Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Каковы плюсы и минусы атомных электростанций. Применение ядерной энергии: проблемы и перспективы. Атомная энергия для полетов в космос

    Каковы плюсы и минусы атомных электростанций. Применение ядерной энергии: проблемы и перспективы. Атомная энергия для полетов в космос

    Атомная энергетика в основном ассоциируется с Чернобыльской катастрофой, случившейся в 1986 году. Тогда весь мир был потрясен последствиями взрыва атомного реактора, в результате чего тысячи людей получили серьезные проблемы со здоровьем или погибли. Тысячи гектаров загрязненной территории, на которой нельзя жить, работать и выращивать урожай или же экологический способ добывания энергии, который станет шагом в светлое будущее для миллионов людей?

    Плюсы атомной энергетики

    Строительство атомных электростанций остается прибыльными за счет минимальных расходов на производство энергии. Как известно для работы ТЭС нужен уголь, причем ежедневно его расход составляет около миллиона тонн. К себестоимости угля добавляются расходы на транспортировку топлива, что также стоит немало. Что же касается АЭС это обогащенный уран, в связи с чем происходит экономия и на расходы на транспортировку топлива и на его покупку.


    Также нельзя не отметить экологичность работы АЭС, ведь долгое время считалось, что именно атомная энергетика положит конец загрязнению окружающей среды. Города, которые строятся вокруг атомных станций, экологически чистые, так как работа реакторов не сопровождается постоянным выбросом вредных веществ в атмосферу, к тому же использование ядерного топлива не требует кислорода. Как результат, экологическая катастрофа городов может страдать только от выхлопных газов и работы других промышленных объектов.

    Экономия средств в данном случае происходит и за счет того, что не требуется строить очистные сооружения для уменьшения выбросов продуктов сгорания в окружающую среду. Проблема с загрязнением больших городов на сегодняшний день становится все более актуальной, так как нередко уровень загрязнения в городах, в которых построены ТЭС, превышает в 2 – 2,5 раза критические показатели загрязнения воздуха серой, золовой пыли, альдегидами, оксидами углерода и азотом.

    Чернобыльская катастрофа стала большим уроком для мирового сообщества в связи с чем можно сказать о том, что работа атомных электростанций с каждым годом становится все безопаснее. Практически на всех АЭС были установлены дополнительные меры безопасности, которые во много раз уменьшили возможность того, что произойдет авария, подобная Чернобыльской катастрофе. Реакторы типа Чернобыльского РБМК были заменены реакторами нового поколения, имеющими повышенную безопасность.

    Минусы атомной энергетики

    Самым главным минусом атомной энергетики является память о том, как почти 30 лет тому назад на реакторе , взрыв на котором считался невозможным и практически нереальным, произошла авария, ставшая причиной всемирной трагедии. Случилось так потому что авария коснулась не только СССР, но и всего мира – радиоактивное облако со стороны нынешней Украины пошло сначала в сторону Белоруссии, после Франции, Италии и так достигло США.

    Даже мысль о том, что однажды такое может повториться становится причиной того, что множество людей и ученых выступают против строительства новых АЭС. Кстати Чернобыльская катастрофа считается не единственной аварией подобного рода, еще свежи в памяти события аварии в Японии на АЭС Онагава и АЭС Фукусима – 1 , на которых в результате мощнейшего землетрясения начался пожар. Он стал причиной расплавления ядерного топлива в реаторе блока № 1, из-за чего началась утечка радиации. Это стало последствием эвакуации населения, которое проживало на расстоянии 10 км от станций.

    Также стоит вспомнить о крупной аварии на , когда от раскаленного пара от турбины третьего реактора погибло 4 человека и пострадало свыше 200 человек. Ежедневно по вине человека или в результате действия стихии возможны аварии на АЭС, в результате чего радиоактивные отходы попадут в продукты, воду и окружающую среду, отравляя миллионы людей. Именно это считается самым главным минусом атомной энергетики на сегодняшний день.

    Кроме того очень остро стоит проблема утилизации радиоактивных отходов, для сооружения могильников нужны большие территории, что является большой проблемой для маленьких стран. Несмотря на то, что отходы битумируются и скрываются за толщей железа и цемента, никто не может с точностью уверить всех в том, что они будут оставаться безопасными для людей много лет. Также не стоит забывать, что утилизация радиоактивных отходов очень дорого обходится, вследствие экономии затрат на остекловывание, сжигание, уплотнение и цементирование радиоактивных отходов, возможны их утечки. При стабильном финансировании и большой территории страны этой проблемы не существует, но этим может похвастаться не каждое государство.

    Также стоит отметить, что при работе АЭС, как и на каждом производстве, происходят аварии, что становится причиной выброса радиоактивных отходов в атмосферу, землю и реки. Мельчайшие частицы урана и других изотопов присутствуют в воздухе городов, в которых построены АЭС, что становится причиной отравления окружающей среды.

    Выводы

    Хотя атомная энергетика остается источником загрязнения и возможных катастроф, все же следует отметить, что ее развитие будет происходить и дальше, хотя бы по той причине, что это дешевый способ получения энергии , а месторождения углеводородного топлива постепенно исчерпываются. В умелых руках атомная энергетика действительно может стать безопасным и экологически чистым способом добывания энергии, однако стоит все же отметить, что большинство катастроф произошло именно по вине человека.

    В проблемах, касающихся утилизации радиоактивных отходов, очень важно международное сотрудничество, ведь только оно может дать достаточное финансирование для безопасного и долгосрочного захоронения радиационных отходов и использованного ядерного топлива.

    Ядерная энергетика – единственный способ удовлетворить растущую потребность человечества в электричестве.

    Никакие другие источники энергии не в состоянии произвести достаточное количество электричества. Его мировое потребление с 1990 по 2008 год выросло на 39 % и ежегодно увеличивается. Солнечная энергия не может удовлетворить индустриальные потребности в электричестве. Запасы нефти и угля истощаются. На 2016 год в мире функционировал 451 ядерный энергоблок. Суммарно энергоблоки выработали 10,7 % мирового объема генерации электричества. 20 % всей электроэнергии, вырабатываемой в России, производят атомные станции.

    Энергия, выделяемая во время ядерной реакции, значительно превышает количество тепла, которое освобождается при горении.

    1 кг урана, обогащенный до 4 %, выделяет количество энергии, эквивалентное сжиганию 60 тонн нефти или 100 тонн угля.

    Безопасная работа атомных станций в сравнении с тепловыми.

    С момента строительства первых атомных объектов произошло около трех десятков аварий, в четырех случаях произошел выброс вредных веществ в атмосферу. Число происшествий, связанных со взрывом метана на угольных шахтах, исчисляется десятками. Из-за устаревшего оборудования число аварий на ТЭС увеличивается с каждым годом. Последняя крупная авария в России произошла в 2016 году на Сахалине. Тогда без света остались 20 тысяч россиян. Взрыв в 2013 году на Углегорской ТЭС (Донецкая область, Украина) спровоцировал пожар, который не могли потушить в течение 15 часов. В атмосферу было выброшено большое количество токсичных веществ.

    Независимость от ископаемых источников энергии.

    Запасы природного топлива истощаются. Остатки угля и нефти оцениваются в 0,4 ИДж (1 ИДж = 10 24 Дж). Запасы урана превышают 2,5 ИДж. К тому же, уран может использоваться повторно. Ядерное топливо легко перевозить, расходы на транспортировку минимальны.

    Сравнительная экологичность атомных электростанций.

    В 2013 году мировые выбросы от использования ископаемого топлива для получения электричества составили 32 гигатонны. Сюда входят углеводороды и альдегиды, сернистый газ, оксиды азота. АЭС не потребляет кислород, ТЭС же использует кислород для окисления топлива и производит сотни тысяч тонн золы в год. Выбросы на АЭС происходят в редких случаях. Побочным эффектом их деятельности является эмиссия радионуклидов, которые распадаются в течение нескольких часов.

    "Парниковый эффект" стимулирует страны ограничивать объемы сжигания угля и нефти. Атомные электростанции Европы ежегодно снижают эмиссию СО2 на 700 миллионов тонн.

    Положительное влияние на экономику.

    Строительство АЭС создает рабочие места на станции и в сопутствующих отраслях. Ленинградская АЭС, к примеру, обеспечивает локальные промышленные предприятия отоплением и горячей технической водой. Станция является источником медицинского кислорода для медучреждений и жидкого азота для предприятий. Гидротехнический цех поставляет потребителям питьевую воду. Объем производства энергии АЭС напрямую связан с ростом благосостояния района.

    Незначительное количество действительно опасных отходов.

    Отработанное ядерное топливо - источник энергии. Радиоактивные отходы составляют 5 % отработанного топлива. Из 50 кг отходов всего 2 кг нуждаются в длительном хранении и требуют серьезной изоляции.

    Радиоактивные вещества смешивают с жидким стеклом и заливают в контейнеры с толстыми стенами из легированной стали. Железные контейнеры готовы обеспечить надежное хранение опасных веществ на протяжении 200-300 лет.

    Строительство плавучих атомных электростанций (ПАТЭС) позволит обеспечить дешевой электроэнергией труднодоступные территории, в том числе и в сеймоопасных районах.

    АЭС жизненно необходимы в труднодоступных районах Дальнего Востока и Крайнего Севера, но строительство стационарных станций экономически не оправдано в малонаселенных территориях. Выходом станет использование малых плавучих атомных тепловых станций. Первую в мире ПАТЭС "Академик Ломоносов" запустят осенью 2019 года на побережье Чукотского полуострова в Певеке. Строительство плавучего энергоблока (ПЭБ) ведется на Балтийском заводе Санкт-Петербурга. Всего планируется к 2020 году запустить в эксплуатацию 7 ПАТЭС. В числе плюсов использования плавучих АЭС:

    • обеспечение дешевой электроэнергией и теплом;
    • получение 40-240 тысяч кубометров пресной воды в сутки;
    • отсутствие необходимости в срочной эвакуации населения при авариях на ПЭБ;
    • повышенная удароустойчивость энергоблоков;
    • потенциальный скачок в развитии экономики районов с ПАТЭС.

    Предложить свой факт

    Минусы ядерной энергии

    Большие затраты на строительство АЭС.

    Строительство современной атомной станции оценивается в 9 млрд долларов. По версии некоторых экспертов, расходы могут достигать 20-25 млрд евро. Стоимость одного реактора, в зависимости от его мощности и поставщика, колеблется в пределах 2-5 млрд долларов. Это в 4,4 раза выше стоимости ветряной энергетики и в 5 раз дороже солнечной. Срок окупаемости станции достаточно велик.

    Запасы урана-235, который используют практически все АЭС, ограничены.

    Запасов урана-235 хватит на 50 лет. Переход на использование комбинации из урана-238 и тория позволит вырабатывать энергию для человечества еще тысячу лет. Проблема в том, что для перехода на уран-238 и торий необходим уран-235. Использование всех запасов урана-235 сделает сделает переход невозможным.

    Затраты на производство ядерной энергии превышают эксплуатационные расходы ветряных станций.

    Исследователи компании «Energy Fair» представили отчет, который демонстрирует экономическую нецелесообразность использования ядерной энергии. 1 МВт/час, произведенный АЭС, обходится на 60 фунтов (96$) дороже аналогичного объема энергии, произведенного ветряными мельницами. Эксплуатация станций по расщеплению атома обходится в 202 фунта (323$) на 1 мвт/час, объекта ветроэнергетики - в 140 фунтов (224$).

    Тяжелые последствия аварий на АЭС.

    Риск аварий на объектах существует на протяжении всего срока эксплуатации атомных реакторов. Яркий пример - авария на ЧАЭС, на ликвидацию которой было направлено 600 тыс. человек. В течение 20 лет после аварии умерли 5 тысяч ликвидаторов. Реки, озера, лесные угодья, малые и крупные населенные пункты (5 млн га земель) стали непригодными для жизни. 200 тысяч км2 подверглись загрязнению. Авария стала причиной тысяч смертей, увеличения числа больных раком щитовидной железы. В Европе впоследствии зафиксировали 10 тысяч случаев рождения детей с уродствами.

    Необходимость захоронения радиоактивных отходов.

    Каждый этап расщепления атома связан с образованием опасных отходов. Сооружаются могильники для изоляции радиоактивных веществ до их полного распада, занимающие большие площади на поверхности Земли, расположенные в отдаленных местах мирового океана. 55 млн тонн радиоактивных отходов, захороненных на площади 180 гектаров в Таджикистане, рискуют проникнуть в окружающую среду. По данным на 2009 год, только 47 % радиоактивных отходов российских предприятий находятся в безопасном состоянии.

    Плюсы атомной энергетики в сравнении с другими видами получения энергии очевидны. Высокая мощность и низкая итоговая себестоимость энергии открыли в свое время большие перспективы для развития атомной энергетики и строительства АЭС. В большинстве стран мира плюсы атомной энергетики учитываются и сегодня – строятся все новые и новые энергоблоки и заключаются контракты на строительство АЭС в будущем.

    Одним из основных плюсов атомной энергетики является ее рентабельность. Она складывается из многих факторов, и важнейший из них – низкая зависимость от транспортировки топлива. Сравним ТЭЦ мощностью 1 млн. кВт и равнозначный по мощности блок АЭС. Для ТЭЦ в год требуется от 2 до 5 млн. тонн топлива, расходы на его перевозку могут составить до 50% себестоимости получаемой энергии, а на АЭС потребуется доставить примерно 30 т. урана, что практически не отразится на итоговой цене энергии.

    Также в плюсы атомной энергетики можно смело записать и то, что использование ядерного топлива не сопровождается процессом горения и выбросом в атмосферу вредных веществ и парниковых газов, а значит, строительства дорогостоящих сооружений для очистки выбросов в атмосферу не потребуется. Четверть всех вредных выбросов в атмосферу приходится на долю ТЭЦ, что очень негативно сказывается на экологической обстановке городов, расположенных вблизи них, и в целом на состоянии атмосферы. Города же, расположенные недалеко от атомных станций, функционирующих в штатном режиме, в полной мере ощущают плюсы атомной энергетики и считаются одними из самых экологически чистых во всех странах мира. В них производится постоянный контроль радиоактивного состояния земли, воды и воздуха, а также анализ флоры и фауны – такой постоянный мониторинг позволяет реально оценить минусы и плюсы атомной энергетики и ее влияние на экологию региона. Стоит заметить, что за время наблюдений в районах расположения АЭС ни разу не регистрировались отклонения радиоактивного фона от нормального, если речь не шла о чрезвычайных ситуациях.

    На этом плюсы атомной энергетики не заканчиваются. В условиях надвигающегося энергетического голода и истощения запасов углеродного топлива, естественным образом встает вопрос и о запасах топлива для АЭС. Ответ на названный вопрос весьма оптимистичен: разведенные запасы урана и других радиоактивных элементов в земной коре составляют несколько миллионов тонн, и при текущем уровне потребления их можно считать практически неисчерпаемыми

    Но плюсы атомной энергетики распространяются не только на АЭС. Энергия атома используется на сегодняшний день и в иных целях, помимо снабжения населения и промышленности электрической энергией. Так, нельзя переоценить плюсы атомной энергетики для подводного флота и атомных ледоколов. Использование атомных двигателей позволяет им долгое время существовать автономно, перемещаться на любые расстояния, а подлодкам – месяцами находиться под водой. На сегодняшний день в мире ведутся разработки подземных и плавучих АЭС и ядерных двигателей для космических летальных аппаратов.

    Учитывая плюсы атомной энергетики, можно смело утверждать, что в будущем человечество продолжит использовать возможности атомной энергии, которая при осторожном обращении меньше загрязняет окружающую среду и практически не нарушает экологическое равновесие на нашей планете. Но плюсы атомной энергетики существенно померкли в глазах мировой общественности после двух серьезнейших аварий: на Чернобыльской АЭС в 1986 году и на АЭС «Фукусима-1» в 2011 году. Масштабы этих происшествий таковы, что их последствия способны перекрыть практически все плюсы атомной энергетики, известные человечеству. Трагедия в Японии для ряда стран стала толчком к переработке энергетической стратегии и смещения акцентов в сторону использования альтернативных источников энергии.

    Думаю, что на территории стран бывшего союза, когда речь заходит об атомных электростанциях, у очень многих сразу мельком в голове проходит мысль о трагедии в Чернобыле. Это не так просто забыть и я хотел бы разобраться в принципе работы этих станций, а также выяснить их плюсы и минусы.

    Принцип работы атомной электростанции

    АЭС является некой ядерной установкой, перед которой ставится цель - производить энергию, а впоследствии - электричество. Вообще, началом эпохи АЭС можно считать сороковые года прошлого столетия. В СССР разрабатывались различные проекты по поводу использования атомной энергии не в военных целях, а в мирных. Одной из таких мирных целей была добыча электроэнергии. В конце 40-х начались первые работы по воплощению этой идеи в жизнь. Такие станции работают на водяном реакторе, из которого выделяется энергия и передается в разные теплоносители. В процессе всего это дела выделяется пар, который охлаждается в конденсаторе. А после через генераторы ток идет в дома жителей городов.


    Все плюсы и минусы АЭС

    Начну с самого основного и жирного плюса - нету никакой зависимости от большого использования топлива. К тому же, затраты на то, чтобы перевезти ядерное топливо будут крайне малы в отличие от обычного. Хочу отметить, что это очень актуально для России, учитывая, что тот же уголь у нас доставляется из Сибири, а это крайне дорого.


    Теперь с экологической точки зрения: количество выбросов в атмосферу за год - примерно 13 000 тонн и, как бы ни казалась эта цифра большой, по сравнению с другими предприятиями, показатель довольно мал. Другие плюсы и недостатки:

    • используется очень много воды, что ухудшает экологию;
    • производство электроэнергии практически такое же по стоимости, как и на ТЭС;
    • большой недостаток - ужасные последствия аварий (примеров достаточно).

    Еще хочу отметить, что, после того, как АЭС прекращает свою работу, её нужно обязательно ликвидировать, а это может стоить чуть ли не четверть от цены постройки. Несмотря на все недостатки, АЭС довольно распространены в мире.

    Ядерная энергетика (Атомная энергетика) - это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.
    Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
    Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.
    Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; США осуществляют программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.
    За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива.
    Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.
    К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы.
    Плюсы атомной энергетики в сравнении с другими видами получения энергии очевидны. Высокая мощность и низкая итоговая себестоимость энергии открыли в свое время большие перспективы для развития атомной энергетики и строительства АЭС, рентабельность. В большинстве стран мира плюсы атомной энергетики учитываются и сегодня – строятся все новые и новые энергоблоки и заключаются контракты на строительство АЭС в будущем.
    Также в плюсы атомной энергетики можно смело записать и то, что использование ядерного топлива не сопровождается процессом горения и выбросом в атмосферу вредных веществ и парниковых газов, а значит, строительства дорогостоящих сооружений для очистки выбросов в атмосферу не потребуется. Четверть всех вредных выбросов в атмосферу приходится на долю ТЭЦ, что очень негативно сказывается на экологической обстановке городов, расположенных вблизи них, и в целом на состоянии атмосферы. Города же, расположенные недалеко от атомных станций, функционирующих в штатном режиме, в полной мере ощущают плюсы атомной энергетики и считаются одними из самых экологически чистых во всех странах мира. В них производится постоянный контроль радиоактивного состояния земли, воды и воздуха, а также анализ флоры и фауны – такой постоянный мониторинг позволяет реально оценить минусы и плюсы атомной энергетики и ее влияние на экологию региона. Стоит заметить, что за время наблюдений в районах расположения АЭС ни разу не регистрировались отклонения радиоактивного фона от нормального, если речь не шла о чрезвычайных ситуациях.
    На этом плюсы атомной энергетики не заканчиваются. В условиях надвигающегося энергетического голода и истощения запасов углеродного топлива, естественным образом встает вопрос и о запасах топлива для АЭС. Ответ на названный вопрос весьма оптимистичен: разведенные запасы урана и других радиоактивных элементов в земной коре составляют несколько миллионов тонн, и при текущем уровне потребления их можно считать практически неисчерпаемыми
    Но плюсы атомной энергетики распространяются не только на АЭС. Энергия атома используется на сегодняшний день и в иных целях, помимо снабжения населения и промышленности электрической энергией. Так, нельзя переоценить плюсы атомной энергетики для подводного флота и атомных ледоколов. Использование атомных двигателей позволяет им долгое время существовать автономно, перемещаться на любые расстояния, а подлодкам – месяцами находиться под водой. На сегодняшний день в мире ведутся разработки подземных и плавучих АЭС и ядерных двигателей для космических летальных аппаратов.
    Учитывая плюсы атомной энергетики, можно смело утверждать, что в будущем человечество продолжит использовать возможности атомной энергии, которая при осторожном обращении меньше загрязняет окружающую среду и практически не нарушает экологическое равновесие на нашей планете. Но плюсы атомной энергетики существенно померкли в глазах мировой общественности после двух серьезнейших аварий: на Чернобыльской АЭС в 1986 году и на АЭС «Фукусима-1» в 2011 году. Масштабы этих происшествий таковы, что их последствия способны перекрыть практически все плюсы атомной энергетики, известные человечеству. Трагедия в Японии для ряда стран стала толчком к переработке энергетической стратегии и смещения акцентов в сторону использования альтернативных источников энергии.
    Перспективы развития атомной энергетики.
    При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.
    Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива "полезного" урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире. Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.
    Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин.