Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Роль руководителя в инновационном управлении А должен ли директор преподавать
  • Мировой рынок биотехнологий и продукции биоиндустрии. Обзор состояния российского рынка биотехнологической продукции

     Мировой рынок биотехнологий и продукции биоиндустрии. Обзор состояния российского рынка биотехнологической продукции

    Многообразие форм живой материи и новые знания в области физики и химии живых систем позволяют конструировать биологические системы различной степени сложности и организации, продуцирующие широчайший спектр макромолекул. Фундаментальные знания о молекулярной организации и закономерностях функционирования биосинтетических путей являются основой для метаболической инженерии биосистем суперпродукции макромолекул с заданными свойствами.

    На смену ставших рутинными биотехнологическим продуктам (белку одноклеточных, биоудобрениям и биогазу, органическим кислотам, аминокислотам) приходят новые продукты и препараты, среди которых - средства диагностики и лечения на основе технологий генетической инженерии и клонирования, вакцины, сыворотки, моноклональные антитела, экологически чистые материалы, а также биоинженерная аппаратура нового поколения для реализации биотехнологических процессов.

    Ведущие фирмы (табл. 1.3) в области биотехнологии в течение небольшого периода (с 1978 до 1982 гг. - период взрыва мирового рынка генно-инженерных продуктов) увеличили свои активы более чем в 30 раз; при этом их годовой доход возрос при этом с 5 до 67 млн дол.

    Таблица 1.3. Динамика мирового рынка продукции биотехнологии, млрд дол.


    Десятки новых препаратов ежегодно проходят различные стадии законодательного утверждения. Среди них - диагностикумы вируса В, СПИДа и др., моноклональные антитела, конъюгированные с растительными токсинами, эффективные противоопухолевые препараты, генные диагностикумы и пр.

    К 2000 г. на мировом рынке биотехнологических продуктов доля медицинских препаратов, полученных только в США методами клеточной и генетической инженерии, достигла свыше 30 млрд дол., что составило около 60 % всех затрат.

    Перечень медицинских препаратов, прошедших все стадии исследований и допущенных на рынок за период с конца 80-х гг. до 2004 г., существенно расширился. Ежегодно в США FDA (Администрация по продуктам питания и препаратам) выдает порядка 30-40 разрешений на серийное производство и применение биотехнологических препаратов и вакцин.

    Помимо полученных и выпущенных на рынок в 1981 г. рекомбинантных инсулина, гормона роста, иммунно-глобулинов и эритропоэтина, появились следующие препараты: липосомальная форма противогрибкового препарата, активатор тканевого плазминогена; рекомбинантные факторы свертывания крови; человеческий альбумин; заменитель человеческой кожи, состоящий из коллагена, фибробластов и кератиноцитов; культивированные аутологичные хондроциты; липосомальная форма химиотерапевтического агента даунорубицина; вакцины против гепатита В и для лечения хронического гепатита С; рекомбинантный фолликулостимулирующий гормон для лечения бесплодия; биоинженерный коллагеновый матрикс для реконструкции мышечной ткани; препараты для диагностики и лечения ВИЧ-инфекции; костный трансплантат, содержащий рекомбинантный костный морфогенетический протеин (rhBMP-2); гранулоцитарно-макрофагальный колониестимулирующий фактор при проведении аутологичных трансплантаций костного мозга; ботулинический токсин типа В и др.

    Японский рынок биотехнологических диагностикумов и препаратов в 2000 г. составил свыше 30 млрд дол.; среди них - препараты для лечения первичных и приобретенных иммунодефицитов, аутоиммунных состояний, вирусных и микробных инфекций, злокачественных новообразований, иммуноспецифических синдромов при шоке, лучевой и ожоговых болезнях.

    Серьезный прорыв был достигнут в области получения трансгенных сортов культурных растений, это генно-инженерный сорт сладкой («золотой») кукурузы; гибридные сорта кукурузы, рапса, пшеницы и сои с генами устойчивости к насекомым и гербицидам; трансгенные сорта хлопка, устойчивые к вилту, вредителям и гербицидам; трансгенные сорта папайи с красной и желтой мякотью, устойчивые к вирусу кольцевой пятнистости; а также генетически модифицированные фрукты и овощи с удлиненным сроком хранения (сорта томатов и клубники, не портящиеся при длительном хранении за счет снижения синтеза этилена, ускоряющего процесс физиологического дозревания плодов).

    В области рыбоводства были получены модифицированные быстрорастущие морепродукты (лосось, камбала), достигающие товарной массы в течение одного-полутора лет, по сравнению с двумя-тремя годами, требующимися для лососей традиционных пород и др.

    Объем рынка биотехнологий в мире к 2005 г. оценивался примерно в 200 млрд дол. США. Ежегодный рост в настоящее время составляет около 7-9 %. Для рынка биотехнологий в мире 2005 г. можно охарактеризовать как один из самых успешных за всю историю развития этой отрасли. В этот период правительства стран Европы и Азии продолжали демонстрировать энтузиазм по отношению к индустрии биотехнологий и инвестировать миллиарды долларов в эту отрасль, считая ее одним из приоритетов экономического развития своих государств.

    В настоящее время компании, связанные с биотехнологией и медициной, начинают выдвигаться на ведущие позиции в рейтингах по различным приоритетам. Так, журнал Fortune опубликовал ежегодный рейтинг 100 лучших компаний-работодателей. Лучшим местом работы в США признана компания Google. На втором месте - биотехнологическая компания Genetech. В рейтинге, проводимом компанией «Делойт», по показателям наиболее быстрого роста названы фирмы Anistoma и Biotage, занимающиеся разработкой биотехнологических препаратов для лечения онкологических заболеваний, генетическим анализом и медико-техническими исследованиями, заняли среди стран Европы 3-е и 4-е места, показав рост за 2005 г. на 20 и 13 % соответственно.

    Рынок биотехнологий в разных странах имеет свои особенности, обусловленные уровнем развития экономики стран и доходами населения. Наиболее активно в настоящее время ведется разработка лекарственных средств с использованием современной биотехнологии. В США, Японии и отдельных странах Западной Европы на эти цели расходуется в среднем средств, выделяемых на НИОКР в области биотехнологии. Практически во всех этих государствах существуют правительственные программы поддержки биотехнологических компаний.

    В США, являющихся лидером в области современной биотехнологии, для проведения фундаментальных и прикладных исследований было образовано много специализированных биотехнологических фирм, которые, привлекая частный и государственный капитал и лучшие научные кадры, в считанные годы разработали и запатентовали способы получения многих белковых продуктов медицинского назначения. К таким фирмам относятся в первую очередь Genentech, Biogen, Amgen, Genetic Institute, Cetus, Immunex и ряд других.

    Примерно в это же время к финансированию НИОКР в области современной биотехнологии подключились и крупные транснациональные компании, приобретая акции или лицензии на готовые продукты, а впоследствии создавая собственные исследовательские подразделения. Эти фирмы сыграли решающую роль в промышленном внедрении первых генно-инженерных медицинских препаратов, таких как инсулин, гормон роста человека, интерферон, эритропоэтин, тканевой активатор плазминогена, вакцина против гепатита В и др.

    Например, фирма Genentech имеет различные лицензионные соглашения и соглашения о сотрудничестве с Elly Lilly (США), Hoffmann-La Roshe (Швейцария), Takeda, Daiichy Seiyaky, Toray и Fujisawa (Япония), Boeringer Ingelheim, Gruenenthal (Германия), Kabi Vitrum (Швеция).

    По данным исследовательской компании Abercade, основными сегментами рынка биотехнологических продуктов в РФ являются фармацевтика (66 %), препараты для сельского хозяйства (18 %), дрожжи (9 %) (рис. 1.1) при весьма низких (порядка 1 %) уровнях остальных продуктов.



    Рис. 1.1. Долевой анализ рынка биотехнологии РФ (по данным исследовательской компании Abercade, источник - https://www.abercade.ru/)


    Однако нельзя не отметить, что основную долю самого развитого рынка фармацевтических препаратов в РФ (порядка 450 млн дол. США) в настоящее время занимает импортная продукция - это преимущественно инсулины, вакцины, сыворотки. Доля отечественной фармацевтической продукции в совокупном объеме составляет только 60,6 млн дол. США.

    Более перспективным выглядит рынок отечественной промышленной биотехнологии, в основном это производство ферментов и средств защиты растений. Объемы продаж ферментных препаратов отечественного производства составляет порядка 12,3 млн дол. США, это 38 % от общего объема этого сегмента рынка.

    Преимущественно это ферменты и ферментные препараты для спиртовой промышленности и для животноводства.

    Среди биотехнологических препаратов сельскохозяйственного назначения - средства защиты и стимуляторы роста растений, пробиотики, вакцины ветеринарные, кормовые антибиотики, аминокислоты и кормовой белок, витамины, кормовые добавки.

    На рынке биотехнологических препаратов для защиты окружающей среды доминирует отечественное производство продукции в размере 8 млн дол. США, а доля импортной продукции (бактериальные препараты для ликвидации нефтяных загрязнений, биосорбенты для очистки воды и донных отложений от нефтепродуктов) составляет только 800 тыс. дол. США. Объемы отечественного производства дрожжей составляют 58 млн дол. США, импорт этого вида биотехнологического продукта - в 3,5 раза меньше.

    Направления более наукоемких новейших биотехнологий, базирующихся на достижениях генетической инженерии, в России, к сожалению, только вступают в фазу своего развития. Так, на рынке генетически модифицированных культур, которые занимают в мире площадь 8,1 млн га и их продажи ежегодно растут на 20 %, Россия пока не представлена.

    Н.А. Воинов, Т.Г. Волова

    Традиционная биотехнология зародилась десять-двенадцать тысяч лет назад, когда закончилось последнее оледенение. Веками человек использовал микроорганизмы для выпечки хлеба, приготовления пива, сыра, выращивания сои, производства вина, витаминов. Интерес к производству пищевых продуктов не ослабевает и в наше время, но эти производства перешли на новый уровень с использованием всех новейших достижений современной биологии.

    Разрабатываются биотехнологии получения экологически чистой пищи для обеспечения сбалансированного питания как на основе высших растений, так и с помощью микробиологического синтеза.

    Продукты биотехнологического производства

    Продукты биотехнологии являются результатом функционирования биологических систем для технических и промышленных процессов. Сюда относятся как традиционные организмы, так и организмы, явившиеся результатом генной инженерии.

    Растения являются наиболее дешевым продуцентом белков и других продуктов питания. Стоимость белка, полученного путем сельскохозяйственного культивирования сои или кукурузы, составляет менее 1 дол./кг. В то время как использование в настоящее время микробных клеток в закрытых системах (ферментерах) и особенно культивируемых клеток животных в качестве продуцентов фармацевтических белков обходится в сотни и тысячи раз дороже. Поэтому исследования последних лет имели целью, с одной стороны, показать возможность получения биологически эквивалентных форм того или иного белка в трансгенных растениях, а с другой, - повысить содержание белка и облегчить и удешевить его последующую очистку.

    К настоящему времени уже показано, что растения могут производить белки животного происхождения, такие как энкефалин, моноклональные антитела, специфичные для бактерий, вызывающих зубной кариес. Предполагается, что на основе таких моноклональных антител, продуцируемых трансгенными растениями, удастся создать действительно антикариесную зубную пасту.

    Из других белков животного происхождения, которые представляют интерес для медицины, показана продукция в растениях человеческого в-интерферона. Получен картофель, экспрессирующий олигомеры нетоксичной субъединицы В-токсина холеры. Эти трансгенные растения могут быть использованы для получения дешевой вакцины против такого заболевания, как холера. Причем в случае холеры иммунизация вполне эффективно происходит при пероральном приеме вакцины.

    Генетическая инженерия метаболизма растительных жиров уже привела к новым коммерческим продуктам. Важнейшим сырьем для получения разного рода химических веществ являются жирные кислоты - основной компонент растительного масла. В 1995 г. была закончена экспериментальная проверка и получено разрешение от федеральных властей США на выращивание и коммерческое использование трансгенных растений рапса с измененным составом растительного масла, включающего вместе с обычными 16- и 18-членными жирными кислотами также и до 45 % 12-членной жирной кислоты - лауриновой. Это вещество широко используется для производства стиральных порошков, шампуней, косметики.

    Дальнейшее изучение специфики биохимического синтеза жирных кислот, по-видимому, приведет к возможности управлять этим синтезом с целью получения жирных кислот различной длины и различной степени насыщения, что позволит значительно изменить производство детергентов, косметики, кондитерских изделий, затвердителей, смазочных материалов, лекарств, полимеров, дизельного топлива и многого другого, что связано с использованием углеводородного сырья.

    Однако одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей растениеводства и животноводства, с одной стороны, и микробного синтеза, с другой, в формировании продовольственной базы человечества.

    Львиную долю продуктов, созданных на основе современных биотехнологий (генетической инженерии), составили фармацевтические белки, прежде всего инсулин, альфа-интерферон, антиген вируса гепатита В, эритропоэтин, фактор стимулирования гранулоцитов и многие другие вещества. В этих молекулах заключена такая мощь, что у множества разнообразных заболеваний, еще пять лет назад бывших неизлечимыми, появляется совершенно иной прогноз.

    Например, достигнут существенный прогресс в борьбе с раком и возрастной слепотой - заболеваниями прежде неизлечимыми. Несколько лет назад в стадии клинических испытаний находилось менее 10 противораковых препаратов, большинство из которых представляли собой высокотоксичные средства химиотерапии. Сегодня испытания с участием людей проходят более 400 противораковых лекарств, и почти все они - целевого действия, на основе биотехнологий и с минимальными побочными эффектами.

    На основе биотехнологий создано 230 лекарственных препаратов и сопутствующих продуктов, включая лекарства от бессонницы, множественного склероза, острой боли, хронической болезни почек, недержания, язв полости рта и рака.

    Ни для одного раздела медицины биотехнология не сделала так много, как для онкологии. С появлением новых лекарств, которые уничтожают только клетки опухоли, почти не повреждая здоровые ткани, изменилась вся парадигма лечения рака.

    Теперь медицина рассматривает рак как хроническое, поддающееся лечению заболевание. Только в 2004 г. FDA одобрила четыре целевых препарата против рака - Avastin, Tarceva, Iressa и Erbitux. Применение Avastin от компании Genentech позволяет продлить жизнь пациентов с раком легких, груди и кишечника - первейшая задача для всякого препарата от рака.

    Создано и выпущено на рынок множество новых биотехнологических продуктов, повышающих урожайность сельскохозяйственных культур и продуктивность сельскохозяйственных животных.

    Продуктами биотехнологии являются возобновляемые источники энергии - различные виды биотоплива. Налажено производство этанола из сырья, содержащего сахарозу, глюкозу, фруктозу, другие моно- или олигосахариды, крахмал или целлюлозу, с помощью дрожжей или бактерий. В настоящее время этанол все в большей мере применяется в качестве экологически чистого моторного топлива. Поставлено производство бутанола и ацетона с использованием бактерий-бродильщиков рода Clostridia. Технология производство водорода испытана пока только в масштабе лаборатории.

    Получение метана, или биогаза, осуществляемое смешанной микробной культурой, устраняет отходы, угрожающие планете, и производит ценное газообразное топливо, заменитель природного газа. Перспективно производство длинноцепочечных углеводородов (бионефти) из биомассы углеводородсинтезирующих одноклеточных водорослей. Эти водоросли могут быть выращены в биореакторе в виде чистой культуры. Их можно также культивировать в составе природных экосистем в озерах, прудах или лагунах.

    Продолжают развиваться процессы получения традиционных биотехнологических продуктов, к которым можно отнести антибиотики, алкалоиды, гормоны роста растений, ферменты, аминокислоты, витамины и т.д. Молекулы антибиотиков очень разнообразны по составу и механизму действия на микробную клетку. При этом в связи с возникновением устойчивости патогенных микроорганизмов к старым антибиотикам постоянно существует потребность в новых. В некоторых случаях природные микробные антибиотические продукты химическим или энзиматическим путем могут быть превращены в так называемые полусинтетические антибиотики, обладающие более высокими терапевтическими свойствами.

    Микроорганизмы способны осуществлять реакции трансформации, в которых те или другие соединения превращаются в новые продукты. Условия протекания этих реакций мягкие, и во многих случаях микробиологические трансформации предпочтительнее химических. Пример существующих крупномасштабных промышленных биоконверсий - производство уксуса из этанола, глюконовой кислоты из глюкозы. Широко используется микробная модификация стероидов, которые являются сложными полициклическими липидами. Теперь с использованием биоконверсии получают кортизон, гидрокортизон, преднизолон и целый ряд других стероидов, что в сотни раз снижает себестоимость производства стероидов.

    Пока получение ферментов с помощью микроорганизмов более выгодно, чем из растительных и животных источников. Микробные клетки продуцируют более 2 тысяч ферментов, катализирующих биохимические реакции, связанные с ростом, дыханием и образованием продуктов. Многие из этих ферментов могут быть выделены и проявляют свою активность независимо от клетки. В мире производится около 20 ферментов в объеме 65 тыс. т (а существует, как предполагают 25 000 ферментов).

    Например, промышленным способом производят такие ферменты, как амилаза, глюкоамилаза, протеаза, инвертаза, пектиназа, каталаза, стрептокиназа, целлюлаза, липаза, целлюлаза, оксидаза и др. Использование иммобилизованной глюкозоизомеразы для непрерывного получения глюкозы является наиболее крупным процессом такого рода в мире.

    Микробные ферменты активно используют в клинической диагностике при определении уровня холестерина в крови и мочевой кислоты. Ферменты предлагают использовать для очистки канализационных и водопроводных труб и во многих других сферах человеческой деятельности. Ферменты для медицинских или аналитических целей должны быть высокоочищенными.

    Производство аминокислот относится к одной из наиболее передовых областей биотехнологии. Аминокислоты получают путем химического синтеза или экстракцией из белковых гидролизатов. Незаменимые аминокислоты могут получаться микробиологическим путем более эффективно, чем путем химического синтеза. За рубежом 60 % мощностей по производству аминокислот занимает глутаминовая кислота, далее идут метионин, лизин и глицин. С помощью микроорганизмов можно получить до 60 органических кислот. Многие из них получают в промышленном масштабе - итаконовая, молочная, уксусная, лимонная.

    Витамины синтезируют в основном химическим путем или получают из естественных источников. Однако рибофлавин (В2), витамин В12 и аскорбиновую кислоту получают микробиологическим путем. Существует производство рибофлавина на основе использования дрожжеподобных грибов Eremothecium ashbyii и Ashbia gossypii. Рибофлавин продуцируется также видами Clostridium и Ascomycetes. Микроорганизмы являются также ценным источником получения никотиновой кислоты (витамин РР).

    Микроорганизмы являются источником получения липидов специального назначения с заранее определенными свойствами. Микробные жиры заменяют растительные (а в ряде случаев и превосходят) и могут использоваться в разных отраслях промышленности, сельского хозяйства, медицине.

    Микроорганизмы являются важным источником получения полимерных материалов на основе полисахаридов. Ценным микробным полисахаридом является декстран, образуемый бактериями рода Leucomonstoc. Декстран служит основой получения медицинских препаратов (кровезаменителей) и препаратов для биохимических исследований - сефадексов и других молекулярных сит. Одним из перспективных биодеградируемых полимеров, синтезируемых бактериями, являются полигидроксиалканоаты. Область использования этого класса полимеров широка - от сельского хозяйства до медицины.

    С молекулярной биотехнологией человечество связывают самые большие надежды и по возможности точной диагностики, профилактики и лечения множества инфекционных и генетических заболеваний, и по значительному повышению урожайности сельскохозяйственных культур, и по многим другим до сих пор нерешенным проблемам.

    К сожалению, львиную долю стоимости производства зачастую составляет не наращивание биомассы, а последующие процессы выделения и очистки продукта. Стоимость очистки тем выше, чем ниже концентрация вещества в клетках. Это особенно важно в случае фармацевтических препаратов, требующих высокой степени чистоты.

    В данной главе будет рассматриваться последняя стадия получения целевого продукта - его выделение. Эта стадия существенно различается в зависимости от локализации продукта и его химической природы. Если продукт находится в культуральной жидкости, то он, как правило, образует очень разбавленные растворы и суспензии, содержащие, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, поэтому необходимо использовать методы, позволяющие провести разделение, например, тот или иной вид хроматографии.

    Если целевой продукт локализуется в клетке, то необходимо использовать более сложный подход к его извлечению из клетки.

    Н.А. Воинов, Т.Г. Волова

    Cтраница 1


    Биотехнологические производства прямо или косвенно нацелены на обеспечение здоровья людей.  

    Современные технологические линии и биотехнологические производства, характеризующиеся сложной многоуровневой структурой взаимосвязей эффектов физической, химической и биологической природы, наличием прямых и обратных потоков между технологическими аппаратами, могут рассматриваться как сложные кибернетические системы, при изучении которых используется стратегия системного анализа.  

    Борьба с микробами-контаминантами в биотехнологических производствах Защита биотехнологических процессов от микробов-контаминантов эффективно осуществляется с помощью различных фильтров В последнее десятилетие широкое распространение приобрела мембранная фильтрация в целях получения стерильных воздуха и различных жидкостей (разновидность холодной стерилизации) Более того, мембраны нашли применение в рДНК - биотехнологиии, в дисперсионном и других анализах биомолекул.  

    Бактерии брожения используются в биотехнологических производствах. Бактерии применяют в генетической инженерии, например, для биотехнологического получения инсулина, интерферона и других ценных лекарственных препаратов.  

    В частности, БВК паприн - продукт крупнотоннажного биотехнологического производства - представляет собой биомассу дрожжей, выращенных на н-алканах; основную его часть составляют белки, липиды, полисахариды, нуклеиновые кислоты. К информации такого рода, безусловно, следует относиться с большой долей осторожности.  

    Из биомассы ряда базидиальных грибов в Японии получают полисахариды кориолан, лентипан, пахиман, шизофиллан, которые используют для лечения некоторых онкологических заболеваний. В России разработано биотехнологическое производство экзополисахаридов аубазидан и поллулан, являющихся продуцентами гриба Aureobasidium pullulans. Аубазидан используется как вспомогательное средство для создания лекарственных форм, а поллулан нашел применение в пищевой промышленности.  

    Кроме того, для химического и биотехнологического производства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев при оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Решение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря, чему она оказалась пригодной для изучения объектов самой различной природы - от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хро-матографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций по различным вопросам теории и применения метода, общее же их число в несколько раз больше.  

    Кроме того, для химического и биотехнологического производства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев при оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Решение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы - от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хро-матографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций по различным вопросам теории и применения метода, общее же их число в несколько раз больше.  

    Для стерилизации жидкостей используют фильтры из коллодия, диаметр пор которых меньше размеров вирусов. Этот метод применяют в биотехнологическом производстве при изготовлении вакцин, иммунных сывороток, растворов антибиотиков, бактериофагов и других материалов, не пригодных для тепловых или других методов стерилизации.  

    Увеличилось производство и снизилась стоимость конкурирующих кормовых добавок для животных, таких как соевые бобы, рыбная мука и клейковина из кукурузы. Последняя является побочным продуктом при биотехнологическом производстве топлива.  

    В условиях интенсивно развивающегося животноводства крайне важна задача создания сбалансированных кормов. Одним из альтернативных путей ее достижения является биотехнологическое производство клеточных белков, полноценных по набору незаменимых аминокислот. Производство кормового белка [ синонимы: БВК, кормовые дрожжи, в зарубежной литературе - белок одноклеточных (SCP) ] основано на культивировании четырех категорий микроорганизмов: бактерий, грибов, дрожжей и микроводорослей, использующих в качестве субстрата источников питания углеводы отходов сельскохозяйственной продукции, целлюлозно-бумажного производства, углеводороды нефти, простейшие спирты, газы (С02, метан) и др. В настоящее время производство кормовых дрожжей только в СССР превысило 1 млн. т / год и характеризуется тенденцией неуклонного роста в предстоящее десятилетие.  


    От качества плотных и жидких отходов, образующихся в биотехнологических производствах, зависит выбор путей использования их на практике. Так, в производстве пива из ячменя отходами являются дрожжевые клетки, солодовая дробина и некоторые другие вещества. Из таблицы видно, что по питательной ценности и усвояемости все компоненты плотных отходов могли бы быть рекомендованы к употреблению на животноводческих фермах.  

    Ультразвук вызывает гибель микроорганизмов в суспензиях: в микробной клетке образуются кавитационные полости с резкими перепадами разрежения и избыточного давления, что приводит к разрушению клетки. Этот метод используют для очистки (деконтаминации) медицинских инструментов, обеззараживания некоторых жидких препаратов, питьевой воды, молока, соков, а также для получения компонентов микробной клетки для исследований или в ходе биотехнологического производства.  

    С позиций системного анализа решаются задачи математического моделирования на ЭВМ, при этом полная математическая модель биотехнологической системы может быть представлена в виде иерархической структурной модели, где на каждом уровне имеется описание своего класса явлений. Применение такого подхода к изучению сложных БТС позволяет целенаправленно использовать и систематизировать исследования, получаемые в лабораторных, опытных и промышленных условиях для разработки модели БТС в целом. Полученная таким образом математическая модель используется затем для оптимизации биотехнологического производства при его функционировании, а также на стадии проектирования биохимических производств.  

    Учебно-методическое пособие для студентов специальности

    050701 «Биотехнология»

    Шымкент, 2007

    УДК 631. 147(075.8)

    ББК 30. 16я 73

    Составили: Приходько Н. А., Есимова А. М., Надирова Ж.К.

    ОСНОВЫ БИОТЕХНОЛОГИЧЕСКОГО ПРОИЗВОДСТВА. КОНСПЕКТ ЛЕКЦИЙ. Учебно-методическое пособие для студентов специальности 050701 «Биотехнология» – Шымкент: ЮКГУ им. М. Ауезова,- 2007.- 100с.

    Рис. 22, табл. 9, список литературы 15 наим.

    Учебно-методическое пособие предназначено для студентов III курса дневной и заочной формы обучения по специальности 050701 «Биотехнология» и включает 8 лекций, содержание которых охватывает программу курса в соответствии с Государственным общеобязательным стандартом образования Республики Казахстан.

    Учебно-методическое пособие составлено на основании Государственных общеобязательных стандартов образования РК (Астана, 2001, 2004 (ГОСО РК 3.07.078 – 2001 и ГОСО РК 3.08. – 076 – 2004)

    Рецензенты: доцент кафедры биотехнология

    к. х. н. Тасыбаева Ш.Б..

    © Южно-Казахстанский Государственный университет им. М. Ауезова

    Введение

    1. Цель, задачи и место дисциплины в учебном процессе

    Настоящий курс предназначен для студентов бакалавриата, обучающихся по специальности 050701 – биотехнология. В нем детально рассматриваются основные этапы

    В программе освещены вопросы, касающиеся биообъектов, биохимических процессов и сырья биотехнологических производств. Дана характеристика типов культивирования микроорганизмов, способов выделения и очистки конечных продуктов. Особое внимание уделяется значению методов генной инженерии в современной биотехнологии.

    Цель курса – ознакомить студентов с основными этапами биотехнологических производств, включая:

    Виды сырья;

    основой биопроизводств;

    Задачи курса



    биотехнологических производств.

    Минимальная трудоемкость дисциплины по типовому учебному плану составляет 90 часов.

    Лекция 1. Введение. Предмет и задачи курса. Биотехнологическое производство как биоиндустрия. Место приложения научных достижений биотехнологии. Перспективы биотехнологических производств

    Форма проведения лекции: вводная с проблемными ситуациями

    План лекции

    1. Введение

    2. Предмет и задачи курса

    3. Биотехнологическое производство как биоиндустрия

    4. Место приложения научных достижений биотехнологии

    5. Перспективы биотехнологических производств

    1. Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности. Эти технологии базируются на использовании каталитического потенциала различных биологических агентов и систем – микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток. В настоящее время разработка и освоение биотехнологии занимают важное место в деятельности практически всех стран. Достижение превосходства в биотехнологии является одной их центральных задач в экономической политике развитых стран. Лидерами биотехнологии являются сегодня США и Япония, накопившие многолетний опыт биотехнологий для сельского хозяйства, фармацевтической, пищевой и химической промышленности. Прочное положение в производстве ферментных препаратов, аминокислот, белка, медикаментов занимают страны Западной Европы (ФРГ, Франция, Великобритания), а также Россия. Эти страны характеризуются мощным потенциалом новой техники и технологии, интенсивными фундаментальными и прикладными исследованиями в различных областях биотехнологии. Определить сегодня, что же такое биотехнология, весьма не просто. Вместе с тем, само появление этого термина в нашем словаре глубоко символично. Оно отражает мнение, что применение биотехнологических материалов и принципов в ближайшие годы радикально изменит многие отрасли промышленности и само человеческое общество. Интерес к этой науке и темпы ее развития в последние годы растут очень быстро. Человек использовал биотехнологию многие тысячи лет: люди занимались пивоварением, пекли хлеб, получали кисломолочные продукты, применяли ферментации для получения лекарственных веществ и переработки отходов. Но только новейшие методы биотехнологии, включая методы генетической инженерии, основанные на работе с рекомбинантными ДНК, привели к «биотехнологическому буму», свидетелями которого являемся мы в настоящее время. Новейшие технологии генетической инженерии позволяют существенно усовершенствовать традиционные биотехнологические процессы, а также получать принципиально новыми, ранее недоступными способами разнообразные ценные продукты. Развитие и преобразование биотехнологии обусловлено глубокими переменами, происшедшими в биологии в течение последних 25–30 лет. Основу этих событий составили новые представления в области наследственности и методические усовершенствования, которые приблизили человечество к познанию превращений ее материального субстрата и проложили дорогу новейшим промышленным процессам. Помимо этого, ряд важнейших открытий в других областях также повлиял на развитие биотехнологии

    Генетическая инженерия существует немногим более 20 лет. Она блестяще раскрыла свои возможности в области прокариотических организмов. Однако новые технологии, применяемые к высшим растениям и животным, пока не столь значительны. Попытки применения приемов генетической инженерии к высшим растениям и животным сталкиваются с огромными трудностями, обусловленными как несовершенством наших знаний по генетике эукариот, так и сложностью организации высших организмов.


    Использование научных достижений и практические успехи биотехнологии тесно связаны с фундаментальными исследованиями и реализуется на самом высоком уровне современной науки. В этом плане нельзя не отметить удивительную научную многоликость биотехнологии: ее развитие и достижения теснейшим образом связаны и зависят от комплекса знаний не только наук биологического профиля, но также и многих других

    Сегодня биотехнология стремительно выдвинулась на передние позиции научно-технического прогресса. Фундаментальные исследования жизненных явлений на клеточном и молекулярном уровнях привели к появлению принципиально новых технологий и получению новых продуктов. Традиционные биотехнологические процессы, основанные на брожении, дополняются новыми эффективными процессами получения белков, аминокислот, антибиотиков, ферментов, витаминов, органических кислот и др. Наступила эра новейшей биотехнологии, связанная с получением вакцин, гормонов, интерферонов и др. Важнейшими задачами, стоящими перед биотехнологией сегодня, являются: повышение продуктивности сельскохозяйственных растительных культур и животных, создание новых пород культивируемых в сельском хозяйстве видов, защита окружающей среды и утилизация отходов, создание новых экологически чистых процессов преобразования энергии и получения минеральных ресурсов.

    Характеризуя перспективы и роль биотехнологии в человеческом обществе, уместно прибегнуть к высказыванию на одном из Симпозиумов по биотехнологии японского профессора К. Сакагучи, который говорил следующее: «... ищите все, что пожелаете, у микроорганизмов, и они не подведут вас... Изучение и применение в промышленности культур клеток млекопитающих и растений, иммобилизация не только одноклеточных, но и клеток многоклеточных организмов, развитие энзимологии, генетической инженерии, вмешательство в сложный и недостаточно изученный наследственный аппарат растений и животных все больше расширят области применения существующих направлений биотехнологии и создадут принципиально новые направления».

    2. Современный этап научно-технического прогресса характеризуется революционными изменениями в биологии, которая становится лидером естествознания. Биология вышла на молекулярный и субклеточный уровень, в ней интенсивно применяются методы смежных наук (физики, химии, математики, кибернетики и др.), системные подходы. Бурное развитие комплекса наук биологического профиля с расширением практической сферы их применения обусловлено также социально-экономическими потребностями общества. Такие актуальные проблемы, стоящие перед человечеством второй половины ХХ века, как дефицит чистой воды и пищевых веществ (в особенности белковых), загрязнение окружающей среды, недостаток сырьевых и энергетических ресурсов, необходимость развития новых средств диагностики и лечения, не могут быть решены традиционными методами. Поэтому возникла острая необходимость в разработке и внедрение принципиально новых методов и технологий. Большая роль в решение комплекса этих проблем отводится биотехнологии, в рамках которой осуществляется целевое применение биологических систем и процессов в различных сферах человеческой деятельности. Цель курса – ознакомить студентов с основными этапами биотехнологических производств, включая:

    Виды сырья;

    Биообъекты – клетки и ферменты, биохимическая активность которых является

    основой биопроизводств;

    Процессы, лежащие в основе этих производств;

    Выделение, очистка и товарные формы конечных продуктов.

    Задачи курса

    Показать уникальные возможности микроорганизмов и разнообразие

    ферментативных реакций, лежащих в основе биопроизводств;

    Дать характеристику сырья, в том числе, недефицитных вторичных

    продуктов и отходов ряда производств;

    Ознакомить с методами культивирования микроорганизмов;

    Дать характеристику этапам получения конечных продуктов

    биотехнологических производств.

    3. В современной биотехнологии в соответствии со спецификой сфер ее применения целесообразно выделить в качестве самостоятельных ряд разделов следующие:

    Промышленная микробиология;

    Медицинская биотехнология;

    Технологическая биоэнергетика,

    Сельскохозяйственная биотехнология;

    Биогидрометаллургия;

    Инженерная энзимология;

    Клеточная и генетическая инженерия;

    Экологическая биотехнология.

    Перспективность и эффективность применения биотехнологических процессов в различных сферах человеческой деятельности, от получения пищи и напитков до воспроизводства экологически чистых энергоносителей и новых материалов обусловлена их компактностью и одновременно крупномасштабностью, высоким уровнем механизации и производительности труда. Эти процессы поддаются контролю, регулированию и автоматизации. Биотехнологические процессы, в отличие от химических, реализуются в «мягких» условиях, при нормальном давлении, активной реакции и невысоких температурах среды; они в меньшей степени загрязняют окружающую среду отходами и побочными продуктами, мало зависят от климатических и погодных условий, не требуют больших земельных площадей, не нуждаются в применении пестицидов, гербицидов и других, чужеродных для окружающей среды агентов. Поэтому биотехнология в целом и ее отдельные разделы находится в ряду наиболее приоритетных направлений научно-технического прогресса и является ярким примером «высоких технологий», с которыми связывают перспективы развития многих производств. Биологические технологии находятся в настоящее время в фазе бурного развития, но уровень их развития во многом определяется научно-техническим потенциалом страны. Все высокоразвитые страны мира относят биотехнологию к одной из важнейших современных отраслей, считая ее ключевым методом реконструкции промышленности в соответствии с потребностями времени, и принимают меры по стимулированию ее развития.

    Биотехнологические процессы многолики по своим историческим корням и по своей структуре, они объединяют элементы фундаментальных наук, а также ряда прикладных отраслей, таких как химическая технология, машиностроение, экономика. Научная многоликость биотехнологии в целом и ее раздела, имеющего целью решение природоохранных задач, удивительна: они использует достижения наук биологического цикла, изучающих надорганизменный уровень (экология), биологические организмы (микробиология, микология), суборганизменные структуры (молекулярная биология, генетика). Через биологию на биотехнологию влияют химия, физика, математика, кибернетика, механика. Современные биотехнологии также остро нуждаются в научно-обоснованной проработке технологии и аппаратурном оформлении. Поэтому необходима органическая связь с техническими науками – машиностроением, электроникой, автоматикой. Общественные и экономические науки также имеют большое значение в развитии экологической биотехнологии, так как решаемые ею практические задачи имеют большое социально-экономическое значение для развития любого общества. К биотехнологии, как ни к одной любой отрасли и области научных знаний, подходят знаменитые слова Луи Пастера: «Нет, и еще тысячу раз нет, я не знаю такой науки, которую можно было бы назвать прикладной. Есть наука и есть области ее применения, и они связаны друг с другом, как плод с взрастившим его деревом».

    Современном биологическим технологиям под силу создать отрасли, основанные на функционировании биологических систем, метаболические системы которых обладают уникальными достоинствами и подчинены интересам человечества.

    5. Области применения биотехнологии очень разнообразны, она охватывает множество наук и производств, поэтому в настоящее время принято различать следующие виды биотехнологий.

    Пищевая биотехнология Это наиболее старое и традиционное использование способностей микроорганизмов в получении пива, вина, кисломолочных продуктов, дрожжей и т.д. С развитием науки будут совершенствоваться два направления:

    Производство микроорганизмов, клеток растений и животных в биореакторах, при этом выход будет существенно выше, чем в сельском хозяйстве;

    Повышение производительности биотехнологических процессов за счет использования методов генной инженерии.

    Таблица 2 - Эффективность биоконверсии сырья

    Медицинская биотехнология. Получила развитие благодаря достижениям генной инженерии, например, получение интерферона, инсулина, гормонов роста путем клонирования генов человека в микроорганизмы, широко используются в терапии и диагностике различные ферменты. В будущем будут использованы достижения биоэлектрохимии, например, создаются специальные датчики, определяющие содержание глюкозы, нервных газов, отдельных компонентов крови.

    Сельскохозяйственная биотехнология. В данном случае применение очень разнообразно:

    Использование продукции и отходов сельского хозяйства в качестве сырья для получения биотехнологических продуктов: спирт, вино, пиво, энергия. Для развития этого направления надо тщательно изучить кинетику разложения различных субстратов и роль микроорганизмов в процессах;

    Использование биотехнологии в ветеринарии для получения вакцин и сывороток;

    Получение корма для скота: БВК, дрожжевая масса;

    Новые способы улучшения сельскохозяйственных культур по урожайности и качеству;

    Использование методов биологической фиксации азота вместо традиционных удобрений;

    Использование методов биологического контроля вместо пестицидов.

    Будущее сельскохозяйственной биотехнологии – это улучшение свойств растений путем использования генной инженерии.

    Промышленная биотехнология. Энергетика: солнце → биомасса → энергия. В будущем будут созданы биотопливные элементы, например, водород, образующийся при брожении, используется в кислородно-водородном элементе. Необходимо повысить эффективность конверсии солнечного света в биомассу (обычно это 1 - 2%). Решаются также вопросы получения Н 2 путем расщепления Н 2 О фотосинтезирующими микроорганизмами (сине-зеленые водоросли). Перспективно использование микроорганизмов в нефтедобывающей промышленности как ПАВ или полимеры.

    Химические соединения. Биохимический способ их получения имеет преимущества: специфичность, легкость контроля, низкие температуры, экологичность, простота. Можно получать спирт, метан, кислоты, ацетон, аминокислоты, ферменты, антибиотики и др. Но пока традиционные способы синтеза преобладают. В будущем планируется производство пластмасс, эмульгаторов и загустителей. Материалы.

    Биотехнология способствует развитию добычи промышленного сырья, например нефти;

    Микроорганизмы используют для производства многих материалов, например, пластмасс;

    Разрабатываются способы защиты различных веществ от разрушения микроорганизмами;

    Микробиологическое выщелачивание руд.

    Экологическая биотехнология. Давно известны и широко применяются микробиологические способы очистки сточных вод и переработки отходов. Перспектива – использование микроорганизмов с ранее известными или искусственно созданными катаболическими способностями.

    Биодатчики для мониторинга и контроля окружающей сферы.

    Таблица 3 - Экономические и коммерческие аспекты биотехнологии. Оценка спроса на мировом рынке в 2010 году на различные продукты «новой» биотехнологии

    Это в 6 раз больше, чем дает сейчас бродильная промышленность.

    Связь микробиологии с химическими технологиями дала результаты, с внедрением биотехнологии в промышленность произойдет переход от тяжелой индустрии к высоким технологиям. Внедрение биотехнологии в практику изменяет соотношение в системе: человек- производство- природа, повышает производительность труда. Широкое использование биотехнологических процессов способствует стиранию грани между промышленным и сельским производством, поскольку продукты питания, корма и другие сельскохозяйственные продукты вырабатываются в индустриальных условиях. В настоящее время достижения биотехнологии перспективно использовать в следующих отраслях:

    В промышленности (химическая, нефтяная, фармацевтическая, пищевая);

    В экологии;

    В энергетике;

    В сельском хозяйстве;

    В медицине.

    Биотехнология - межотраслевая дисциплина и ее развитие невозможно без открытий в других отраслях и дисциплинах. Бурное развитие современной молекулярной биологии и генетики, опирающихся на достижения химии и физики, позволяет использовать потенциал живых организмов в интересах хозяйственной деятельности человека (т.е. они изучают жизненные явления на клеточном и молекулярном уровне). Клеточная и генная инженерия позволяет получать новые штаммы-продуценты.

    Вопросы для самопроверки

    1. Какие преимущества имеют биотехнологические методы

    2. В каких направлениях наиболее перспективно развитие биотехнологии

    3. Какими принципами регламентируется выбор объектов биотехнологии

    4. Связь микробиологии с химическими технологиями

    5. Будущее сельскохозяйственной биотехнологии

    6. Внедрение биотехнологии в практику

    7. Наиболее старое и традиционное использование способностей микроорганизмов

    8. Перспективность и эффективность применения биотехнологических процессов

    Лекция 2. Значение микроорганизмов как объектов биотехнологических производств. Своеобразие и скорость обмена веществ у микроорганизмов. Использование в биотехнологии мутантных и гибридных продуцентов

    Форма проведения лекции: проблемная

    План лекции

    1. Значение микроорганизмов как объектов биотехнологических производств

    2. Своеобразие и скорость обмена веществ у микроорганизмов

    3. Теоретические основы процесса селекции

    4. Выбор исходного микроорганизма для селекции

    5. Подготовка селекционного материала к селекционной работе

    6. Получение мутантов

    7. Отбор положительных мутантов

    1. Биологический агент является активным началом в биотехнологических процессах и одним из наиболее важных ее элементов. Номенклатура биологических агентов бурно расширяется, но до настоящего времени важнейшее место занимает традиционный объект – микробная клетка.

    Микробные клетки с различными химико-технологическими свойствами могут быть выделены из природных источников и далее с помощью традиционных (селекция, отбор) и новейших методов (клеточная и генетическая инженерия) существенно модифицированы и улучшены. При выборе биологического агента и постановке его на производство прежде всего следует соблюдать принцип технологичности штаммов. Это значит, что микробная клетка, популяция или сообщество особей должны сохранять свои основные физиолого-биохимические свойства в процессе длительного ведения ферментации. Промышленные продуценты также должны обладать устойчивостью к мутационным воздействиям, фагам, заражению посторонней микрофлорой (контаминации); характеризоваться безвредностью для людей и окружающей среды, не иметь при выращивании побочных токсичных продуктов обмена и отходов, иметь высокие выходы продукта и приемлемые технико-экономические показатели.

    В настоящее время многие промышленные микробные технологии базируются на использовании гетеротрофных организмов, а в будущем решающее место среди продуцентов займут автотрофные микроорганизмы, не нуждающиеся для роста в дефицитных органических средах, а также экстремофилы – организмы, развивающиеся в экстремальных условиях среды (термофильные, алкало- и ацидофильные). В последние годы расширяется применение смешанных микробных культур и их природных ассоциаций. По сравнению с монокультурами, микробные ассоциации. способны ассимилировать сложные, неоднородные по составу субстраты, минерализуют сложные органические соединения, имея повышенную способность к биотрансформации, имеют повышенную устойчивость к воздействию неблагоприятных факторов среды и токсических веществ, а также повышенную продуктивность и возможность обмена генетической информацией между отдельными видами сообщества. Основные области применения смешанных культур – охрана окружающей среды, биодеградация и усвоение сложных субстратов. Особая группа биологических агентов в биотехнологии – ферменты, так называемые катализаторы биологического происхождения. Ферменты находят все большее применение в различных биотехнологических процессах и отраслях хозяйствования, но до 60-х годов это направление сдерживалось трудностями их получения, неустойчивостью, высокой стоимостью. Как отдельную отрасль в создании и использовании новых биологических агентов следует выделить иммобилизованные ферменты, которые представляют собой гармонично функционирующую систему, действие которой определяется правильным выбором фермента, носителя и способа иммобилизации. Преимущество мобилизованных ферментов в сравнении с растворимыми заключается в следующем: стабильность и повышенная активность, удержание в объеме реактора, возможность полного и быстрого отделения целевых продуктов и организации непрерывных процессов ферментации с многократным использованием биологического агента. Иммобилизованные ферменты открывают новые возможности в создании биологических микроустройств для использования в аналитике, преобразовании энергии и биоэлектрокатализе. К нетрадиционным биологическим агентам на данном этапе развития биотехнологии относят растительные и животные ткани, в том числе гибридомы, трансплантанты. Большое внимание в настоящее время уделяется получению новейших биологических агентов – трансгенных клеток микроорганизмов, растений, животных генноинженерными методами. Развиты также новые методы, позволяющие получать искусственные клетки с использованием различных синтетических и биологических материалов (мембраны с заданными свойствами, изотопы, магнитные материалы, антитела). Разрабатываются подходы к конструированию ферментов с заданными свойствами, имеющими повышенную реакционную активность и стабильность. В настоящее время реализован синтез полипептидов желаемой стереоконфигурации и пр.

    Таблица 4 - Микрооорганизмы, используемые в промышленности
    для получения целевых продуктов

    Организм Тип Продукт
    Saccharomyces cerevisiae Дрожжи Пекарские дрожжи, вино, эль, саке
    Streptococcus thermophilus Propionibacterium shermanii Бактерии Бактерии Иогурт Швейцарский сыр
    Gluconobacterium suboxidans Бактерии Уксус
    Penicillium roquefortii Плесень Сыры типа рокфора
    Aspergillus oryzae Плесень Саке
    Saccharomyces cerevisiae Дрожжи Этанол
    Clostridium acetobutylicum Бактерии Ацетон
    Xanthomonas campestris Бактерии Полисахариды
    Corynebacterium glutamicum Бактерии L-Лизин
    Candida utilis Дрожжи Микробный белок
    Propionibacterium Бактерии Витамин В 12
    Aspergilus oryzae Плесень Амилаза
    Kluyveromyces fragilis Дрожжи Лактаза
    Saccharomycopsis lipolytica Дрожжи Липаза
    Bacillus Бактерии Протеазы
    Endothia parasitica Плесень Сычужный фермент
    Leocanostoc mesenteroides Бактерии Декстран
    Xanthomonas campestris Бактерии Ксантан
    Penicillium chrysogenum Плесень Пенициллины
    Chehalosporium acremonium Плесень Цефалоспирины
    Rhizopus nigricans Плесень Трансформация стероидов
    Гибридомы Иммуноглобулины и моноклональные антитела
    Клеточные линии млекопитающих Интерферон
    E. coli (рекомбинантные штаммы) Бактерии Инсулин, гормон роста, интерферон
    Blakeslea trispora Плесень b-Каратин
    Phaffia rhodozyma Дрожжи Астаксантин
    Bacillus thuringiensis Бактерии Биоинсектициды
    Bacillus popilliae Бактерии Биоинсектициды
    Таблица 5 - Важнейшие группы субстратов, биологических агентов и образуемых в биотехнологических процессах продуктов
    Субстраты Биологические агенты Продукты
    Меласса, сок сахарного тростника, гидролизаты растительных полимеров. Микроорганизмы, растительные и животные клетки, . Биоудобрения и биоинсектициды, микробные биомассы, диагностикумы, вакцины.
    Сахара, спирты, органические кислоты. Парафины нефти. Полупродукты, предшественники биотрансформации. Природный газ, водород. Отходы с/х и лесной промышленности. Отходы промышленности, в том числе переработки фруктов и овощей. Бытовые отходы, сточные воды. Молочная сыворотка. Картофель, зерно. Зеленая биомасса растений. Вирусы. Компоненты клеток: мембраны, протопласты, митохондрии, ферменты. Внеклеточные продукты: ферменты, коферменты. Иммобилизованные клетки микроорганизмов, растений и животных, их компоненты и внеклеточные продукты. Биогаз. Чистые продукты, медикаменты, диагностикумы. Гормоны и др. продукты биотрансформации Органические кислоты. Полисахариды. белок одноклеточных. Пищевые продукты. Экстракты, гидролизаты. Спирты, органические растворители. Антибиотики Аминокислоты. Ферменты, витамины. Металлы, неметаллы. Моноклональные антитела.

    Таким образом, в биотехнологических процессах возможно использование различных биологических агентов с различным уровнем организации, – от клеточной до молекулярной.

    2. Все биотехнологические процессы в биотехнологии микроорганизмов основываются на функционировании микробных клеток, поэтому биотехнология начинается с познания живой клетки и законов управления процессами жизнедеятельности. По своему строению микробные клетки бывают прокариотические (бактерии сине-зелёные водоросли) и эукариотические (грибы, водоросли, простейшие). Живая клетка- сложный химический реактор, в котором протекает более 1000-чи независимых реакций, катализируемых ферментами. Тем не менее биологической системы подчиняются тем же основным законам сохранения вещества и энергии и тем же принципам, что и процессы химической технологии. Микроорганизмы могут усваивать световую энергию - фототрофы и химическую - хемотрофы. Гетеротрофы могут усваивать только органические вещества, а афтотрофы не органические вещества (например СО2).

    Полученная энергия хранится и транспортируется внутри клетки в виде высокоэнергетических соединений типа АТФ, а клетки используют энергию для выполнения 3-х функций:

    1. для роста, для синтеза больших, сложных молекул

    2. транспорта ионных и нейтральных соединений

    3. механической работы, то есть деление и передвижение

    Эффективность использования энергии в биосинтезе высокая, остальная энергия превращается в тепло.

    Метаболизм – это совокупность всех химических превращений клетки.

    Метаболизм складывается из катаболизма (распад веществ, разложение химических веществ для получения энергии) и анаболизма (образования сложных веществ клетки из простых, с затратами энергии) амфиболизм (все реакции промежуточного обмена)

    Микроорганизмы бывают аэробные (требуется О2 для дыхания) и анаэробные (существуют без кислорода). При анаэробном расщеплении (брожении) органические вещества не разлагаются до простых конечных, по этому энергии высвобождается мало. При аэробном обмене (дыхании) получаются бедные энергией конечные продукты (СО2 и Н2О) и высвобождается много энергии

    Брожение (спиртовое):

    С6Н12О6 + 2Н3РО4 + 2АДФ = 2С2Н5ОН + 2АТФ +2СО2

    С6Н12О6 + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 6Н2О + 36АТФ + 36Н2О

    Таким образом из 1 моля глюкозы при дыхании образуется 36 моль АТФ и 2847 кДж, а при анаэробном процессе только 2 моли АТФ и 217 кДж, то есть в 18 раз меньше. По этому в аэробных условиях рост клеток более эффективен

    При дыхании водород получаемый в результате гликолиза, транспортируется к кислороду. В результате гликолиза из одной молекулы глюкозы образуется по две молекулы пирувата, АТФ и NADH2. Пируват подвергается окислительному декарбоксилированию при участии мультиферментного комплекса и нескольких коферментов. Один кофермент принимает отщеплённый водород, а другой кофермент А(СоА-Н) присоединяет оставшуюся ацетильную группу СоСН2.

    При дыхании ацетильный остаток полностью расщепляется в цикле трикарбоновых кислот (ЦТК) в результате окисления и отщепления Н, декарбоксилирования (отщепления СО2) и гидратации (присоединения Н2О).

    Основную энергию для синтеза АТФ при дыхании клетка получает в результате окисления кислородом водорода, получаемого в результате гликолиза, окисления пирувата и реакции ЦТК. Последняя стадия катаболизма – окислительное фосфорилирование. В ходе этого процесса высвобождается большая часть метаболической энергии, при этом молекулы NADH и FADH2 переносят электроны от молекулы питательных веществ к молекуле О 2. Фосфорилирование осуществляется в дыхательной цепи под воздействием фермента АТФ-синтетазы

    В цепи дыхания при переносе Н от NAD H к О2 освобождается 218 кдж на 1-моль NAD H.

    Ассимиляция (анаболизм) у автотрофных и гетеротрофных организмов.

    Ассимиляция – синтез собственных веществ тела из неорганических (СО2, Н2О, NH3-автотрофная) или из органических соединений (гетеротрофная).

    Потребность в энергии удовлетворяется либо за счет световой энергией в процессе фотосинтеза, либо за счет окисления неорганических веществ (H2S,NH3 и др.) в процессе хемосинтеза.

    Фотосинтез-преобразование энергии света в химическую, которая накапливается в форме АТФ и водорода связанного с коферментом (NAD H).

    Он состоит из 2-х процессов: светового – преобразования энергии, фотонов hv и темнового - образования углеводов.

    Восстановитель Н2 образуется при разложении Н2О при фотосинтезе:

    12Н2О hv 12 Н2+6О2+АТФ

    АТФ синтезируется при прохождении электронов по цепи транспорта электронов

    6СО2+12Н2 в темноте С6Н12О6+6Н2О.

    Бактериальные и растительные клетки сами синтезируют все 20 аминокислот, входящих в состав белков (в зеленых клетках в хлоропластах)

    Гетеротрофная ассимиляция сводится в основном к процессам перестройки молекул, иногда организму достаточного только одного органического вещества, чтобы синтезировать все необходимые соединения, другие же организмы должны получать совершено определённые, незаменимые вещества, например аминокислоты и витамины и др.

    3. Промышленно важные продукты жизнедеятельности микроорганизмов по их природе и значению для самой микробной клетки делят на три основные группы:

    Крупные молекулы (ферменты, полисахариды с молекулярной массой от 10 тыс. до нескольких миллионов);

    Первичные метаболиты (соединения, необходимые микроорганизмам для роста: аминокислоты, пуриновые и пиримидиновые нуклеотиды, витамины и др.);

    Вторичные метаболиты (соединения, ненужные микроорганизмам для роста: антибиотики, токсины, алкалоиды, факторы роста растений).

    Первичные и вторичные метаболиты микробного происхождения обычно имеют довольно низкую по сравнению с ферментами молекулярную массу менее 1,5 тыс.

    Биологическую активность эти вещества проявляют различно: удовлетворяют потребности человека и животных, взаимодействуют с микроорганизмами, насекомыми, растениями, участ­вует в разложении различных органических субстратов. Кроме того, некоторые аминокислоты могут служить сырьем для дальнейших превращений на основе химического синтеза.

    Продукты микробного синтеза для того, чтобы стать объектом рентабельного промышленного производства, должны выделяться микробной клеткой в питательную среду и накапливаться в среде в количествах, которые оправдывали бы сырьевые и энергетические затраты на культивирование микроорганизма и выделение продукта в необходимой для дальнейшего использования форме. В большинстве случаев выбор микробиологиче­ского способа получения того или иного вещества обусловлен полным отсутствием или весьма ограниченной возможностью по­лучения его другими способами, в первую очередь путем химиче­ского синтеза. Многие антибиотики, ферменты, биологически активные изомеры ряда аминокислот, пуриновые нуклеотиды, токсины, факторы роста растений в настоящее время возможно или, по крайней мере, гораздо проще получать с помощью микро­организмов из доступного и дешевого сырья, чем осуществлять сложный, многоэтапный химический синтез, или даже один-два этапа ферментативного синтеза, но на основе сложного и часто малодоступного сырья.

    Однако природные штаммы микроорганизмов, как правило, не обладают способностью выделять и накапливать в питательной среде, т. е. продуцировать, такое количество нужного продукта, которое обеспечило бы достаточно низкую его стоимость и требуемый объем производства. Природные штаммы некоторых групп микроорганизмов (несовершенные грибы, актиномицеты, бациллы) способны выделять в окружающую среду сравнительно небольшие количества антибиотиков, токсинов или гидролитических ферментов. Первичные метаболиты, как правило, микроорганизмами не выделяются в значительном количестве (синтезируемое количество этих веществ строго ограничено и рассчитано на потребности самой клетки). Исключение из этого правила - выделение глутаминовой кислоты природными штаммами (так называемой группы глутаматпродуцирующих коринебактерий) - не распростра­няется на подавляющее большинство других аминокислот.

    В связи с этим задача селекционера - не только усиление природной способности микроорганизма продуцировать опреде­ленное вещество (антибиотик, фермент, токсин и др.), но во многих случаях и создание продуцента «заново» из штамма дикого типа, способного синтезировать вещество (например, аминокислоту), но не способного его продуцировать. Эти задачи осуществляются получением у природных штаммов наследствен­ных изменений - мутаций, приводящих к усилению природной способности микроорганизмов синтезировать и продуцировать определенное вещество, а также появлению новой способности - синтезировать вещество в избытке - сверх своих потребностей и продуцировать его.

    Дальнейшее повышение уровня продукции того или иного вещества у микроорганизма - это постоянная цель работы селекционеров, так как наиболее эффективный способ интенси­фикации микробиологического производства, не требующий дополнительных капиталовложений, заключается в использова­нии более продуктивного штамма.

    Синтез микроорганизмами первичных или вторичных метабо­литов можно представить себе как процесс, начинающийся с поглощения клеткой субстрата (источников углерода и азота, микроэлементов и т. д.) и проходящий затем ряд этапов, катализируемых различными ферментами, часть которых участ­вует в регуляции синтеза нужного вещества или его предшест­венников. На отдельных этапах промежуточные вещества могут служить предшественниками других метаболитов и расходовать­ся на их синтез. Предшественники определенного вещества могут быть промежуточными или конечными продуктами других путей синтеза, иметь собственную регуляцию и расходоваться на другие потребности клетки. Кроме того, продуцируемое вещество должно преодолевать барьер проницаемости и накапливаться в среде культивирования, не подвергаясь деградации под действием ферментов, которые может синтезировать микробная клетка.

    Теоретически мутации, способствующие сверхсинтезу продукта, могут затрагивать большое число структурных генов, кодирующих ферменты всех этапов синтеза, транспорта и катаболизма данного продукта, а также регуляторные гены. Результат таких мутаций может проявиться в различных изменениях метаболизма клетки:

    Повышение скорости поглощения и утилизации субстрата клеткой;

    Повышение уровня синтеза биосинтетических ферментов или их активности, в частности, за счет нарушения негативного контроля синтеза и активности регуляторных ферментов в пути синтеза продукта или его предшественников;

    Блокирование побочных реакций синтеза для снижения расхода общих предшественников на синтез других метаболитов;

    Блокирование дальнейшего внутриклеточного превращения продукта, если оно происходит;

    Обеспечение эффективной экскреции продукта из клетки;

    Блокирование деградации продукта;

    Усиление позитивных форм регуляции синтеза продукта.

    Если желаемым продуктом является выделяемый клеткой фермент (чаще всего это гидролитические ферменты, хотя в последнее время большой интерес проявляется и к ряду оксидоредуктаз, в частности, участвующих в катаболизме аминокислот), то мутации, способствующие усилению его образования и активности, а также накоплению в среде, могут затрагивать:

    Структурный ген, приводя к синтезу мутантного фермента, не чувствительного к ингибированию конечным продуктом реакции, и (или) повышая его активность (число оборотов, т. е. число молей превращаемого субстрата в минуту); мутация в промоторной части гена должна усилить частоту инициации транскрипции или вызвать синтез фермента;

    Гены, кодирующие белки, участвующие в регуляции синтеза данного фермента (в частности, по типу катаболитной репрессии, имеющей разнообразные формы проявления и в общем виде выражающейся в обратной зависимости синтеза катаболитчувствительного фермента от скорости роста клеток), мутации в этих генах должны устранить или ослабить факторы, ограничивающие синтез фермента;

    Гены, кодирующие ферменты, которые могут гидролизовать и инактивировать нужный фермент, мутации должны уменьшить или устранить такую возможность;

    Гены, ответственные за синтез компонентов клеточных мембран, которые участвуют в «сборке» (у эукариотов) и экскреции ферментов, мутации в этих генах могут повысить эффективность указанных процессов.

    Приведенный перечень теоретически возможных, «участвующих» в сверхсинтезе мутаций, очевидно, не полон, так как наши сведения о регуляции биосинтеза того или иного метаболита и взаимосвязях с другими процессами в клетке не являются исчерпывающими, не любая из перечисленных мутаций может вызвать сверхсинтез. Чаще всего требуется сочетание нескольких мутаций, среди которых могут быть «главные» и «вспомогательные». Последние необходимы для проявления или наибольшего выражения первых. Вместе с тем возможно и отсутствие значительного уровня продукции даже в случае, когда большинство из теоретически необходимых для этого мутаций получено у микроорганизма и, наоборот, селекционер может быть избавлен от необходимости получать множество разных мутаций, если он удачно выбрал исходный природный тип микроорганизмов.

    4. Разнообразие природных форм позволяет выбрать микроорганизм, который имеет меньшее число ограничений для сверхсинтеза какого-то вещества, хотя при этом и не продуцирует его. Так, оказалось очень сложным и на практике пока еще недостижимым получить промышленно значимый уровень продукции L-лизина у кишечной палочки или псевдомонад, но весьма легким у представителей глутаматпродуцирующих коринебактерий: Corynebacterium glutamicum, Brevibacterium flavит и др. Исходя из имеющихся данных, объяснить это можно менее сложной регуляцией синтеза лизина у коринебактерий (в процессе синтеза лизина всего один фермент контролируется по типу поливалентного ингибирования активности лизином и треонином, и этот контроль устраняется мутацией, блокирующей синтез гомосерина - предшественника треонина и метионина, при этом поток общих предшественников направляется только на синтез лизина), а также отсутствием деградации лизина по сравнению с регуляцией у кишечной палочки (три контролируемых фермента и более сложные формы регуляции) и выраженной способностью к деградации лизина у псевдомонад.

    В ряде случаев природные штаммы с менее сложными системами ограничений сверхсинтеза выделяют в среду некоторое количество первичного метаболита, например, штамм гриба Еremothecium ashbyii способен продуцировать витамин В 2 , а Рrоpionibacterium shermanii- B 12 . Такие микроорганизмы, конечно, становятся объектами селекции на повышение уровня продукции выделяемого вещества. Пригодность микроорганизма (не выделяющего нужное вещество, обычно первичный метаболит, но привлекающего исследователя какими-то свойствами) для использования в качестве объекта селекции на получение продуцента этого вещества можно проверить, введя ему одну или несколько определенных, легко тестируемых мутаций, которые теоретически должны вызвать сверхсинтез данного вещества и, может быть, уже были «апробированы» на другом микроорганизме. Это самый надежный способ выбора исходного штамма, даже если для этого вида микроорганизма нет данных о регуляции синтеза желаемого вещества. Для продуцентов вторичных метаболитов, а также ферментов или полисахаридов выбор исходного штамма предрешен способностью природного микроорганизма продуцировать какое-то количество нужного вещества. В тех случаях, когда одно и то же вещество выделяют природные штаммы, относящиеся к разным таксономическим группам (например, грибы и бациллы), это может позволить выбрать более "технологичный" для будущего производства или более поддающийся селекции штамм.

    Таким образом, селекционер чаще всего не свободен в выборе исходного для селекции штамма и не может считать критерием такого выбора генетическую изученность микробного объекта и возможность применения к нему разнообразных генетических методов. Природные свойства штаммов, определяющие этот выбор, безусловно, облегчают и ускоряют селекционную работу. Однако отсутствие у многих промышленных микроорганизмов систем обмена информацией не позволяет ни изучить генетический контроль синтеза продуцируемого вещества, ни облегчить насыщение генома продуцента необходимыми для сверхсинтеза мутациями.

    5. У микроорганизма, выделяющего продукт и взятого в качестве объекта селекции, необходимо изучить естественную изменчивость по морфологическим признакам и по количественному признаку - уровню продукции желаемого вещества. После рассева исходного штамма на чашки Петри среди не менее 100 (а лучше нескольких сотен) колоний выявляют типичную для данной культуры морфологическую форму и отклонения от нее. Затем изолированные на косяки колонии (клоны) как типичной формы (не менее 100 клонов), так и доступное число ее морфоло­гических вариантов (убедившись предварительно, что эти ва­рианты сохраняют свои особенности при пересевах) оценивают после соответствующего способа культивирования по уровню продукции вещества, применяя надежный аналитический метод. Такая оценка позволяет выявить вполне возможную корреляцию между способностью продуцировать данное вещество и морфологией колоний.

    Несколько клонов с наиболее высоким уровнем продукции по отношению к уровню контроля, которым является исходная (не рассевавшаяся) культура, отбирают и проверяют на про­дукцию в нескольких повторных опытах, а затем отбирают один клон, характеризующийся высоким и воспроизводимым уровнем. Такая процедура, которую иногда называют «чисткой» исходной культуры, довольно часто приводит к отбору клона с заметно повышенной продукцией, а в некоторых случаях - и с отклонением от типичной морфологии.

    Отобранный из рассева исходной культуры клон снова рассе­вают, отмечают морфологическую изменчивость, если она есть и затем оценивают по уровню продукции не менее 100 типичных для данного клона изолированных на косяки колоний. Целесообразно значения уровней продукции таких субклонов, выражен­ные в процентах по отношению к продукции исходного для них (родительского) клона, распределить в вариационном ряду и вычислить статистические показатели: среднее арифметическое X, квадратическое отклонение, δ коэффициент изменчивости

    Субклоны, попавшие в крайнюю правую часть этого ряда, отбирают, повторно оценивают по уровню продукции и оставляют один из них. Этот субклон рассевают и, как и в предыдущем случае, проверив не менее 100 колоний, строят вариационный ряд и вычисляют его показатели. Получив, таким образом, два вариационных ряда, сравнивают значения cv этих рядов. Если эти значения достоверно не различаются, можно подготовку исходного штамма для дальнейшей селекции закончить отбором субклона из первого вариационного ряда, а второй ряд (собственный ряд этого субклона) считать контрольным для следующего этапа селекции с применением мутагенных факторов. При обнаружении у cv второго ряда явной тенденции к уменьшению целесообразно провести еще один этап клонирования, выбрав из правой части второго ряда «лучший» построить третий вариационный ряд на основе его рассева определить cv. Цель такого ступенчатого клонирования - «стабилизи­ровать» исходную культуру по количественному признаку, получив на основе действия стабилизирующего отбора наиболее однородную по данному признаку популяцию как надежный контроль при оценке индуцируемой мутагенами изменчивости и последующем отборе мутантов. Следует иметь в виду, что одно­родность отобранной культуры снижается при многократном пассировании и длительном хранении. Поэтому исходную культу­ру, которая должна служить контролем при отборе мутантов, необходимо поддерживать периодическим клонированием, прово­димым в установленные для данной культуры промежутки времени. Повысить уровень продукции таким клонированием, т. е. отобрать мутант, как правило, не удается. Средний уровень продукции клонов, отбираемых из правой части вариационного ряда, построенного на основе естественной изменчивости культуры, обычно равен среднему уровню продукции родительской культуры.

    В том случае, когда исходная культура нужное вещество не продуцирует, следует выбрать из ее рассева колонию, которая по таксономической характеристике полностью соответствует дан­ному виду микроорганизма, и использовать этот клон в дальнейшей работе с применением мутагенов.

    6. Разнообразные типы мутации получают с помощью различных физических и химических мутагенных факторов. Биологический материал, подвергаемый воздействию мутагенных факторов, должен быть дискретным и содержать минимальное количество ядер, что позволяет устранить или сократить стадию сегрегации. Обычно это споры, вегетативные клетки или даже обрывки ми­целия у неспорулирующих организмов. Суспензия, содержащая клетки или споры, должна быть по возможности лишена комков - конгломератов, так как мутация в одной из клеток конгломерата при прорастании его на агаризованной среде будет утрачена или в лучшем случае проявится в виде сектора. Комки разбивают на качалке, фильтруют суспензию, но полностью избавиться от их присутствия в обрабатываемой мута­геном суспензии обычно не удается.

    Физическими факторами (УФ-излучение и различные виды ионизирующей радиации) обрабатывают водную суспензию спор или клеток. При обработке химическими факторами (чаще всего это алкилирующие агенты: алкилметансульфонаты, алкил-сульфаты, алкилнитрозомочевина, метилнитрозогуанидин и др.) следует соблюдать условия, способствующие максимальному про­явлению мутагенной активности данного вещества. Большую роль в этом отношении играет рН раствора, поэтому обработку проводят в буферных растворах при наиболее эффективных для данного мутагена значениях рН.

    У актиномицетов и коринебактерий, обработанных парами диэтилсульфата (для этого достаточно нанести каплю веществ на стенку пробирки с выросшей культурой и выдержать несколько часов в термостате), появляется в несколько раз больше морфологических мутаций, чем после обработки в водном растворе мутагена.

    Доза воздействия мутагена выражается в единицах излуче­ния, соответствующих типу радиации. Для химических мутагенов доза характеризуется концентрацией мутагена в обрабатываемой суспензии и экспозицией при определенной температуре. После экспозиции обработку химическим мутагеном прерывают отмыванием материала (применяя осаждение его центрифугированием), помещением в буферную смесь с неоптимальным для мутагенного эффекта значением рН и (или) серией разведений в физиологическом растворе, предшествующей высеву на агаризованную среду. Если при поиске определенных типов мутаций суспензия должна быть высеяна на агар без разведения, то отмывание от мутагена необходимо.

    При выборе дозы мутагена ориентируются на выживаемость обрабатываемого микроорганизма, последняя определяется отношением числа колоний, выросших на агаре после мутагенного воздействия, к числу колоний, выросших после посева той же, но не обработанной мутагеном (контрольной) суспензии клеток, выраженных в процентах. Выживаемость зависит как от дозы мутагена, так и от чувствительности данного микроорганизма к летальному эффекту мутагена, причем чувствительность может значительно различаться у нескольких штаммов одного вида микроорганизма. В селекционной работе, как правило используются дозы, обеспечивающие выживаемость клеток в диапазоне от 0,1 до 50 – 80 %.

    7. Иногда для этого удаётся использовать естественный отбор. Например, хересные винные дрожжи (Sacharomyces oviformis) , способные переокислить спирт в продукты, придающие вину хересный букет, не размножаются при концентрациях спирта больше 15 %. Культивируя их при постепенном увеличении концентрации спирта до 18 %, удалось выделить штамм, способный к образованию хереса в этих условиях.

    Биотехнология молочных продуктов

    Спектр продуктов питания, получаемых при помощи микроорганизмов, обширен. Это продукты, получаемые в результате брожения - хлеб, сыр, вино, пиво, творог и так далее. До недавнего времени биотехнология использовалась в пищевой промышленности с целью усовершенствования освоенных процессов и более умелого использования микроорганизмов, но будущее здесь принадлежит генетическим исследованиям по созданию более продуктивных штаммов для конкретных нужд, внедрению новых методов в технологии брожения.

    Получение молочных продуктов в пищевой промышленности построено на процессах ферментации. Основой биотехнологии молочных продуктов является молоко. Молоко (секрет молочных желез) - уникальная естественная питательная среда. Она содержит 82-88% воды и 12-18% сухого остатка. В состав сухого молочного остатка входят белки (3,0-3,2%), жиры (3,3-6,0%), углеводы (молочный сахар лактоза - 4,7%), соли (0,9-1%), минорные компоненты (0,01%): ферменты, иммуноглобулины, лизоцим и т.д. Молочные жиры очень разнообразны по своему составу. Основные белки молока - альбумин, казеин. Благодаря такому составу молоко представляет собой прекрасный субстрат для развития микроорганизмов. В сквашивании молока обычно принимают участие стрептококки и молочнокислые бактерии. Путем использования реакций, которые сопутствуют главному процессу сбраживания лактозы получают и другие продукты переработки молока: сметану, йогурт, сыр и т.д. Свойства конечного продукта зависят от характера и интенсивности реакций ферментации. Те реакции, которые сопутствуют образованию молочной кислоты, определяют обычно особые свойства продуктов. Например, вторичные реакции ферментации, идущие при созревании сыров, определяют вкус отдельных их сортов. В таких реакциях принимают участие пептиды, аминокислоты и жирные кислоты, находящиеся в молоке.

    Все технологические процессы производства продуктов из молока делятся на две части: 1) первичная переработка - уничтожение побочной микрофлоры; 2) вторичная переработка. Первичная переработка молока включает в себя несколько этапов. Сначала молоко очищается от механических примесей и охлаждается, чтобы замедлить развитие естественной микрофлоры. Затем молоко сепарируется (при производстве сливок) или гомогенизируется. После этого проводят пастеризацию молока, при этом температура поднимается до 80 о С, и оно закачивается в танки или ферментеры. Вторичная переработка молока может идти двумя путями: с использованием микроорганизмов и с использованием ферментов. С использованием микроорганизмов выпускают кефир, сметану, творог, простокваши, казеин, сыры, биофруктолакт, биолакт, с использованием ферментов - пищевой гидролизат казеина, сухую молочную смесь для коктейлей и т.д. При внесении микроорганизмов в молоко лактоза гидролизуется до глюкозы и галактозы, глюкоза превращается в молочную кислоту, кислотность молока повышается, и при рН 4-6 казеин коагулирует.

    Молочнокислое брожение бывает гомоферментативным и гетероферментативным. При гомоферментативном брожении основным продуктом является молочная кислота. При гетероферментативном брожении образуются диацетил (придающий вкус сливочному маслу), спирты, эфиры, летучие жирные кислоты. Одновременно идут протеолитические и липолитические процессы, что делает белки молока более доступными и обогащает дополнительными вкусовыми веществами.

    Для процессов ферментации молока используются чистые культуры микроорганизмов, называемые заквасками. Исключение составляют закваски для кефиров, которые представляют естественный симбиоз нескольких видов молочнокислых грибков и молочнокислых бактерий. Этот симбиоз в лабораторных условиях воспроизвести не удалось, поэтому поддерживается культура, выделенная из природных источников. При подборе культур для заквасок придерживаются следующих требований:

    Состав заквасок зависит от конечного продукта (например, для получения ацидофилина используется ацидофильная палочка, для производства простокваши - молочнокислые стрептококки);

    Штаммы должны отвечать определенным вкусовым требованиям;

    Продукты должны иметь соответствующую консистенцию, от ломкой крупитчатой до вязкой, сметанообразной;

    Определенная активность кислотообразования;

    Фагорезистентность штаммов (устойчивость к бактериофагам);

    Способность к синерезису (свойству сгустка отдавать влагу);

    Образование ароматических веществ;

    Сочетаемость штаммов (без антагонизма между культурами);

    Наличие антибиотических свойств, т.е. бактериостатическое действие по отношению к патогенным микроорганизмам;

    Устойчивость к высушиванию.

    Культуры для заквасок выделяются из природных источников, после чего проводится направленный мутагенез и отбор штаммов, отвечающих перечисленным выше требованиям. Биотехнологии на основе молока включают, как правило, все основные стадии биотехнологического производства, которые можно рассмотреть на примере сыроварения.