Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Роль руководителя в инновационном управлении А должен ли директор преподавать
  • Управление стоимостью проекта на основе затрат
  • Техническое противоречие (ТП) - модель описания ИС, в которой выделены желательные и нежелательные последствия конкретного изменения ТС. Использование гибких оболочек и тонких пленок. Применение фазовых переходов

    Техническое противоречие (ТП) - модель описания ИС, в которой выделены желательные и нежелательные последствия конкретного изменения ТС. Использование гибких оболочек и тонких пленок. Применение фазовых переходов

    В предлагаемой вниманию читателей работе А.С. Токарева показано, как одна и та же задача могла бы решаться с помощью каждого из сорока приемов, предложенных Г.С. Альтшуллером. Эти примеры конечно же не претендуют на то, чтобы закрыть реальную проблему защиты крыш от снега, о которой идет речь в работе. Это, в первую очередь, любопытные иллюстрации к приемам, позволяющие рассмотреть и сопоставить механизмы их действия. За многие годы, прошедшие после публикации Г.С. Альтшуллером списка из 40 приемов, накоплен определенный опыт практического использования этого инструмента. В то же время, при изучении приемов они как правило иллюстрируются довольно ограниченным набором технических решений, взятых из различных областей техники. В подавляющем своем большинстве эти решения - иллюстрации были получены их авторами без применения приемов. Эти два фактора (ограниченное число иллюстраций и крайне ограниченное количество примеров реального использования приемов) затрудняют представление совокупности приемов именно как целостного и работающего инструмента. Предлагаемая работа призвана частично устранить этот недостаток. Она может быть полезна преподавателям, позволяя строить объяснение работы всей совокупности методов вокруг одной задачи.
    Редактор

    Примеры применения приемов
    устранения технических противоречий

    Токарев А.С.

    Московский общественный институт технического творчества
    2005/2006
    Выпускная работа Часть 2


    Разбор задачи с применением инструментов ТРИЗ

    ***

    Одну из значимых частей ТРИЗ составляют приемы устранения технических противоречий (предложены Г.С.Альтшуллером. Подробнее смотри в http://www.altshuller.ru/triz/tools.asp) Приемы были получены путем обобщения решений большого количества задач в технике. Сегодня их применяют не только в технике, но и в бизнесе, рекламе. Рассмотрим использование этого инструмента при решении следующей проблемы.

    Проблема: снег, падающий зимой на автостоянку, затрудняет передвижение автомобилей и пешеходов.

    Прежде чем применять какие-либо методы решения, следует проблему свести к задаче, так как аналитически решать можно только задачу. Проблема, представляет собой негативное ощущение человека, поставившего ее. Задача же содержит исходные условия и характер результата, который должен быть получен. Поэтому, сначала следует хотя бы в общих чертах определить возможные направления решения проблемы, чтобы впоследствии конкретизировать их вплоть до формулировки задач. В нашем случае возможны следующие направления решения проблемы:

    1. Совершенствовать средства передвижения пешеходов и автомобилей. Сейчас есть для пешеходов - лыжи, снегоступы, коньки, снегоходы с мотором; для автотранспорта - зимняя резина, цепи, гусеничный ход. Можно заняться их модернизацией.

    2. Убирать или уничтожать упавший снег. Этим сейчас и занимаются дорожные службы в городах. В арсенале - дорожные машины, снегоуборщики, самосвалы, снегоплавильные станции, реагенты. Можно сконцентрировать усилия на их совершенствование.

    3. Не допускать падения снега на поверхность дороги или тротуара. Из имеющихся средств - навесы. Улучшению этой, последней, технической системы (ТС) и будет посвящен дальнейший разбор.

    Навесы используются для защиты поверхности от падения снега очень давно, но в условиях рыночной экономики к ним предъявляется дополнительное требование - иметь низкую себестоимость. Отсюда можно сформулировать новую, более узкую проблему: при защите автопарковки от падающего снега при использовании навеса приходится тратить деньги на его строительство. Мы получили административное противоречие: требуется снизить себестоимость навеса, но неизвестно, как это сделать. Это еще не задача - нет ни исходных данных, ни характера результата. Для того, чтобы привести это противоречие к технической задаче необходимо конкретизировать условия. Для этого следует описать техническую систему, с которой, или на основе которой, будет вестись разработка решений. Сразу нужно отметить, что получаемые решения не обязательно должны быть похожи на исходную ТС, ведь главной побуждающей силой является решение проблемы, а не модернизация имеющейся ТС.

    Для того, чтобы выйти на техническое противоречие, для устранения которого можно будет применить приемы, необходимо предъявить к нашей ТС такие технические требования, которые требовали бы существования ТС в противоположных состояниях одновременно. Одно требование вытекает из главной функции ТС - не пропускать снег на автостоянку. Второе требование - "низкая себестоимость" не является техническим, так как напрямую не относится к технической стороне навеса. Значит надо найти технический эквивалент себестоимости и формулировать противоречие относительно него. В нашем случае возможно несколько вариантов таких эквивалентов. Рассмотрим некоторые из них.

    Себестоимость навеса в основном складывается из стоимости материалов и стоимости работ по его постройке. Для обычных конструкций стоимость работ пропорциональна стоимости материалов, к тому же стоимость работ также не является технической характеристикой навеса и формулирование противоречия на ее основе не даст продвижения вперед. Стоимость материалов пропорциональна размеру защищаемой площади автостоянки, которая определяется заказчиком. Обратим внимание на конструкцию, которая состоит из крыши и опор. Площадь крыши также определяется размерами автостоянки. Из оставшихся технических характеристик можно выделить: толщину крыши, количество и расположение опор, площадь сечения опор.

    Здесь следует особо подчеркнуть, что выбранная характеристика (например, толщина крыши) будет являться "наживкой", на которую мы будем "ловить" новые идеи, и выбор ее не имеет определяющего значения для решения задачи. В зависимости от выбранной характеристики и предъявленным к ней требованиям решение задачи может пойти по разным путям, но все они должны привести к решениям. Если вдруг выяснится, что в конкретных условиях на выбранную "наживку" реальные идеи "не ловятся", тогда можно выбрать другую (скажем, количество опор на единицу площади навеса), третью и так до полной победы. Более того, как будет показано ниже, получаемые решения часто будут иметь мало общего, как с исходно выбранной характеристикой, так и со структурой исходной ТС вообще.

    В нашем случае выберем толщину крыши. Для того, чтобы стоимость материалов крыши была минимальной при определенной площади, ее толщина должна быть минимальна. Таким образом мы заменяем экономический критерий "низкая себестоимость" на техническую характеристику "минимальная толщина крыши".

    Теперь можно сформулировать техническое противоречие: если толщину крыши сделать большой, то крыша удержит вес снега, но получится очень дорогой; если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится.

    Итак, у нас образовалась конфликтующая пара в виде крыши и снега. Поскольку в ТС входит только крыша, то основные изменения будем осуществлять с ней. (В некоторых случаях, снег тоже может стать объектом применения приемов, то есть служить ресурсом для достижения нашей цели - борьбы с вредным давлением толщи снега).

    Внимательный читатель заметит в приведенных выкладках еще одну пару противоположностей, касающуюся главной полезной функции крыши, а именно - не пропускать снег и удерживать вес снега. При кажущейся эквивалентности этих понятий существует следующая разница. Запись "удерживать вес снега" предполагает, что снег будет скапливаться и находиться на крыше все время. Запись "не пропускать снег" более общая, так как заранее не предполагает никакого конкретного "поведения" снега, кроме того, она точнее отражает функцию навеса - защита автостоянки, а не удержание снега. Ввиду того, что своей толщиной крыша обязана именно весу снега, который она должна удерживать в рамках традиционного решения, противоречие записано именно с термином "удержать вес снега". В противном случае не будет понятно, зачем нужна толщина, которая обеспечивает крыше прочность. Далее будут предложены примеры использования каждого приема для решения поставленной задачи.

    Изложение организовано по следующей схеме: название приема, краткое его содержание, привязка или адаптация содержания приема к рассматриваемой задаче и решение, которое из этого вытекает. Название приемов и их краткое содержание цитируется по работе Г.С. Альтшуллера http://www.altshuller.ru/triz/technique1.asp . Процедура адапации не входит в число рекомендованных Г.С. Альтшуллером и почерпнута из иных методов работы с приемами (метод записной книжки Хефеле). Идеи решений носят оригинальный характер, они были получены автором настоящей работы. Следует отметить, что предлагаемые варианты адаптации и тем более полученные идеи решений не являются единственно возможными, а только одними из вариантов. В реальной практике, мысли, образующиеся в результате применения приемов, будут зависеть от опыта, эрудиции, фантазии, особенностей видения ресурсов и иных особенностей ситуации и многих других процессов, происходящих в психике решателя.

    Прием 1. Принцип дробления. а) Разделить объект на независимые части;

    б) Выполнить объект разборным;

    в) Увеличить степень дробления объекта.

    Адаптация: разделить крышу на много маленьких крыш, стоящих на своих опорах. Тогда основную нагрузку веса снега будут нести опоры и крышу можно делать тонкой.

    Решение: сделать крышу в виде множества маленьких крыш на своих опорах. Представленное решение промежуточное, так как сразу возникает проблема большого количества опор.

    Прием 2. Принцип вынесения. Отделить от объекта "мешающую" часть ("мешающее" свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).

    Адаптация: Мешающей частью является толщина крыши. Она появляется в основном из-за того, что нагрузка на крышу получается изгибающая и напряжения в материале весьма велики. Вот если бы удалось сделать нагрузку только растягивающую, то это значительно снизило бы напряжения.

    Решение: Подвесить крышу на многочисленных тонких тросах, закрепленных на зданиях или высоких опорах.

    Прием 3. Принцип местного качества.
    а) Перейти от одной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.
    б) Разные части объекта должны иметь (выполнять) различные функции.
    в) Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

    Адаптация: поскольку у крыши две функции - не пропускать снег и удерживать его вес, следует разделить ее на элементы, специализирующиеся на этих функциях.

    Решение: Сделать крышу из двух слоев - один будет снегонепроницаемым, второй силовым, удерживающим весовую нагрузку.

    Прием 4. Принцип ассиметрии.
    а) Перейти от симметричной формы объекта к асимметричной.
    б) Если объект асимметричен, увеличить степень асимметрии.

    Адаптация: Исходная ТС представлена как плоскость, лежащая на опорах. Придать ей ассиметричную форму можно наклонив эту плоскость.

    Решение: Сделать крышу наклонной, уменьшив тем самым нагрузку на единицу площади крыши, а также с наклонной крыши снег будет скатываться и не будет накапливаться на ней, что тоже уменьшит нагрузку.

    Прием 5. Принцип объединения.
    а) Соединить однородные или предназначенные для смежных операций объекты.
    б) Объединить во времени однородные или смежные операции.

    Адаптация: следует соединить все соседние крыши между собой, уменьшив таким образом количество опор и увеличив надежность.

    Решение: Делать крыши единым навесом используя в качестве опор все годные для этого сооружения (здания, столбы, киоски и пр.)

    Прием 6. Принцип универсальности. Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

    Адаптация: Следует добавить крыше выполнение других функций, например быть полом.

    Решение: Надстроить над автостоянкой один этаж, который использовать под офис или склад.

    Прием 7. Принцип "матрешки".
    а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.;
    б) Один объект проходит сквозь полость в другом объекте.

    Адаптация: Разместить крышу внутри другой крыши.

    Решение: Организовать автостоянку под имеющимися сооружениями - эстакадами, мостами, перекрытиями или заглубить автостоянку под землю.

    Прием 8. Принцип антивеса.
    а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.
    б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических и других сил).

    Адаптация: Следует компенсировать вес снега соединением его или крыши с объектом, обладающим подъемной силой.

    Решение: Прикрепить к крыше воздушный шар или дирижабль, который будет удерживать вес снега.

    Прием 9. Принцип предварительного антидействия.
    а) Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.
    б) Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействие.)

    Адаптация: Нужно создать в крыше напряжения, противоположные рабочим.

    Решение: Крышу изготавливать из двух или более листов, создав в этом пакете предварительные напряжения и установить ее так, чтобы эти напряжения были противоположны рабочим напряжениям, образующимся под действием веса снега.

    Адаптация: Создать в крыше предварительные напряжения, которые использовать для сброса снега с крыши.

    Решение: Сделать крышу в виде полотна закрепленного по периметру на пружинах (как в раскладной кровати или батуте). Перед падением снега прогнуть крышу вниз и закрепить. Когда накопится снег, крышу отпустить и тогда, под действием пружин, крыша взлетит вверх и сбросит снег с себя.

    Прием 10. Принцип предварительного действия.
    а) Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).
    б) Заранее расставить объекты так, чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на доставку. Адаптация: Заранее уменьшить количество снега, падающего на крышу.

    Решение: Сдувать падающий снег в сторону от крыши с помощью больших вентиляторов.

    Прием 11. Принцип "заранее подложенной подушки". Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

    Адаптация: Невысокая надежность крыши может привести к ее обрушению. Следует позаботиться о предотвращении разрушительных последствий.

    Решение: Крыша рассчитывается на средние нагрузки и при этом делается еще один уровень под ней на случай обрушения.

    Прием 12. Принцип эквипотенциальности.

    Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

    Адаптация: снег не должен опускаться на крышу, снег не должен покидать тучу.

    Решение: Уничтожать снежные тучи или заставить снег идти в другом месте.

    Прием 13. Принцип "наоборот".


    а) Вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать).
    б) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную - движущейся.
    в) Перевернуть объект "вверх ногами".

    Адаптация: Перевернуть систему снег-крыша. Снег должен поддерживать крышу. Решение: Сделать крышу в виде сетки, к которой с высокой частотой прикреплено большое количество нитей, свисающих с сетки вниз. Снег должен застревать между нитями, уплотняться и держать себя сам.

    Прием 14. Принцип сфероидальности.


    а) Перейти от прямолинейных частей объекта к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.
    б) Использовать ролики, шарики, спирали.
    в) Перейти к вращательному движению, использовать центробежную силу.

    Адаптация: перейти от плоской крыши к сферической.

    Решение: Сделать крышу в виде сферического или полуцилиндрического купола. Это уменьшит нагрузку на единицу поверхности крыши, а также будет способствовать скатыванию снега с крыши.

    Адаптация: перейти к вращательному движению крыши.

    Решение: Сделать крышу в виде вращающегося диска. Снег под действием центробежных сил будет слетать с крыши, уменьшая нагрузку. Кроме того. Центробежные силы будут растягивать саму крышу, компенсируя изгибающие нагрузки от веса снега.

    Прием 15. Принцип динамичности.


    а) Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.
    б) Разделить объект на части, способные перемещаться относительно друг друга;
    в) Если объект в целом неподвижен, сделать его подвижным, перемещающимся.

    Адаптация: сделать крышу подвижной.

    Решение: сделать крышу в виде горизонтально расположенной транспортерной ленты. Когда начнет падать снег включить транспортер и тогда крыша будет сбрасывать снег в сторону.

    Прием 16. Принцип частичного или избыточного решения.

    Если трудно получить 100% требуемого эффекта, надо получить "чуть меньше" или "чуть больше". Задача при этом может существенно упроститься.

    Адаптация: "Чуть меньше" означает, что крыша может задерживать не весь упавший на нее снег.

    Решение: Сделать крышу с отверстиями, что снизит расход материала. Некоторое количество снега, выпадающего в отверстия не создаст серьезных проблем для движения на автопарковке и будет растоплено шинами и выхлопными газами.

    Прием 17. Принцип перехода в другое измерение.


    а) Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (то есть на плоскости). Соответственно, задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.
    б) Многоэтажная компоновка объектов вместо одноэтажной.
    в) Наклонить объект или положить его "набок".
    г) Использовать обратную сторону данной площади.
    д) Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

    Адаптация: Сделать крышу не из одного слоя, а из нескольких.

    Решение: Сделать крышу в виде нескольких слоев сеток, расположенных на небольшом расстоянии друг от друга и имеющим разный размер ячейки - крупные ячейки выше, мелкие ниже. Снег будет просачиваться через верхние слои, постепенно достигая нижних. Тогда нагрузка будет распределена по вертикали, и вес приходящийся на одну сетку будет значительно меньше.

    Прием 18. Использование механических колебаний.


    а) Привести объект в колебательное движение.
    б) Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).
    в) Использовать резонансную частоту.
    г) Применить вместо механических вибраторов пьезовибраторы.
    д) Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

    Адаптация: привести крышу в колебательное движение.

    Решение: Возбудить в крыше вертикальные колебания, что позволит поддерживать снег за счет динамических сил. Если при этом слегка наклонить крышу, то постепенно снег будет с нее сползать.

    Прием 19. Принцип периодического действия.


    а) Перейти от непрерывного действия к периодическому (импульсному).
    б) Если действие уже осуществляется периодически - изменить периодичность.
    в) Использовать паузы между импульсами для другого действия. Адаптация: крыша должна удерживать снег периодически, а периодически не удерживать снег. Крыша должна периодически очищаться от снега. Следует установить на ней периодический очиститель.

    Решение: Установить на крыше надувную подушку, в которую периодически резко подавать газ. Надуваясь и увеличиваясь подушка будет сбрасывать снег с себя и крыши.

    Прием 20. Принцип непрерывности полезного действия.


    а) вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).
    б) устранить холостые и промежуточные ходы.

    Адаптация: Исходя из этого приема, крыша должна непрерывно находиться под максимальной нагрузкой. Но снег падает периодически, значит нагрузку надо добавить. Например, собрать на крышу весь снег из соседних участков. Тогда оправдано сделать крышу толстой.

    Решение: Сделать толстую крышу в виде хранилища снега, куда собирать его со всех соседних участков.

    Прием 21. Принцип проскока.

    Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

    Адаптация: Вредным является процесс удержания снега. Его нужно осуществлять так быстро, чтобы нагрузка на крышу не превзошла критическую. Крыша должна появляться на некоторое время, в течение которого она начнет деформироваться под действием нагрузки, но недостаточное для развития разрушающих деформаций. После чего на ее месте должна оказываться другая, недеформированная крыша.

    Решение: Крыша должна представлять собой ленту, движущуюся с огромной скоростью так, чтобы ее участок, на котором лежит снег, не успел деформироваться до разрушающих нагрузок.

    Прием 22. Принцип "обратить вред в пользу".


    а) Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.
    б) Устранить вредный фактор за счет сложения с другим вредным фактором.
    в) Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

    Адаптация: Вредным фактором является снег. Усилить его - значит увеличить его количество. Если увеличить количество снега аж до самой земли, то он начнет держать себя сам.

    Решение: Сделать крышу в виде перевернутых конусов, опирающихся на землю. Снег заполняя конусы будет частично поддерживать себя.

    Прием 23. Принцип обратной связи.


    а) Ввести обратную связь.
    б) Если обратная связь есть - изменить ее.

    Адаптация: обратная связь в нашем случае может быть записана так: чем больше снега - тем толще нужна крыша или чем больше снега - тем быстрее его надо убирать. Используя полученное ранее решение с наклоном крыши можно получить его модификацию.

    Решение: Наклон крыши увеличивается по мере усиления снегопада.

    Прием 24. Принцип "посредника".


    а) Использовать промежуточный объект, переносящий или передающий действие.
    б) На время присоединить к объекту другой (легко удаляемый) объект.

    Адаптация: На время присоединить к крыше элементы, помогающие ей удерживать снег.

    Решение: В случае большого количества снега на крыше устанавливать дополнительные опоры, которые убирать после очистки крыши от снега.

    Прием 25. Принцип самообслуживания.


    а) Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.
    б) Использовать отходы (энергии, вещества).

    Адаптация: крыша сама должна себя обслуживать. Так как снег она не пропускает (по условию задачи), то обслуживание может заключаться в самоочистке от снега. У крыши должны быть элементы, помогающие ей очиститься от снега. Желательно за счет самого снега.

    Решение: Сделать крышу из пружинящих лепестков. Падающий снег, накапливаясь, будет сжимать пружинистые лепестки, которые распрямляясь будут отбрасывать снег в сторону от крыши.

    Прием 26. Принцип копирования.
    а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.
    б) Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).
    в) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым.

    Адаптация: оптическая копия крыши - это голограмма. Голограмма выполняется с помощью лазерного луча. Если мощность луча достаточно велика, то такая "лазерная" крыша может плавить снег сама.

    Решение: Крыша в виде лазерного луча, организованного в плоскость и имеющего достаточную мощность для плавления падающего снега.

    Прием 27. Дешевая недолговечность взамен дорогой долговечности. Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

    Адаптация: крыша должна стать одноразовой и уничтожаться после каждого снегопада.

    Решение: Сделать крышу в виде ковра, к которому прилипает снег. После снегопада ковер со снегом скатать в рулон и отправить на снегоплавильную станцию или складировать до весны, а на крыше расстелить новый ковер.

    Прием 28. Замена механической схемы.
    а) Заменить механическую систему оптической, акустической или "запаховой".
    б) Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.
    в) Перейти от неподвижных полей к движущимся, от фиксированных - к меняющимся по времени, от неструктурных - к имеющим определенную структуру.
    г) Использовать поля в сочетании с ферромагнитными частицами.

    Адаптация: применить для удержания снега электростатические или магнитные поля.

    Решение: Перед подлетом снега к крыше его следует электростатически зарядить или намагнитить и далее удерживать или менять траекторию падения с помощью электростатических или магнитных полей.

    Прием 29. Использование пневмо- и гидроконструкций. Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.

    Адаптация: использовать надувные конструкции крыши.

    Решение: Сделать крышу в виде надувной подушки с постоянным давлением. В этом случае основную нагрузку будет держать газ, а нагрузка на оболочку, работающую только на растяжение будет заметно снижена.

    Прием 30. Использование гибких оболочек и тонких пленок.
    а) Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.
    б) Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

    Адаптация: Так как исходная задача уже подразумевает крышу, как плоскость не имеющую толщины, применение этого приема "в лоб" не даст ничего нового. Значит надо посмотреть на ситуацию по-другому. Пленка - это не обязательно пленка вещества, это может быть пленка воздуха.

    Решение: Установить по всей поверхности крыши сопла, подающие воздух. Снег будет или динамически поддерживаться в воздухе или сдуваться в сторону, если крышу или сопла наклонить.

    Прием 31. Применение пористых материалов.
    а) Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. п.)
    б) Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

    Адаптация: крыша должна быть пористой

    Решение: Сделать крышу в виде натянутой сетки с ячейками имеющими размер, не позволяющий снегу проникнуть через них. Расход материала уменьшится.

    Решение 2: Сделать толстую крышу из легкого пористого материала с крупными порами. Снег забиваясь в поры будет формировать массу, способную нести силовую нагрузку.

    Прием 32. Принцип изменения окраски.
    а) Изменить окраску объекта или внешней среды.
    б) Изменить степень прозрачности объекта или внешней среды.
    в) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.
    г) Если такие добавки уже применяются, использовать меченые атомы.

    Адаптация: изменить окраску крыши или снега.

    Решение: Если распылить на выпавший снег черную краску, то это будет способствовать быстрейшему его таянию под воздействием солнечных лучей.

    Прием 33. Принцип однородности. Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

    Адаптация: крыша должна быть сделана из снега.

    Решение: Сделать крышу ледяной либо из первого выпавшего снега, либо предварительно соорудить ледяную конструкцию.

    Прием 34. Принцип отброса и регенерации частей.
    а) Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д.) или видоизменена непосредственно в ходе работы.
    б) Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

    Адаптация: крыша должна исчезать выполнив свою функцию - не дать снегу упасть на автостоянку. Тогда она должна исчезать вместе со снегом. Это похоже на непрерывный поток.

    Решение: Пустить по наклонной крыше теплую воду, которая стекая, будет забирать с собой падающий на нее снег.

    Прием 35. Изменение физико-химических параметров объекта.
    а) Изменить агрегатное состояние объекта.
    б) Изменить концентрацию или консистенцию.
    в) Изменить степень гибкости.
    г) Изменить температуру.

    Адаптация: изменить агрегатное состояние снега.

    Решение: Подогреть крышу и снег лежащий на ней, чтобы он превратился в воду. Тогда он сможет сам стечь с нее уменьшив нагрузку.

    Прием 36. Применение фазовых переходов. Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

    Адаптация: Процесс уплотнения снега при его длительном лежании приводит к повышению плотности и прочности снега. Этот эффект можно использовать для поддержания прочности крыши.

    Решение: Сделать крышу в виде толстой арочной конструкции с радиальными каналами. Снег заполняя каналы будет спрессовываться по мере приближения к геометрическому центру и станет способен выдерживать силовую нагрузку.

    Прием 37. Применение термического расширения.
    а) Использовать термическое расширение (или сжатие) материалов.
    б) Если термическое расширение уже используется, применить несколько материалов с разными коэффициентами термического расширения.

    Адаптация: можно использовать термическое расширение материала крыши для выравнивания нагрузки на нее.

    Решение: Сделать крышу из двух листов с разным коэффициентом термического расширения. В результате выпадения снега температурное поле на крыше будет меняться и в крыше будут возникать напряжения, которые можно использовать для компенсации веса снега.

    Приeм 38. Применение сильных окислителей.
    а) Заменить обычный воздух обогащенным.
    б) Заменить обогащенный воздух кислородом.
    в) Воздействовать на воздух или кислород ионизирующими излучениями.
    г) Использовать озонированный кислород.
    д) Заменить озонированный (или ионизированный) кислород озоном.

    Основная цель этой цепи приемов - повысить интенсивность процессов.

    Адаптация: можно повысить интенсивность таяния или растворения снега.

    Решение: Подавать на поверхность крыши специальные химические реагенты, растворяющие снег или переводящие его в жидкое состояние.

    Прием 39. Применение инертной среды.
    а) Заменить обычную среду инертной.
    б) Вести процесс в вакууме.

    Адаптация: Понятие "инертный" означает - не реагирующий. Следует сделать снег не реагирующим с крышей, например, исключить или значительно ослабить силу притяжения или удельный вес снега. Это возможно, если превратить его в пар. Решение: При подлете снега к крыше следует превратить его в пар путем нагревания тепловыми или СВЧ установками.

    Прием 40. Применение композиционных материалов. Перейти от однородных материалов к композиционным.

    Решение: Сделать крышу из композиционного материала.

    Представленные решения можно разделить на две основные группы: повышающие несущую способность крыши и уменьшающие снеговую нагрузку на крышу. Следует отметить, что в случае постановки задачи в формулировке "удерживать снег" вторая часть массива решений не была бы получена, несмотря на их дееспособность.

    Очевидно также, что не все приемы давали одинаково действенные решения, а некоторые приемы приводили к решениям, похожим на другие. Для того, чтобы оптимизировать работу с приемами была построена "Таблица выбора приема устранения технических противоречий" в которой для разрешения конкретных видов противоречий рекомендовалось применять не все приемы, а только определенные.

    Для выбора приемов с помощью таблицы необходимо определить два параметра: что мы хотим улучшить и что при этом ухудшается. Для этого вспомним ТП, записанное в начале разбора: "если толщину крыши сделать большой, то крыша удержит вес снега, но получится очень дорогой; если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится". Но в стандартной таблице выбора приемов нет терминов "толщина" и "стоимость". Значит, придется найти адекватные замены этим терминам с учетом особенностей рассматриваемой технической задачи. Сразу нужно отметить, что возможно несколько вариантов замены. Рассмотрим два из возможных.

    Вариант замены терминов №1

    Как было показано в предварительном анализе, эквивалентом стоимости может служить материалоемкость крыши. Термина "материалоемкость" также нет в таблице, но есть термин "объем неподвижного объекта". Если представлять крышу относительно монолитной конструкцией, то "материалоемкость", как вес материала может быть заменена "объемом неподвижного объекта" (крыши), считая плотность материала постоянной.

    Термин "толщина", как линейный размер, может быть заменен на "длину неподвижного объекта".

    Тогда получаем, что по условиям задачи надо изменить "длину неподвижного объекта" и при этом ухудшается "объемом неподвижного объекта". С помощью таблицы, определяем рекомендуемые приемы разрешения ТП: №№ 35, 8, 2, 14. Решения, получаемые с помощью этих приемов описаны выше.

    Вариант замены терминов №2

    Используем часть ТП "если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится". Термин "толщина", как и прежде заменяем на "длину неподвижного объекта". Термин "удержать вес" может быть заменен на "прочность", таким образом, у нас при изменении "длины" (толщины) ухудшается "прочность". Но в таблице не оказывается рекомендаций по разрешению такого противоречия. Требуется еще одна замена терминов.

    В нашем случае термин "толщина", для подстановки его в графу "что требуется изменить", путем нескольких итераций может быть заменен на "объем неподвижного объекта". Интересно, что в предыдущем варианте этот термин использовался в разделе "что ухудшается". В результате, при паре нужно изменить "объем неподвижного объекта" и при этом ухудшается "прочность", получаем рекомендацию воспользоваться приемами №№ 28, 6, 32.

    Легко заметить, что среди них нет ни одного приема из рекомендованных для предыдущего рассмотренного варианта выбора параметров подстановки №1. Получается, что в зависимости от выбранной адаптации задачи к терминам таблицы могут быть рекомендованы совершенно разные приемы даже для одного и того же технического противоречия. Отсюда следует, что к вопросу замены терминов задачи на термины, присутствующие в таблице, следует подходить внимательно и в случае неоднозначности пробовать все возможные варианты для получения большего количества решений. Правда, так можно очень быстро придти к тотальному перебору всех приемов.

    Обобщая результаты можно сделать следующие выводы: 1.

    Качество решений, получаемых с помощью приемов, зависит как от кругозора решателя, так и от его настойчивости. 3.

    Перечень терминов, используемых в качестве входных данных в таблице разрешения ТП, может оказаться недостаточным. Необходима работа по расширению таблицы и заполнению пустых клеток внутри существующей.

    Принципы и методы разрешения технических противоречий в процессе дизайн разработки проектного решения.

    _________________________________________________________________________

    В процессе формулировки идеального конечного результата некоторые показатели качества могут быть либо противоречивыми по отношению друг к другу, либо один из них может быть противоречив по отношению к целой группе показателей. В этом случае имеет место так называемое техническое противоречие , состоящее в том, что улучшение одного показателя вызывает ухудшение другого показателя.

    В процессе выявления и разрешениятехнических противоречий проявляется творчество изобретателей, разработчиков, проектировщиков и конструкторов, создаются продукты интеллектуальной собственности (патенты, ноу-хау, промышленные образцы и др.).

    Следует иметь в виду, что в литературе и в конструкторско-изобретательском лексиконе все противоречия называют техническими, хотя по своей природе они могут отражать физические, экономические, информационные, социальные, и дажеадминистративные аспекты решаемой задачи. Таким образом, термин «технические противоречия» отражает не природу (первопричину) их возникновения, а принадлежность к носителям этих противоречий - к техническим объектам.

    Технические противоречия условно подразделяются на внешние и внутренние.

    Внешние противоречия обусловлены несоответствием свойств и параметров технического объекта, условиям его изготовления и нормального функционирования в процессе взаимодействия с человеком и окружающей средой.

    Внутренние противоречия обусловлены несоответствием структуры и состава конструктивного исполнения технического объекта его функциональному значению.

    Различают шесть источников возникновения технических противоречий .

    1. Противоречия между техническим объектом и человеком , который управляет этим объектом (оператором) или эксплуатирует его (пользователем). В процессе их взаимодействия конфликтные ситуации могут возникнуть из-за изменения условий эксплуатации технического объекта, из-за изменившихся требований к его безопасности, эргономичности, эффективности. Поэтому, при усовершенствовании технического объекта, прежде всего, формулируются новые или уточняются действующие требования по безопасности и эргономичности конструкции, определяются условия его наиболее полной реализации. Анализу подвергаются те свойства объекта, которые должны быть изменены в соответствии с новыми или уточненными требованиями. При этом определяются те компоненты конструкции объекта и их параметры, изменения которых позволяют в конечном счете разрешить возникшее противоречие.



    2. Противоречие между техническим объектом и средой его функционирования из-за несоответствия функциональных параметров его конструктивного исполнения с параметрами окружающей среды. Для устранения этих противоречий анализируются состав и структура конструктивного исполнения технического объекта, выявляются источники, пути и методы устранения противоречий, проводится соответствующее обновление конструкции.

    3. Противоречие между техническим объектом и его изготовителем из-за конфликта между предметом труда и производственным работником. Такая ситуация может возникнуть, например, при применении каких-то конструкционных материалов или режимов их обработки, которые наносят ущерб здоровью или превышают возможности человеческого организма. В этом случае особое внимание уделяется обеспечению технологичности и безопасности как конструкции технического объекта, так и используемых конструкционных материалов.

    4. Противоречие между техническим объектом и производственной средой . Производственная среда является одной из составляющих окружающей среды. Соблюдение норм и требований к обеспечению сохранности окружающей среды приводит к необходимости создания экологически чистых конструкций, технических изделий и технологий их изготовления. Неизменно возникает конфликт в требованиях повышения качества продукции и снижения ресурсоемкости конструкции изделия. Внесение в нее рациональных технических решений позволяет разумно использовать материальные и топливно-энергетические ресурсы, которыми располагает производство, внедрять безотходную и малоотходную технологию, повышать качество продукции и эффективность производства.

    Все четыре выше рассмотренных источника технических противоречий являются внешними , отражая функциональные структурные взаимосвязи технических объектов с окружающей (производственной) средой.

    Обратимся теперь к источникам внутренних технических противоречий.

    5. Противоречие между целым (конструктивным исполнением, системой) и частью (компонентом, элементом, подсистемой) технического объекта. Оно порождается тем, что целое и часть любого технического объекта не тождественны друг другу ни по выполняемым функциям, ни по своему составу, ни по своей структуре, формируются и обновляются по своим законам. В то же время часть по отношению к целому обладает относительной самостоятельностью в своем развитии. Компоненты, входящие в состав конструкции изделия, имеют различную интенсивность обновляемости. Объединяя элементы в единое конструктивное образование, структура целого исполнения обладает большой инерционностью в своем развитии и обновлении по сравнению с входящими в нее компонентами.

    6. Противоречие между содержанием и формой компонентов исполнения технического объекта, суть которого заключена в диалектической взаимосвязи отдельных компонентов. Так, найденная форма изделия, обладая относительно большой стабильностью, сохраняется длительное время, пока накопление количественных изменений в содержании изделия не приведет в силу возникших противоречий к очередным качественным изменениям ее формы.

    Многовековая общественно-полезная практика человечества накопила бесконечно большое число приемов устранения технических противоречий, познать которые в полном объеме не представляется возможным. Исходя из этого, рассмотрим лишь небольшое количество типовых приемов, которые являются основной информационной и творческой базой для создания новых технических объектов. Образно говоря, типовые приемы - это универсальные коды или ключи, с помощью которых можно раскодировать и открывать сложные и хитроумные замки решений творческих задач.

    Типовые приемы - это взятые из технической литературы, из научно-технических журналов и патентных фондов наиболее часто встречающиеся в проектно-конструкторской практике приемы, разработанные учеными, инженерами, изобретателями прошлых и нынешнего поколений. Очевидно, что абсолютное число таких приемов бесконечно велико и поэтому их стараются определенным образом обобщить в крупные типичные группы и даже создать межотраслевые, отраслевые или проблемные фонды типовых приемов.

    Во многих книгах типовые приемы (способы, правила) называют методологическим инструментарием решения творческих и изобретательских задач, поскольку они содержат краткое указание или предписание как преобразовывать имеющийся у разработчика прототип технического объекта и в каком направлении надо вести поиск, чтобы получить желаемое решение.

    Из всего множества реально существующих и возможных типовых приемов преобразования компонентов субстанции технических объектов можно выделить следующие пять групп:

    1) приемы преобразования формы вещества;

    2) приемы преобразования содержания вещества;

    3) приемы преобразования энергии;

    4) приемы преобразования информации;

    5) комплексные энерго-информационно-вещественные приемы, базирующиеся на использовании новых технологий и способов изготовления, транспортировки и применения технических объектов.

    Существует два подхода к выбору из известного набора (банка) типовых приемов разрешения технических противоречий наиболее целесообразного (эффективного) приема: эвристический и алгоритмический .

    Эвристический подход к выбору и переработке наиболее ценной информации базируется на использовании уникальных и специфических свойств нашего головного мозга. В процессе длительной эволюции головной мозг человека приспособился отбирать из большого массива избыточной информации только наиболее ценную и нужную информацию, отбрасывая всю остальную. Некие особые и, к тому же, неосознанные, правила работы мозга по отбору и переработке информации, включающие в себя этапы «осенения», интуиции и творчества, называют эвристическими. В дальнейшем из этих «правил» в мозге составляются также неосознаваемые «программы» выбора решения.

    Алгоритмический подход к выбору типовых приемов разрешения технических противоречий предусматривает выполнение ряда поисковых операций по заранее разработанному алгоритму (правилу).

    Современные методы поиска новых решений позволяют рационализировать различные стороны поисковой деятельности. Все известные методы решения творческих задач можно условно разделить на две большие группы по признаку доминирования в них эвристических (интуитивных) или логических процедур и соответствующих им правил деятельности.

    Первая группа - это эвристические (интуитивные )методы,которые опираются на активизацию творческой деятельности человека и развитие его творческих способностей на основе развития интуитивных процедур деятельности, фантазии, аналогий и др. В эту группу входят: метод проб и ошибок, метод контрольных вопросов, «мозговой штурм», синектика, морфологический анализ, ассоциативные методы и др.

    Вторая группа методов основана на использовании оптимальной логики анализа технического или другого совершенствуемого объекта, закономерностей его развития. Здесь предлагают логические правила анализа и синтеза, сравнения, обобщения, классификации, индукции, дедукции и т.д. Это рациональные (логические) методы решения творческих задач. К ним относятся: алгоритм решения изобретательских задач (АРИЗ), функционально-стоимостный анализ, функционально-физический метод конструирования и т.д.

    Современная научно-техническая революция, характерной чертой которой является бурное развитие науки, техники и производства, вошла в противоречие со старыми малопроизводительными способами мышления и поиска новых решений, что привело к созданию эвристики.Под термином «эвристика» понимается определенная совокупность логических приемов и методических правил теоретического исследования и отыскивания истины, которые используются в условиях неполноты исходной информации и не требуют четкой программы управления процессом решения задачи.

    Методом проб и ошибок (МпиО) изобретатели пользовались и пользуются при решении самых разнообразных технических задач. Суть его заключается в том, что изобретатель при поиске решения задачи перебирает всевозможные варианты и среди них находит тот, который удовлетворяет поставленным требованиям.

    Метод контрольных вопросов впервые использовался для поиска новых идей и наилучших решений творческих задач. Суть этого метода состоит в использовании при поиске решений творческих задач списка специально подготовленных вопросов. Изобретатель отвечает на них и в связи с ними анализирует свою задачу. Одним из лучших считают список вопросов для изобретателей и разработчиков новых технических объектов, составленный Т. Эйлоартом, который представляет собой программу его работы.

    Список содержит следующие позиции.

    1. Перечислить все качества и определения предполагаемого изобретения. Изменить их.

    2. Сформулировать задачи ясно. Попробовать новые формулировки. Определить второстепенные задачи и аналогичные задачи. Выделить главные.

    3. Перечислить недостатки имеющихся решений, их основные принципы, сформулировать новые предложения по их устранению.

    4. Набросать фантастические, биологические, экономические, молекулярные и др. аналогии.

    5. Построить математическую, гидравлическую, электронную, механическую и другие модели (они точнее выражают идею, чем аналогии).

    Попробовать различные виды материалов и энергии: газ, жидкость, твердое тело, пену, пасту и др.; тепло, магнитную энергию, свет, силу удара и т.п.; различные длины волн, поверхностные свойства и пр., переходные состояния - замерзание, конденсацию и т. п.

    7. Установить варианты, зависимости, возможные логические совпадения.

    8. Узнать мнение некоторых совершенно неосведомленных в данном деле людей.

    9. Устроить групповое обсуждение, выслушивая любые идеи без всякой критики.

    10. Попробовать «национальные» решения: хитрое шотландское, всеобъемлющее немецкое, расточительное американское, сложное китайское и др.

    11. Спать с проблемой, идти на работу, гулять, ехать, пить, есть, играть в теннис - все с ней.

    12. Бродить среди стимулирующей обстановки (свалка лома, технические музеи, магазины дешевых вещей), пробегать журналы, комиксы.

    13. Набросать таблицу цен, величин, перемещений, типов материалов и т.п. разных решений проблемы или ее частей, искать проблемы в решениях или новые комбинации.

    14. Определить идеальное решение, разрабатывать другие возможные.

    15. Видоизменить решение проблемы с точки зрения времени (скорее или медленнее), размеров, вязкости и т. п.

    16. В воображении «залезть» внутрь механизма.

    17. Выявить и исключить из дальнейшего обсуждения альтернативные варианты решения проблемы, уводящие в сторону от траектории поиска лучшего решения.

    18. Кого и почему интересует решаемая проблема?

    19. Кто придумал это первый? История вопроса. Какие ложные толкования этой проблемы имели место?

    20. Кто еще решал эту проблему? Чего он добился?

    21. Определить общепринятые граничные условия и причины их установления.

    Метод мозгового штурма (брейнсторминг) появился в Соединенных Штатах Америки в конце 1930-х годов, он представляет собой двухэтапную процедуру решения задачи: на первом этапе выдвигаются идеи, а на втором они конкретизируются, развиваются. Работа в рамках этапов этого метода (этап выдвижения (генерации) идей и этап анализа выдвинутых идей) должна выполняться при соблюдении ряда основных правил . На этапе генерации их три:

    3. Поощрение всех выдвигаемых идей, включая нереальные и фантастические.

    На этапе анализа основное правило - это выявление рациональной основы в каждой анализируемой идее.

    Рассмотрим последовательность организации и проведения мозгового штурма.

    1. Оптимальное количество людей, решающих поисковую задачу методом «мозгового штурма», должно составлять 12-25 человек. Половина из них генерирует идеи, а другая их анализирует. В группу «генераторов» включают людей с бурной фантазией, склонных к абстрактному мышлению, но не скептиков; нельзя сюда включать и людей, присутствие которых может в какой-то степени стеснять других (например, руководителей и подчиненных). Желательно, чтобы в состав этой группы вошли и специалисты-смежники, и один-два человека со стороны, не имеющие отношения к решаемой задаче. В группу «экспертов» вводят людей с аналитическим, критическим складом ума. Руководит «сессией» ведущий, наиболее опытный участник «мозгового штурма»,

    2. Основная задача «генераторов» должна заключаться в предложении максимального количества идей решения поисковой задачи (в том числе идей фантастических, а иногда и шутливых). Идеи протоколируются или фиксируются с помощью магнитофона. Задача «экспертов» состоит в отборе приемлемых идей. Ведущий, не прибегая к приказаниям и критическим замечаниям, задает вопросы, иногда подсказывает и уточняет высказывания участников обсуждения, следит, чтобы беседа не прерывалась.

    3. Продолжительность «сессии» должна зависеть от сложности решаемой задачи, но не превышать 30-50 мин.

    4. Между участниками «мозгового штурма» должны быть установлены свободные и доброжелательные отношения. При генерации идей запрещается всякая критика, скептические улыбки, жесты и мимика. Надо, чтобы идеи, выдвинутые одним участником, подхватывались и развивались другими. Анализ идей группой «экспертов» проводится очень внимательно. Без тщательного анализа не должны быть отвергнуты даже самые фантастические или абсурдные идеи. При этом в ходе анализа (идеи оцениваются, например, в десятибалльной системе), учитывается мнение каждого «эксперта». В случаях расхождений в оценке проводят дополнительный анализ.

    5. Если «сессия» окончилась безуспешно и задача не решена, повторять ее с предыдущими установками нет смысла. Нужно заменить состав групп или изменить формулировку задачи, оставив конечную цель.

    Опыт использования «мозгового штурма» показывает, что генерации идей способствуют такие приемы, как аналогия (сделай так, как это делалось при решении другой задачи), инверсия (сделай наоборот), фантазия (предложи нечто неосуществимое) и пр. Большую роль играют здесь и субъективные качества участников штурма - наличие прошлого опыта, боязнь оказаться бесполезным, отсутствие творческого настроения, усталость и т. д.

    Синектика , так же как и мозговой штурм, предполагает коллективный поиск новых решений. В 1961 г. в США вышла книга У. Гордона «Синектика: развитие творческого воображения». Книга открыла новую главу в истории методов поиска новых решений. Описанный в ней подход к организации творчества, правила работы и обучения оказали большое влияние на разработчиков новой техники, методологов.

    Идея синектики состоит в объединении отдельных творцов в единую группу для совместной постановки и решения конкретных задач. Метод включает в себя практические подходы к сознательному решению и использованию бессознательных механизмов, проявляющихся у человека в момент творческой активности.

    Еще одно отличие синектики от мозгового штурма. Подбор группы генераторов мозгового штурма состоит в выявлении активных творцов, обладающих различными знаниями. Их эмоциональные типы особо не учитываются. В синектике же, наоборот, скорее будут выбраны два человека с одним и тем же багажом знаний, если при этом у них значительны отличия в эмоциональной сфере.

    Организация работы в синектике включает следующие основные моменты:

    Первоначальная постановка проблемы;

    Анализ проблемы и сообщение необходимой вводной информации. Роль эксперта, как правило, выполняет учитель или учащийся, обладающий определённой подготовкой.

    Выяснение возможностей решения проблемы;

    Переформулирование проблемы каждым учащимся в своём собственном понимании;

    Совместный выбор одного из вариантов переформулированной проблемы;

    Выдвижение образных аналогий - ключевой этап для синектики;

    - «подгонка» намеченных группой подходов к решению или готовых решений к требованиям, заложенным в постановке проблемы.

    Важнейшим элементом синектического процесса является практическая реализация полученных в процессе работы идей.

    Операторы синектики - конкретные психологические инструменты, которые поддерживают и ведут вперед весь творческий процесс. Их следует отличать от психологических состояний – таких, как эмпатия, вовлеченность, игра и пр. Психологические состояния являются основой творческого процесса, но они не управляемы. Операторы синектики, ее механизмы предназначены для побуждения, активизации этих сложных психологических состояний.

    Решая задачу, бессмысленно пытаться убедить себя или группу быть творческим , интуитивным, вовлеченным или же допускать очевидные несоразмерности. Необходимо дать средства, позволяющие человеку делать это. Глобально синектическая работа включает в себя два базовых процесса:

    Превращение незнакомого в знакомое;

    Превращение знакомого в незнакомое.

    Первое, что делает человек, которому предстоит решить проблему - пытается ее понять. Этап превращения незнакомого в знакомое очень важен, он позволяет человеку свести новую ситуацию к уже испытанным, известным. Этот этап ведет за собой огромное разнообразие решений, но требование новизны - это, как правило, требование новой точки зрения, взгляда на проблему. Большинство из проблем не являются новыми. Смысл в том, чтобы сделать их новыми, создав тем самым потенциал для выхода на новые решения.

    Превратить знакомое в незнакомое - означает исказить, перевернуть, переменить повседневный взгляд и реакцию на вещи, события. В «известном мире» предметы всегда имеют свое определенное место. В то же время различные люди могут видеть один и тот же объект под различными углами зрения, неожиданными для других. Настаивать на рассмотрении известного как неизвестного - основа творчества.

    Ревенков А.В.

    В развитии технических систем в соответствии с законами диалектики происходит чередование этапов количественного роста и качественных скачков. В процессе количественного роста в результате неравномерного развития характеристик технической системы появляются противоречия.

    Противоречие - проявление несоответствия между разными требованиями, предъявляемыми человеком к системе, и ограничениями, налагаемыми на нее законами природы, социальными, юридическими, и экономическими законами, уровнем развития науки и техники, конкретными условиями применения и т. п.

    Пример 6.1. При проектировании пассажирского самолета с более высокой скоростью, чем прототип, можно уменьшить площадь крыла (при том же полетном весе). Это связано с тем, что с увеличением скорости увеличивается скоростной напор и, следовательно, для создания той же подъемной силы крыла , где С yкр - коэффициент подъемной силы крыла, ρ - плотность воздуха, Ν - скорость полета, S kp - площадь крыла,

    Можно уменьшить площадь крыла S kp . Это желательно сделать, так как чем меньше площадь крыла, тем меньше сопротивление трения и, следовательно, меньше расход горючего.

    Но при уменьшении площади крыла падает подъемная сила при малых скоростях полета. Поэтому нужно увеличить посадочную скорость самолета, а это приведет к увеличению длины разбега и торможения и, следовательно, к потребности увеличить взлетно-посадочную полосу, что недопустимо.

    На начальных этапах развития, когда требования относительно невысоки, а система обладает большими ресурсами, такие противоречия разрешаются путем компромисса: отыскиваются варианты конструкции, обеспечивающие приемлемые значения обеих конкурирующих характеристик. Но количественный рост продолжается, происходит накопление и обострение противоречий. Эти противоречия разрешаются в результате качественных скачков - создания принципиально новых технических решений.

    Если технический объект создан, то весьма часто ставится задача увеличения его главной полезной функции (ГПФ). Для этого, как правило, требуется усилить какое-либо свойство одного из элементов этого технического объекта. Однако при усилении одних свойств элемента нарушается взаимодействие (согласованность) с другими элементами технической системы, возникает противоречие, то есть источником противоречий является совершенствование, развитие технических объектов.

    6.1. Административное противоречие

    Решение любой технической задачи начинается с анализа проблемы. Результатом этого анализа является постановка и формулировка задачи, которую нужно решать.

    В проблеме обычно описывается необходимость создания некоторого технического объекта (ТО) для удовлетворения определенной потребности, приводится соответствующая аргументация этой необходимости, описываются функции, которые должен выполнять этот ТО; требования, которые к нему предъявляются.

    Каждый потребитель той или иной продукции характеризуется определенными свойствами. Анализ свойств потребителей позволяет определить некоторый набор требований, которым должна удовлетворять продукция, предназначенная для удовлетворения возникшей потребности.

    Каждый вид продукции можно охарактеризовать набором определенных свойств. Часть этих свойств определяют потребительные свойства продукции (рис. 6.1).

    Поэтому прежде, чем создавать тот или иной продукт, необходимо, с одной стороны, сформулировать требования, которым он должен удовлетворять, с другой стороны, оценить технические возможности создания продукта с требуемыми свойствами.



    Рис. 6.1

    Если есть потребность в создании продукции с определенными потребительными свойствами, но неизвестно как ее удовлетворить, то возникает проблемная ситуация (ПС).

    Описание ПС - это формулирование потребностей, функций, которые нужно выполнить. Проблема заключается в том, что на этом этапе не видно путей, как реализовать выполнение этой функции.

    Проблемная ситуация возникает, если нет соответствия между требованиями, предъявляемыми потребителями, и имеющимися техническими возможностями. Например, создание телевизора с объемным изображением, создание искусственного спутника Земли со сроком активного существования 10 лет и др. То есть первоначальная формулировка проблемы часто носит социально-технический характер и в общем случае выражается в терминах: цель, потребность, функция, нежелательные эффекты.

    Г.С. Альтшуллер назвал такие проблемные ситуации административным противоречием . Анализ развития множества ТС показал, что совершенствование их характеристик обычно связано с преодолением противоречий, выявляющихся по мере эксплуатации этих систем. Возникает потребность что-то изменить, улучшить, причем претензии к работе системы обычно формулируются в виде довольно расплывчатых пожеланий типа: "хочется, чтобы было лучше...", "нужно что-то сделать" и т. д., проблем много: нужно что-то сделать, но что?

    Этому виду противоречий соответствует изобретательская ситуация, включающая в себя целый клубок задач, из которых нужно выбрать именно ту, которую следует решать в первую очередь. Каким образом выделить первоочередную задачу среди прочих?

    Г.С. Альтшуллер в работе "Найти идею" отмечал: "Такие противоречия отражают сам факт возникновения изобретательской задачи, точнее - изобретательской ситуации. Они автоматически даются вместе с ситуацией, но они ни в какой мере не способствуют продвижению к ответу".

    Таким образом, административные противоречия только обозначают проблему и в ряде случаев дают некоторое обоснование ее возникновения.

    6.2. Техническое противоречие

    В первоначальной формулировке проблемы формулируются некоторые потребности, функции, которые необходимо выполнить.

    В зависимости от вида проблемной ситуации (ПС) ее можно разрешить двумя способами (рис. 6.2):



    Рис. 6.2

    существенно изменить рассматриваемую систему или ее взаимодействие с надсистемой (НС) таким образом, чтобы отпала необходимость в этой потребности, в выполнении этой функции - ПС 1 ; в этом случае формулируется проблема по изменению НС;

    дополнить существующую техническую систему некоторым устройством, которое позволило бы удовлетворить сформулированную потребность - ПС 2 (см. пример на рис 6.2).

    Проблемы могут быть разные.

    Например, мы не знаем, как технически реализовать выполнение потребной функции.

    Или мы в принципе знаем, какое устройство нужно создавать для выполнения потребной функции, но при этом появляются нежелательные эффекты.

    Нежелательный эффект, во-первых, связан с тем, что за реализацию функции, которую он должен выполнять, надо "платить". Из стремления же к идеальному решению следует, что полезная функция должна выполняться, но затрат на ее реализацию не должно быть.

    Пример 6.2. По трубопроводу перекачивают газ. Необходимо обеспечить постоянный массовый расход газа при заданном перепаде давлений на входе и выходе трубопровода. Однако температура газа на входе в трубопровод меняется. Следовательно, массовый расход газа тоже будет изменяться.

    Таким образом, возникает проблема. Массовый расход газа должен быть постоянным для управления некоторым процессом, но он не может быть постоянным, так как изменяется температура газа. При этом в систему нежелательно вводить сложные устройства, которые осуществляли бы функцию регулирования.

    Во-вторых, нежелательные эффекты могут проявляться в виде вредных свойств (функций), которые возникают при функционировании технического объекта. Например, мы создаем некоторый технологический процесс, а он оказывает вредное воздействие на человека (электромагнитные излучения, вибрации и т. д.) или загрязняет окружающую среду и др.

    То есть проблемная ситуация (ПС 2) заключается в том, что функцию выполнять надо, ибо в этом есть потребность, а нежелательных эффектов при этом быть не должно.

    Такие проблемы часто возникают на начальном этапе создания ТО, когда намечается некоторый план решения проблемы, то есть при формировании идеи, принципа действия ТО для реализации ГПФ или попытке улучшить некоторые функциональные характеристики технического объекта.

    Г.С. Альтшуллер отмечал, что каждой задаче, входящей в изобретательскую ситуацию, соответствует свое техническое противоречие (ТП) . Суть ТП сводится к тому, что при улучшении известными путями одного свойства (параметра) системы недопустимо ухудшается другой параметр.

    Любая продукция, предназначенная для удовлетворения потребностей, характеризуется многими свойствами: экономичностью, надежностью, эргономичностью, эстетичностью, патентоспособностью, транспортабельностью, безопасностью, экологичностью, технологичностью и т. д. Для некоторых видов продукции весьма важными показателями являются масса конструкции, плотность компоновки, энергоемкость, мощность, производительность, время срабатывания механизмов, точность отработки параметров и т. д.

    Все эти показатели условно можно разделить на две группы: показатели, характеризующие степень (уровень) выполнения техническим объектом ГПФ , и показатели, характеризующие факторы расплаты за выполнение ГПФ.

    Стремление улучшить одни характеристики продукции часто приводит к ухудшению других. По крайней мере, на этапе анализа проблемы и постановки задачи не видно путей, как сделать так, чтобы при улучшении одних свойств не ухудшались бы другие, тоже весьма важные.

    В проектно-конструкторских и технологических задачах обнаруживается противоречивость многих свойств, например, точность и производительность в технологии обработки материалов; масса, надежность и стоимость; устойчивость и управляемость технических объектов и др.

    Например, один из способов увеличения надежности летательных аппаратов (потребность) - создание резервных систем и агрегатов. А это приводит к увеличению массы аппарата, что недопустимо, так как увеличиваются затраты на выполнение задания (ГПФ).

    Нежелательные эффекты могут быть связаны с тем, что улучшение некоторых потребительных свойств приводит к усложнению ТО и, следовательно, к увеличению факторов расплаты.

    Ситуация, когда попытки улучшить одну характеристику (или часть) системы приводит к ухудшению другой ее характеристики (или части), называется техническим противоречием (ТП).

    Например, в технологии производства мероприятия, направленные на повышение производительности обработки, часто приводят к ухудшению качества продукции. (Если один из двух вариантов технологии при лучшем качестве позволяет обеспечить и бoльшую производительность, то он вытесняет второй вариант; в этом случае проблемной ситуации нет.)

    Техническое противоречие появляется часто тогда, когда разработчик пытается каким-либо известным ему способом улучшить один из параметров качества (или функциональное свойство) объекта, но это приводит к недопустимому ухудшению другого, тоже весьма важного параметра качества (или функционального свойства).

    Пример 6.2. Увеличение числа инструментов в слесарном наборе улучшает возможности дифференцированного воздействия на изделие, но ухудшает условия работы с набором, который становится более громоздким.

    Для улучшения функционального свойства весьма часто рассматривается изменение одного из параметров технической системы, который существенно влияет на это функциональное свойство.

    Пример 6.3. Чем больше литейный уклон на модели отливаемого изделия, тем легче извлечь ее из песчаной формы при формовке, но при этом нежелательно увеличиваются припуски металла (дополнительные его объемы), которые приходится в дальнейшем устранять механической обработкой литой заготовки.

    Для этой проблемы можно сформулировать технические противоречия в двух вариантах.

    ТП-1: Увеличивая литейный уклон, мы облегчаем процесс формования, но при этом увеличиваются затраты на обработку резанием.

    ТП-2: Уменьшая литейный уклон, мы снижаем затраты на обработку, но при этом усложняется процесс формования.

    Техническое противоречие можно представить в виде схемы, показанной на рис. 6.3.

    Рис. 6.3

    Формулирование технических противоречий - это конкретная реализация более общего приема поиска решения - переформулирование условий задачи. Это модель задачи, в которой раскрываются положительные и нежелательные эффекты или явления в рассматриваемой предметной области.

    При этом возникает проблема, как, сохранив или даже улучшив положительные стороны (эффекты) в создаваемом ТО, не допустить появления нежелательных эффектов.

    Формулировка ТП позволяет вычленить положительные и нежелательные эффекты для того, чтобы провести анализ причин появления нежелательных эффектов, и тем самым активизирует мышление на поиск возможных направлений решения проблемы.

    Пример 6.4. ТП: Уменьшая время на изучение конкретной темы, мы добиваемся того, что можем более широко информировать обучаемых, но при этом уровень знаний и умений по этой теме понижается.

    Пример 6.5. ТП: Декларируя истины, мы даем материал сжато и энергично, но при этом снижается способность обучаемых к самостоятельному поиску знаний.

    Пример 6.6. ТП: Необходимо повысить производительность токарной обработки заготовки.

    Анализ доступных ресурсов позволяет наметить два мероприятия, которые будут приводить к появлению нежелательных эффектов, связанных, с одной стороны, с увеличением затрат и, с другой стороны, с ухудшением качества получаемой детали (табл.1).

    Таблица 6.1


    Пример появления нежелательных эффектов при попытке решить поставленную проблему В приведенной таблице можно увидеть следующие противоречия.

    ТП-1: Для повышения производительности труда нужно увеличить скорость резания. Но при этом увеличивается температура резца. Период стойкости инструмента уменьшается и, следовательно, увеличиваются затраты на обработку.

    ТП-2: Для повышения производительности труда нужно увеличить скорость резания. Но при этом увеличивается температура заготовки. В материале заготовки происходят структурные изменения и, следовательно, снижается качество детали.

    ТП-3: Для повышения производительности труда нужно увеличить подачу инструмента (глубину резания на каждом проходе резца). Но при этом увеличивается шероховатость поверхности и, следовательно, снижается качество детали.

    6.3. Физическое противоречие

    Как видно из последнего приведенного примера, предлагаемые мероприятия, направленные на повышение производительности токарной обработки, приводят к появлению ряда НЭ.

    Проведенный анализ позволяет обнаружить и конкретизировать противоречивость свойств при взаимодействии компонентов рассматриваемой технической системы.

    Из анализа табл. 6.1 можно сформулировать следующие противоречия.

    Скорость резания должна быть большая для повышения производительности обработки, и она не должна быть большая, так как при этом увеличится температура резца.

    Скорость резания должна быть большая для повышения производительности обработки, и она не должна быть большая, так как при этом увеличится температура заготовки.

    Подача должна быть большая для повышения производительности обработки, и она не должна быть большая, чтобы не увеличивалась шероховатость поверхности.

    Таким образом, для того, чтобы разрешить ТП, формулируются частные задачи, в которых предъявляются несовместимые требования к свойствам отдельных компонентов или взаимодействию между компонентами рассматриваемого объекта.

    Совокупность таких требований Ю.В. Горин предложил назвать физическим противоречием (в 1973 г.), подчеркивая, что отношения противоречия перенесены на уровень физических свойств и отношений элементов системы.

    Г.С. Альтшуллер отмечал: "Стремясь убрать конфликтующие, противоречивые отношения между внешними сторонами технической системы, получим противоречие на уровне внутреннего функционирования системы. Такое противоречие, в отличие от технического, называется физическим противоречием (ФП).

    Сформулированные в примере 6.7 ФП позволяют наметить минизадачи и, тем самым, определить область поиска возможных решений (табл. 6.2).

    Таблица 6.2

    Пример 6.7. Для получения рельефной поверхности на крупногабаритных оболочках, например, для образования усилений в местах сварки на днищах топливных баков (ТБ), для получения вафельного силового набора на обечайках ТБ (места А на рис. 6.4) применяется операция избирательного размерного химического травления.


    Рис. 6.4

    Излишки материала удаляются в щелочных растворах. Места, которые не должны подвергаться травлению (поз. А рис. 6.4), покрываются лаком.

    Проблемная ситуация заключается в том, что необходимо весьма точно нанести защитный лак на участки, которые не должны подвергаться травлению. Лак должен иметь хорошую адгезию к металлу, чтобы в процессе обработки не было подтравливания материала под покрытием.

    Если лак наносить по трафарету, то не удается получить точный контур. Поэтому было принято решение наносить лак на всю поверхность, а затем по шаблону чертилкой делать разметку, скальпелем надрезать покрытие и удалять лак с тех участков, которые должны подвергнуться химической обработке.

    Но это решение привело к следующей проблеме. Защитное покрытие должно иметь хорошую адгезию к металлу для того, чтобы не было подтравливания материала под краями покрытия в процессе химической обработки и можно было бы получить точный контур, и покрытие должно иметь слабую (плохую) адгезию , чтобы после нанесения покрытия и его разметки (по шаблону) можно было бы легко удалить часть покрытия (в местах, где должно происходить травление).

    Сформулируем ФП:

    Лак должен иметь хорошую адгезию, чтобы не было подтравливания; лак должен иметь плохую адгезию, чтобы его можно было легко удалить с участков, подлежащих травлению.

    Формулировка ФП - это предельно обостренная и лаконичная формулировка задачи, выраженная часто в парадоксальной форме, обладающая эвристической ценностью.

    Кроме того, в этой формулировке необходимо указывать, почему, для какой цели к рассматриваемому объекту предъявляются эти противоречащие требования.

    Таким образом, при формулировке ФП нужно раскрыть физическую природу конфликта, объяснить, почему требования, отраженные в постановке задачи, являются противоречащими, и для чего нужно удовлетворить обоим противоречащим требованиям.

    Пример 6.8. Из некоторого города в другой надо доехать (на автомобиле) быстро, чтобы успеть к некоторому событию. Но ехать быстро нельзя, так как дорога плохая, и это опасно.

    Ехать надо быстро и в то же время медленно. Два противоречащих свойства процесса, которые обусловлены разными требованиями: необходимостью успеть вовремя и безопасностью. Поэтому физическое противоречие можно сформулировать следующим образом.

    ФП: Скорость должна быть большая, чтобы успеть, и скорость должна быть маленькая, чтобы доехать.

    Таким образом, ФП - это ситуация, когда к объекту или его части предъявляются противоположные (несовместимые) требования. Оно строится по схеме: объект должен обладать свойством Р и, вместе с тем, иметь противоположное свойство анти-Р .

    Например. Материал стальной детали, например железнодорожных рельсов, должен быть твердым и прочным (P 1), чтобы хорошо сопротивляться статическим нагрузкам и износу, и должен быть пластичным (P 2), чтобы хорошо сопротивляться ударным воздействиям, приводящим к выкрашиванию поверхностного слоя металла в зоне контакта с колесом. Применение операции термообработки увеличивает прочность и твердость, но при этом снижается пластичность. Свойства прочность и пластичность характеризуют различные качественные стороны материала, но они находятся в отношении противоположности. Для стальной детали они несовместимы.

    6.4. Эвристическая ценность противоречий

    В физических противоречиях требования, которые предъявляются к объекту, могут являться следствием различных целей, которые ставит перед собой инженер. Эти разные цели и приводят к необходимости реализации в техническом объекте несовместимых свойств (Р и анти-Р) .

    Кроме того, физические противоречия могут быть связаны с тем, что требуемое свойство не представляется возможным реализовать, так как этому мешает проявление объективных законов природы. То есть научное основание наблюдаемого явления (которое является нежелательным) не согласуется с требованиями, которые предъявляются к рассматриваемому объекту.

    Пример 6.9. Рассмотрим ламповый усилитель. Катод радиолампы должен иметь постоянную термоэлектронную эмиссию (P 1). Однако применение переменного электрического тока (от трансформатора) для подогрева катода приводит к тому, что термоэлектронная эмиссия изменяется (P 2) в соответствии с частотой электрического тока: в громкоговорителе слышен фон (50 Гц), а это недопустимо.

    Требуемую функцию (постоянство термоэлектронной эмиссии) надо осуществить, не усложняя систему. Но при этом возникает техническое противоречие, которое можно сформулировать в двух вариантах.

    ТП-1: Если для подогрева катода применить постоянный электрический ток, то термоэлектронная эмиссия будет постоянной, но при этом усложняется вся система (надо устанавливать выпрямитель).

    ТП-2: Если для подогрева катода применить переменный электрический ток, то вся система упрощается (не надо устанавливать выпрямитель), но термоэлектронная эмиссия не будет постоянной и, следовательно, не обеспечится качество усилителя.

    Из этих формулировок видно, что изменяемым параметром (см. рис. 6.3) является электрический ток.

    Из этого ТП можно сформулировать следующее ФП.

    ФП-1: Электрический ток должен быть переменным, чтобы не усложнять всю систему, и он не должен быть переменным для обеспечения постоянства электронной эмиссии.

    Из этого ФП можно сформулировать следующее ИКР.

    Катод, который подогревается переменным электрическим током, сам обеспечивает постоянство электронной эмиссии.

    Но этому ИКР мешает физическая особенность протекающего процесса.

    ФП-2: Электронная эмиссия должна быть постоянной для качественной работы радиолампы, но она должна быть переменной, так как катод подогревается переменным электрическим током.

    В этом ФП описываются несовместимые свойства, которыми должен обладать катод при его взаимодействии с другими компонентами радиолампы и надсистемой, то есть при воздействии на него переменного электрического тока.

    Рис. 6.5

    Таким образом, в физических противоречиях дается описание свойств, которыми должны обладать компоненты системы, чтобы достичь тех целей, которые ставит перед собой разработчик.

    Потребность в улучшении (усилении) некоторого функционального свойства Ф 1 влечет за собой необходимость придания одному из компонентов ТС технической характеристики (свойства) Р . Но это ухудшает другое тоже важное функциональное свойство Ф 2 (рис. 6.5).

    Свойства Р и не-Р характеризуются на качественном уровне, например, адгезия: большая и маленькая (пример 6.8) скорость: большая и маленькая (пример 6.9), материал: прочный и пластичный, электрический ток: постоянный и переменный (пример 6.10).

    Таким образом, ФП отражает ситуацию, в которой к физическому состоянию зоны конфликта предъявляются взаимно противоположные требования.

    Для ТП, приведенного в примере 6.4, физическое противоречие можно сформулировать в следующем виде.

    ФП: Литейный уклон должен быть большим для удобства формования, и уклон должен быть маленьким, чтобы уменьшить затраты на обработку резанием.

    Физическое противоречие представляет собой два несовместимых по истинности высказывания. Как сделать так, чтобы они оказались совместимыми?

    Обратимся к законам логики.

    Закон непротиворечия гласит, что два противоположных высказывания не могут быть одновременно истинными в одно и то же время и в одном отношении. При этом предполагается соблюдение закона тождества, заключающегося в том, что в рассуждении каждое понятие должно употребляться в одном и том же смысле, в том же содержании признаков.

    Закон непротиворечия не будет нарушаться, если утверждение или отрицание относятся к разному времени или изменились какие-либо другие условия. Или же в них понятие, которое является субъектом суждения, рассматривается в разных отношениях. Или же в этих суждениях разные субъекты, то есть рассматриваются разные понятия.

    Таким образом, если субъекты высказываний будут разные, то о законе непротиворечия говорить не приходится, так как суждения, участвующие в формулировке ФП, становятся несравнимыми. Следовательно, они перестают быть несовместимыми.

    Поэтому можно предложить следующие приемы разрешения противоречий.

    Смысл этого приема заключается в том, что при функционировании объекта в одни промежутки времени проявляется одно свойство, например P , а в другие промежутки времени - другое противоположное свойство не-P .

    Поскольку субъекты суждения разделены во времени, то в формулировке ФП они представляют собой разные понятия. Следовательно, высказывания, составляющие ФП, становятся несравнимыми и перестают быть противоречащими.

    Практическая реализация этого приема весьма часто сводится к введению в систему, например вещества, на определенное время. Это вещество должно обеспечить получение нужного свойства в заданный период времени, а когда оно выполнит свою функцию, оно должно пропасть.

    Естественно, возникает проблема, как это организовать. Какими свойствами должно обладать это вещество? Какие поля можно ввести в систему (или найти в ТС или компонентах, с которыми взаимодействует рассматриваемый технический объект), чтобы это вещество проявило нужные свойства?

    Для этого нужно посмотреть, какие другие свойства можно обнаружить в системе в эти моменты времени и как их можно для этого использовать.

    Таким образом, формулировка ФП активизирует мышление и дает некоторые направления поиска решения.

    Пример 6.10. В промышленности распространен способ определения площадок контакта поверхностей при помощи растертых на минеральных маслах красок. Краску наносят на одну поверхность, затем эту поверхность вводят в соприкосновение с другой поверхностью. По распределению пятен краски на этой второй поверхности судят о качестве контакта. Слой краски составляет порядка 5-6 мкм. Для более точного определения зоны контакта поверхностей необходимо применение более тонкого слоя краски. Однако тонкий слой не позволяет четко видеть границы пятна краски.

    ТП: При уменьшении толщины краски повышается точность контроля, но ухудшается индикация (обнаружение) результата.

    ФП: Слой краски должен быть тонким для повышения точности и он должен быть толстым для обнаружения.

    Здесь можно воспользоваться известным приемом переформулирования условий задачи - заменить некоторые термины, желательно более общими, чтобы избавиться от вектора психологической инерции, расширить область поиска возможных решений. В частности, во второй части ФП мысль: "толстым для обнаружения" заменить "контрастным для обнаружения" . Это будет более общая и более точная формулировка, так как толстый слой нужен для контрастности.

    Из формулировки ФП видно, что в рассматриваемом технологическом процессе можно выделить два этапа: испытание - приведение площадок в соприкосновение и контроль - момент обнаружения границ пятен краски.

    Следовательно, рассматриваемые свойства должны быть различные в разные моменты времени. Значит, нужно использовать прием разрешения противоречия во времени.

    Естественно возникает вопрос: какие вещества и (или) поля можно ввести в технологический процесс, чтобы разрешить это противоречие во времени?

    Отсюда можно наметить путь решения задачи. Слой краски должен быть тонким в момент испытания, а при контроле пятно краски становится контрастным.

    Какие вещества и поля можно ввести в систему, то есть какие физико-технические эффекты можно использовать для решения этой частной задачи?

    Можно ввести вещество, которое вступит в химическую реакцию с нанесенным слоем краски, можно ввести в краску люминофор и применить ультрафиолетовое облучение и др.

    Действительно, если пытаться ввести в систему вещество, то оно должно определенным образом взаимодействовать с веществами и полями, которые имеются в рассматриваемом техническом объекте. Значит, поиск решения заключается в том, что сначала формулируются свойства, которыми должно обладать это вещество, а потом с учетом определенных ограничений осуществляется поиск самого вещества.

    Второй весьма часто применяемый способ разрешения ФП во времени основан на использовании закона динамизации. Действительно, если объект должен иметь различные свойства в разные моменты времени, значит, он должен как-то изменяться и быть легко управляем. Противоречие, описанное в примере 6.1, разрешено введением элементов механизации (закрылки, предкрылки). При посадке самолета форма крыла меняется таким образом, что увеличиваются и коэффициент подъемной силы, и площадь крыла.

    Складывающиеся устройства: нож, зонтик, стул, убирающееся шасси самолета, телескопическая удочка - все эти технические решения были разработаны потому, что нужно было разрешить ФП.

    Пример. Шариковая ручка должна оставлять след на бумаге, но не должна оставлять следы на одежде, не пачкать карман. Противоречие разрешается во времени либо введением еще одного вещества (шариковая ручка с колпачком), либо за счет динамизации (убирающийся стержень).

    Разделить противоречащие свойства в пространстве

    Практическая реализация этого приема заключается в том, чтобы разнести в пространстве противоречащие свойства, которыми должен обладать рассматриваемый объект.

    Пример 6.11. Еще раз вернемся к рассмотрению проблемы повышения свойств стальных изделий. Для того, чтобы металлическая деталь обладала хорошей износостойкостью нужно, чтобы она имела высокую твердость. Это достигается применением термически упрочняемого материала и процессами упрочняющей термической обработки. Но в таком состоянии материал, как правило, имеет низкую ударную вязкость, то есть подвержен хрупкому разрушению при ударных нагрузках.

    Твердость нужна для износостойкости, то есть только в поверхностном слое.

    В хрупком материале возникшая трещина развивается практически мгновенно, а в вязком материале происходит медленное разрушение при значительной пластической деформации.

    При ударных нагрузках вязкий материал деформируется, а хрупкий ломается. В работающей машине процесс развития пластической деформации может быть обнаружен по изменению характера ее работы. Поэтому высокая ударная вязкость материала конструкции является одним из способов обеспечения безопасности эксплуатации техники.

    В конкретной задаче физическое противоречие заключается в том, что: "Деталь должна быть твердой для обеспечения высокой износостойкости, и деталь не должна быть твердой, чтобы иметь высокую ударную вязкость" .

    Формулировка этого ФП сама "подсказывает", что его можно разрешить разделением этих свойств в пространстве - твердой деталь должна быть только в поверхностном слое.

    Решение: материал детали не упрочняется термической обработкой (малое содержание углерода), а поверхностный слой цементируется (науглероживается) и производится термообработка - закалка.

    Высказывания в ФП перестают быть противоречащими, так как в них меняются субъекты. Теперь уже одна часть рассматриваемого объекта обладает свойством Р , а другая - противоположным свойством не-Р .

    Таким образом, чтобы понять, можно ли разрешить противоречие в пространстве или во времени, нужно проанализировать требования, которые приводят к противоречащим свойствам, выяснить, в чем различие этих требований.

    Для разрешения ФП в пространстве можно либо использовать свободное (пустое) пространство в ТО, либо ввести в систему вещество-разделитель.

    Следует отметить еще одну важную особенность этого этапа решения задачи.

    Формулировка ФП - это модель задачи. И как всякая модель она позволяет выделить существенные стороны решаемой задачи, сконцентрировать на них свое внимание, понять какие вещественно-полевые, пространственные и временные ресурсы можно использовать для решения проблемы.

    Формулирование ФП раскрывает еще два важных аспекта решаемой задачи. Эта модель дает возможность выявить оперативную зону и оперативное время .

    Оперативная зона (ОЗ) - это пространство, в пределах которого возникает конфликт.

    Оперативное время (ОВ) - это момент времени, когда конфликт возникает, а также время до появления конфликта, когда в ТО происходят процессы, подготавливающие этот конфликт.

    Определение оперативной зоны и оперативного времени позволяет конкретизировать поставленную задачу.

    В примере 6.12 ОЗ - это все тело детали, ОВ- технологический процесс, в котором формируются рассматриваемые свойства, то есть, процессы термообработки.

    В примере 6.11 ОЗ - сопрягаемые площадки, ОВ - от момента испытания до момента контроля.

    Рассматривая противоречащие высказывания как диалектическое противоречие, естественно заключить, что для его разрешения нужно найти (синтезировать) такое решение, которое позволило бы избавиться от НЭ и сохранить или, еще лучше, усилить нужное свойство. То есть нужно создать объект с новыми свойствами, исключающими рассматриваемое противоречие (речь идет не о поиске компромиссного решения). Поэтому для разрешения противоречия естественно воспользоваться приемами, которые позволяют изменять системные свойства рассматриваемых объектов.

    Из приведенных примеров видно, что разрешение противоречий в пространстве и во времени, как правило, сопровождалось введением в систему веществ и полей, то есть, введением компонентов и связей, которые приводили к изменению системных свойств ТО.

    Изменение системных свойств ТО возможно так же и за счет других структурных изменений.

    Введение, удаление связей, изменение характера связей между компонентами системы

    Пример 6.12. В радиоприемнике сила радиосигнала (особенно коротких волн) на антенне значительно изменяется. Это обусловлено в основном взаимным наложением радиоволн, приходящих в точку приема различными путями. Это сказывается на выходном сигнале - явление фединга-замирания.

    ФП: Сила выходного сигнала должна быть постоянной для удобства прослушивания передач, но она не может быть постоянной из-за явления фединга-замирания.

    ОЗ - все радиоприемное устройство от антенны до громкоговорителя;

    ОВ - моменты времени, когда изменяется сила сигнала на антенне.

    Разрешение ФП

    Изменение связей в усилительном устройстве: введение отрицательной обратной связи - устройство, называемое автоматическим регулятором усиления.

    Для разрешения ФП в примере 6.10 в катод было введено вещество. В каналах тонкого фарфорового цилиндрика помещена вольфрамовая нить - нагреватель. Нить накаливается переменным электрическим током, и ее тепло передается фарфоровому цилиндрику и нанесенному на него никелевому слою. Электрического контакта между катодом и нагревателем нет. Термоэлектронная эмиссия стала постоянной.

    В примере 6.7 решения минизадач 1, 2, 4, приведенных в табл. 6.2, основаны на введении в систему дополнительных компонентов.

    Системные свойства ТО могут быть изменены также еще одним приемом, основанным на системном подходе.

    Количественные изменения в компонентах или во взаимодействиях между ними, которые привели бы к качественным изменениям.

    Количественные изменения весьма часто приводят к качественным изменениям и, следовательно, оказывают существенное влияние на системные свойства объекта.

    Например, при нагреве жидкости до определенной температуры происходит ее испарение, при нагреве ферромагнетика до определенной температуры, называемой точкой Кюри, происходит скачкообразное изменение магнитных свойств.

    Закалка сталей основана на том, что при охлаждении при определенной температуре происходит изменение кристаллической решетки железа. При этом изменяется растворимость углерода в железе (сталь - это твердый раствор углерода в железе). Но здесь применен еще один прием - количественные изменения. При быстром охлаждении фиксируются те структуры, которые устойчивы при высокой температуре.

    Следует отметить, что в технических решениях, как правило, используется сразу не менее двух приемов. Например, введение компонента в систему часто приводит и к разделению противоречащих свойств в пространстве; для того, чтобы разделить противоречащие свойства во времени или ввести количественные изменения во взаимодействие компонентов, иногда приходится вводить в систему еще один компонент в виде вещества или поля.

    Таким образом, для разрешения ФП целесообразно, в первую очередь, проанализировать те требования, которые приводят к появлению несовместимых свойств, проверить, действительно ли необходимо совмещать противоречащие свойства в одной и той же точке пространства и в один и тот же момент времени, то есть рассмотреть, нельзя ли разрешить противоречие в пространстве или во времени.

    Пример 6.13. Период колебания маятника (например, часов - "ходики") должен быть постоянным при изменении окружающей температуры (рис. 6.6, а).

    Но поскольку температура воздуха меняется, то это сказывается на точности хода часов. Это связано с тем, что с изменением температуры изменяется длина маятника и, следовательно, период его колебаний.

    Рис. 6.6

    ФП: Период колебания маятника должен быть постоянным, но он не может быть постоянным, так как при изменении температуры изменяется длина маятника. Стержень металлический и при изменении температуры изменяется его длина.

    ОВ - то время функционирования объекта, когда происходит изменение температуры;

    ОЗ - точка подвеса, стержень, точка расположения центра масс груза, то есть вся система в целом.

    ОЗ и понимание физических законов, которым подчиняется функционирование объекта, позволяют наметить пути решения задачи.

    Период колебания маятника зависит от длины стержня и силы тяжести: , где L - длина маятника; g - ускорение силы тяжести.

    Естественно, возникает задача, как управлять этими параметрами. При этом надо стремиться к получению идеального технического решения, то есть ТО должен управлять собой сам.

    Здесь следует отметить еще одно важное обстоятельство. Технические и физические противоречия часто возникают именно после формулировки идеального технического решения, идеального конечного результата.

    В данном случае объект должен сам управлять своими параметрами, для..., но он не может этого сделать, так как у него нет для этого ресурсов . Это тоже можно рассматривать как физическое противоречие.

    Значит, эти ресурсы нужно найти. И ориентировку в поиске ресурсов дает представление об оперативной зоне, оперативном времени и компонентах надсистемы, с которыми связан рассматриваемый ТО.

    Нужно устройство, которое хорошо бы реагировало на изменение температуры и изменяло бы длину маятника или силу притяжения груза (mg).

    Какие вещества и поля можно ввести в систему?

    6.5. Заключение

    Таким образом, административные (АП), технические (ТП) и физические (ФП) противоречия - это модели задач.

    Из приведенных примеров видно, что:

    Административные и технические противоречия носят содержательный характер, а по форме они представляют собой описание проблемной ситуации.

    Административные противоречия только формулируют проблему в терминах: цель, потребность, функция, нежелательные эффекты .

    В ТП противоречие связано с функционированием ТО в целом при выполнении им главной полезной функции (ГПФ). В нем определяется изменяемый параметр, который существенным образом влияет на функциональные свойства технического объекта. Формулировка ТП позволяет обозначить направления решения проблемы.

    В ФП , как правило, речь идет о компонентах ТО и их взаимодействиях.

    В отличие от АП и ТП в физическом противоречии формулируются требования, приводящие к несовместимым свойствам, которыми должен обладать объект. Раскрывая суть конфликта, формулировка ФП обладает эвристической ценностью и позволяет наметить приемы поиска решения задачи.

    Задачи и обстоятельства, в которых они возникают, могут быть самые разные. Дать рекомендации на все случаи невозможно. Поэтому весьма важным является систематизация приемов, их свертывание в компактный набор, который при необходимости можно было бы развернуть.

    Г.С. Альтшуллер предложил 11 приемов разрешения физических противоречий, применение которых будет рассмотрено при изучении алгоритма решения изобретательских задач. Но чтобы ими воспользоваться, нужно уметь выявить и сформулировать физические противоречия.

    Кроме того, не надо забывать, что знание законов техники весьма часто позволяет целенаправленно выйти на нужный прием разрешения противоречий.

    Техническое противоречие — это ситуация, при которой улучшение одного свойства, одной части системы приводит к недопустимому ухудшению другого свойства, другой части системы, то есть выигрыш в одном приводит к ухудшению в другом.

    Решение творческой задачи есть преодоление технического противоречия . Оно заключается в нахождении некоторого способа преобразования технической системы, причем такого, которое при минимальных изменениях в системе приводило бы к искомому результату без ухудшения ее параметров.

    Техническое противоречие возникает между параметрами системы, ее узлами или группами деталей.

    Основными признаками технического противоречия является ухудшение каких-либо частей системы при улучшении других. Возникновение нескольких новых технических задач на уровне системы.

    Причины – исчерпание возможностей технической системы, неверный выбор места изменения системы, борьба со следствием, а не с причиной.

    Последствия – усложнение системы и надсистемы, резкое повышение материальных и других затрат.

    Условия разрешения – проведение причинно-следственного анализа, выявление первопричины возникновения нежелательного явления и микрозадачи в подсистеме, определение физического противоречия.

    Анализ многих тысяч изобретений выявил, что при всем многообразии технических противоречий большинство из них разрешается 40 основными приемами.

    Многообразие встречающихся изобретательских задач, даже принадлежащих разным областям техники, решаются при помощи сходных подходов. Это связано с тем, что лежащие в основе таких задач технические противоречия повторяются.

    В приложении 1 приведено содержание типовых приемов устранения технических противоречий.

    Чтобы определить, какой прием поможет наиболее успешно справиться с решением задачи, можно прибегнуть к помощи табл. 4.2, чтобы не перебирать последовательно все 40 приемов.

    Таблица 4.1

    Наиболее часто используемые приемы преодоления

    технических противоречий

    Параметр, который надо изменить (увеличить, уменьшить,

    улучшить) по условию задачи

    Номера приемов

    (приложение 1)

    1. Вес подвижного объекта

    2. Вес неподвижного объекта

    35, 28, 10, 19, 1, 2

    3. Длина подвижного объекта

    1, 29, 35, 15, 4

    4. Длина неподвижного объекта

    35, 28, 14, 1, 26, 3,10,15

    5. Площадь подвижного объекта

    2, 15, 13, 26, 30, 4

    6. Площадь неподвижного объекта

    18, 2, 35, 10, 16, 30, 40

    7. Объем подвижного объекта

    1, 35, 2, 10, 29, 4, 15

    8. Объем неподвижного объекта

    9. Скорость

    28, 35, 13, 10, 19, 34, 38

    35, 10, 18, 37, 36, 1

    35, 10, 36, 37, 2

    10, 15, 1, 14, 32, 34, 35

    13. Устойчивость состав объекта

    35, 2, 39, 27, 40

    14. Прочность

    3, 35, 40, 10, 15

    15 Продолжительность действия подвижного объекта

    19, 35, 3, 10, 27

    16. Продолжительность действия неподвижного объекта

    35, 1, 10, 16, 40


    Температура

    35, 19, 2, 22, 39

    18. Освещенность

    19. Энергия, расходуемая подвижным объектом

    35, 19, 18, 28, 2, 15

    20. Энергия, расходуемая неподвижным объектом

    21. Мощность

    22. Потери энергии

    7, 2, 35, 6, 18, 19, 38

    23. Потери вещества

    10, 35, 18, 28, 31

    24. Потери информации

    25. Потери времени

    35, 10, 28, 18, 4, 5

    26. Количество вещества

    35, 3, 29, 18, 10

    27. Надежность

    35, 11, 10, 3, 28, 40

    28. Точность измерения

    29. Точность изготовления

    32, 28, 10, 18, 2

    30. Вредные факторы, действующие на объект извне

    22, 35, 2, 1, 33

    31. Вредные факторы, генерируемые самим объектом

    18, 35, 2, 1, 39

    32. Удобство изготовления

    1, 35, 13, 27, 28

    33. Удобство эксплуатации

    1, 13, 2, 28, 32, 34

    34. Удобства ремонта

    1, 10, 2, 11, 35

    35. Адаптация, универсальность

    35, 1, 15, 16, 29

    36. Сложность устройства

    13, 26, 1, 28, 2, 10

    37. Сложность контроля и измерения

    28, 35, 16, 26, 27

    38. Степень автоматизации

    35, 13, 28, 26, 1, 2

    39. Производительность

    Однако для организации планомерного поиска приёма удобно воспользоваться специально разработанной таблицей (приложение 2), в которой по вертикали располагаются характеристики технических систем, которые по условиям задач требуется улучшить, а по горизонтали – характеристики, которые при этом недоступно ухудшаются. На пересечении граф и строк с наименованием улучшаемой и ухудшаемой характеристик находим номера приемов, позволяющих с наибольшей вероятностью устранить возникшее техническое противоречие. Таблица охватывает около полутора тысяч наиболее часто встречающихся в изобретательской практике технических противоречий.

    Основные понятия классической ТРИЗ, в том числе, противоречия, были определены еще в книгах Г.С. Альтшуллера и с тех пор не подвергались серьезной ревизии и уточнению.

    Сегодня ТРИЗ применяется не только в сфере развития технических систем, но и в других сферах человеческой деятельности, в частности, в сферы развития информационных и бизнес-систем. Для успешного применения ТРИЗ в этих сферах требуется согласование понятий, в том числе, противоречий, с понятиями, которые используются специалистами по информационным и бизнес-системам.

    Сегодня уже предпринимаются попытки, например, в , провести такую ревизию понятий. Однако пока не решены некоторые проблемы, в том числе,

    1. Плохо определена связь между административным и техническим противоречием.
    2. Нет единой модели, описывающей разные виды противоречий, в частности, как соотносится противоречие альтернативных систем с техническим и физическим противоречиями.
    3. Наименования и структура видов противоречий плохо подходят для использования в других (не-технических) областях.

    В данной статье предлагается общая схема понятия противоречий, в которой устранены указанные недостатки.

    Требования и ограничения

    Понятие «требование» является одним из ключевых в инженерной деятельности. Пожалуй, наиболее зрелые технологии управления требованиями сегодня используются в таких сферах, как системная инженерия и инженерия программного обеспечения .

    В системной инженерии сегодня принято различать 2 уровня требований:

    1. Система рассматривается в виде «чёрного ящика». Требования к системе описывают, что от системы хотят ее стейкхолдеры, а также что необходимо надсистеме, в которую входит рассматриваемая система. Такого рода требования называются требованиями стейкхолдеров .
    2. Система рассматривается в виде «прозрачного ящика» на различных стадиях жизненного цикла. Соответственно, такие требования включают предположения о том, как система должна быть устроена (состав и структура системы), а также как она должна себя вести (функционирование системы). Такого рода требования называются системными требованиями .

    Очевидно, что системные требования связаны с требованиями стейкхолдеров. По сути, системные требования описывают способы, посредством которых в системе должны реализовываться требования стейкхолдеров.

    Особый вид требований в системной инженерии – это ограничения, которым должна удовлетворять система. Широко применяемое в ТРИЗ понятие «нежелательный эффект» полностью соответствует понятию «ограничение».

    Пример. Компания «К» внедрила систему электронного документооборота. Данная система позволила планировать сроки обработки и длительность маршрута каждого документа в подразделениях компании «К». Для этого в компании «К» для каждого вида документа установлены нормативные сроки его обработки в подразделении.
    Однако в деятельности компании «К» присутствуют документы, которые поступают от внешних контрагентов «А» (накладные, счета и т.п.), а также документы, маршрут обработки которых предполагает их передачу контрагентам «А» и последующий возврат в компанию «К» (коммерческие предложения, договоры, проектная документация и т.п.).
    Одно из возможных решений – это согласование с контрагентами «А» для определенных видов документов нормативных сроков их обработки у контрагента. Но не все контрагенты согласны такие нормативы устанавливать и соблюдать. В некоторых случаях согласование нормативов невозможно из-за сроков или по каким-либо другим причинам.

    В приведенном выше примере можно выделить следующие требования стейкхолдеров:

    1. Руководство компании «К» хочет, чтобы в системе документооборота устанавливались сроки и маршруты обработки каждого документа.
    2. Руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов.

    Системные требования :
    (СТ1) Для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения.

    Системное ограничение :
    (СО1) Для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны.

    Общая схема противоречий

    Административное противоречие

    Известно следующее определение административного противоречия (АП): «нужно что-то сделать, а как сделать – неизвестно…» .

    В рамках предлагаемой схемы АП может быть представлено как требование и неизвестный (или не определенный) способ его выполнения. Схема административного противоречия представлена на следующем рисунке.

    Из представленной схемы следует, что АП описывает неопределенную изобретательскую ситуацию. Для ее уточнения и выявления противоречия необходимо выбрать известный способ выполнения требования.

    Например, в приведенном выше примере требование СТ1 (для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения) не может быть реализовано, для случая, когда документ обрабатывается контрагентом. В этом случае имеет место ограничение СО1 (для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны).

    В рассматриваемом примере административное противоречие может быть определено следующим образом:

    Как реализовать требование СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»)?

    Техническое противоречие

    В ТРИЗ техническое противоречие (ТП) определено как …взаимодействия в системе, состоящие, например, в том, что полезное действие вызывает одновременно и вредное. Или – введение (усиление) полезного действия, либо устранение (ослабление) вредного действия вызывает ухудшение (в частности, недопустимое усложнение) одной из частей системы или всей системы в целом .

    В рамках предлагаемой схемы ТП может быть представлено следующим образом: известный способ (или его изменение) приводит к возникновению противоречия между 2-мя требованиями. Схема ТП представлена на следующем рисунке.

    Из схемы следует, что ТП описывает отношение между способом и противоречивыми требованиями. Соответственно, мы можем использовать для обозначения данной структуры термин «противоречие требований». Данный термин уже используют М. Рубин и В. Кияев в .

    Пример. Для реализации требования СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А») можно использовать следующий известный способ: согласовать с контрагентом «А» нормативный срок обработки документа. Однако использование данного способа нарушит одно из требований стейкхолдеров (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
    В этом случае мы получаем противоречие:
    Если
    согласовать нормативные сроки обработки документов с контрагентом «А»,
    То
    (+) мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),
    Но
    (-) не реализуем требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

    Разделение противоречия на ТП1 и ТП2 в АРИЗ в рамках предлагаемой схемы противоречий представляет собой операцию со способом: изменение способа порождает ТП1, не изменение способа – ТП2. В частном случае, это может быть использование и не использование известного способа.

    Например, в системе документооборота ТП1 может быть сформулировано так, как указано выше, а ТП2 – следующим образом:
    Если
    Не согласовать нормативные сроки обработки документов с контрагентом «А»,
    То
    i>(+) мы обеспечиваем реализацию требования стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
    Но
    (-) мы не сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»).

    Противоречие альтернативных систем

    Понятие альтернативного технического противоречия (АТП) или противоречия альтернативных систем предложено В. Герасимовым и С. Литвиным в методе объединения альтернативных систем в надсистему, описанном в . В соответствии с этим методом пара технических противоречий формулируется в соответствии со следующим шаблоном :

    АТП1 : Если система реализована в виде базовой системы, то ее достоинством является (указать), но при этом имеется недостаток (указать).
    АТП2 : Если система реализована в виде (указать название альтернативной системы), то ее достоинством является (указать устраненный недостаток базовой системы), но при этом имеется недостаток (указать).

    В рамках предлагаемой схемы альтернативное техническое противоречие (АТП) может быть представлено следующим образом.

    В ТРИЗ физическое противоречие (ФП) определено следующим образом:
    … часть рассматриваемой системы должна находиться в таком-то физическом состоянии, чтобы удовлетворять одному требованию задачи, и должна находиться в противоположном состоянии, чтобы удовлетворять другому требованию задачи .

    М. Рубин и В. Кияев в предложили новое наименование для ФП – противоречие свойств (ПС). Их определение выглядит так:
    формулировка противоположного состояния того или иного свойства одного элемента системы, необходимое для реализации противоположенных требований к системе.

    Другими словами, для определения ФП (ПС) необходимо выделить элемент, который должен обладать противоположными свойствами, чтобы удовлетворить противоречивым требованиям. Очевидно, что объект с противоположными свойствами – это элемент, который входит в состав способа, который был выбран в АП и рассматривался в ТП.

    В рамках предлагаемой схемы ФП (ПС) может быть представлено следующим образом:

    Например, в противоречии, сформулированном для системы документооборота, мы рассматриваем способ (согласовать нормативные сроки обработки документов с контрагентом «А»). Объект, который лежит в основе противоречия – это срок обработки документа у контрагента «А».

    Соответственно, противоречие свойств можно сформулировать следующим образом:
    нормативный срок должен быть установлен , чтобы мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),

    И
    нормативный срок не должен быть установлен , чтобы мы смогли реализовать требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

    В случае АТП элемент является частью способа, реализованного в базовой системе.

    Заключение

    Предлагаемая общая схема противоречия отличается от существующих в ТРИЗ определений тем, что для описания противоречия используются понятия «требование» и «способ реализации требований».

    Использование в схеме противоречия способа реализации требований позволяет установить связь между административным и техническим противоречием. На уровне административного противоречия нам не известен (либо не выбран) способ реализации требования. Выбирая способ, решатель переходит от административного к техническому противоречию (противоречию требований). Затем, выбирая элемент способа, решатель переходит от ТП (противоречия требований) к ФП (противоречию свойств).

    Использование в структуре модели противоречия требований позволяет интегрировать ТРИЗ с достаточно развитыми в различных сферах деятельности технологиями управления требованиями. В перспективе данная схема противоречий и методы работы с ними могут быть интегрированы в системы управления требованиями (RMS) .

    Литература

    1. Рубин М.С., Кияев В.И. Основы ТРИЗ и инновации. Применение ТРИЗ в программных и информационных системах: Учебное пособие. 2013.
    2. ISO/IEC 15288:2002. System Engineering. System Life-Cycle Processes.
    3. Software Engineering Body of Knowledge, IEEE, 2004
    4. Альтшуллер Г.С. Найти идею, Введение в теорию решения изобретательских задач, Петрозаводск, Скандинавия, 2003
    5. Альтшуллер Г.С. АРИЗ – значит победа. В сб. Правила игры без правил / Сост.: А.Б. Селюцкий, Петрозаводск, Карелия, 1989.
    6. Альтшуллер Г.С. Алгоритм решения изобретательских задач АРИЗ-85В. 1985.
    7. Герасимов В.М., Литвин С.С. Зачем технике плюрализм? Развитие альтернативных технических систем путем их объединения в надсистему. Ленинград. Журнал ТРИЗ, №1, 1990.
    8. Альтшуллер Г.С., Селюцкий А.Б. Крылья для Икара. Как решать изобретательские задачи. Петрозаводск, Карелия, 1980.