - разгрузочно-загрузочная машина
    РК СУЗ - рабочий канал системы управления и защиты
    РП - реакторное пространство
    РР - ручное регулирование
    РУ - реакторная установка
    САОР - система аварийного охлаждения реактора
    СБ - системы безопасности
    СЛА - система локализации аварий
    СП - стержень-поглотитель
    СПИР - система продувки и расхолаживания
    СРК - стопорно-регулирующий клапан
    СТК - система технологического контроля
    СУЗ - система управления и защиты
    СФКРЭ - система физического контроля распределения энерговыделения
    СЦК "Скала" - система централизованного контроля (СКАЛА - система контроля аппарата Ленинградской Атомной)
    ТВС - тепловыделяющая сборка
    ТВЭЛ - тепловыделяющий элемент
    ТГ - турбогенератор
    ТК - технологический канал
    УСП - укороченный стержень-поглотитель (ручной)
    ЯТ - ядерное топливо
    ЯТЦ - ядерный топливный цикл
    ЯЭУ - ядерная энергетическая установка


    Материалы: dic.academic.ru