Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Роль руководителя в инновационном управлении А должен ли директор преподавать
  • Управление стоимостью проекта на основе затрат
  • Многоцелевая авиационно космическая система. Авиация россии. Общие характеристики системы макс

    Многоцелевая авиационно космическая система. Авиация россии. Общие характеристики системы макс

    Многоцелева́я авиацио́нно-косми́ческая систе́ма (МАКС) - двухступенчатый комплекс, состоящий из самолёта-носителя (Ан-225 «Мрия» - точнее на базе Ан-225 предполагалась разработка нового самолета-носителя Ан-325), на котором устанавливается орбитальный самолёт. Орбитальный самолёт может быть как пилотируемым, так и беспилотным. Конструкция Ан-225 допускает установку грузового контейнера с внешним топливным баком с криогенными компонентами топлива вместо орбитального самолёта.


    Разработка велась с начала 1980-х годов под руководством Г. Е. Лозино-Лозинского в НПО «Молния».

    Вместо первой ступени обыкновенной ракеты здесь используется самолёт Ан-225; вторая ступень может быть выполнена в трех вариантах:

    МАКС-ОС с орбитальным самолётом и одноразовым баком;
    МАКС-М с беспилотным самолётом;
    МАКС-Т с одноразовой беспилотной второй ступенью и грузом до 18 тонн.
    «Система базируется на обычных аэродромах 1-го класса, дооборудованных необходимыми для МАКС средствами заправки компонентами топлива, наземного технического и посадочного комплекса, и вписывается в основном в существующие средства наземного комплекса управления космическими системами».

    МАКС может применяться для аварийного спасения экипажей космических объектов или в целях наземной разведки. Отсутствие привязки к космодрому также расширяет применение такой системы.

    Этот проект был начат ещё в 1980-е годы научно-производственным объединением «Молния». При этом использовался опыт и результаты работ над проектом «Спираль» и над экспериментальными аппаратами БОР. Этот проект, в отличие от «Бурана», основан на принципе самоокупаемости. По расчётам, затраты окупятся через 1,5 года, а сам проект даст 8,5-кратную прибыль. Эта система является уникальной, в мире не разрабатывается ни одного подобного аппарата. Кроме того, МАКС значительно дешевле ракет за счёт многократного использования самолёта-носителя (до 100 раз), стоимость выведения груза на низкую околоземную орбиту - порядка 1000 долл./кг; для сравнения: средняя стоимость выведения в настоящее время составляет около 8000-12 000 долл./кг, для конверсионной РН «Днепр» - 3500 долл./кг. К преимуществам можно также отнести бо́льшую экологическую чистоту за счёт применения менее токсичного топлива (трёхкомпонентный двигатель РД-701 керосин/водород+кислород). В настоящее время на проект уже истрачено около 14 млрд долларов.

    Программа «МАКС» получила золотую медаль (с отличием) и специальный приз премьер-министра Бельгии в 1994 году в Брюсселе на Всемирном салоне изобретений, научных исследований и промышленных инноваций «Брюссель-Эврика-94».

    1. Многоцелевая авиационно-космическая система "9А-10485" (МАКС)
    (
    НПО "Молния" , вариант образца 1994 г.)

    Пилотируемый орбитальный самолет

    Вторая ступень



    Авиационно-космический комплекс



    2. Многоцелевая авиационно-космическая система
    (
    НПО "Молния" , вариант образца 2001 г., участвовавший в 2006 г. с небольшими доработками в конкурсе Федерального космического агентства по созданию пилотируемого космического корабля нового поколения в рамках темы " Клипер", N 36 ФКП)

    Авиационно-космический комплекс

    Базовый пилотируемый орбитальный самолет ОС-П

    Применение МАКС

    Первоначально МАКС создавался по тактико-техническому заданию (ТТЗ ) Военно-воздушных сил Министерства обороны СССР . Военно-воздушные силы рассматривали МАКС как первоочередную замену дальним стратегическим разведчикам Ту-95МР.
    Согласно ТТЗ и секретному постановлению Правительства в НПО Молния" с участием кооперации предприятий в 1983-89 годах были разработаны технические предложения и эскизный проект МАКС (тема "Гонг").

    По понятным причинам мы не будем подробно останавливаться на военных аспектах применения МАКС - скажем только, что на всех этапах истории МАКСа у него был только один заказчик - Министерство обороны. Первоначальные целевые задачи его использования прямо вытекали из таких его качеств, как быстрое время реагирования системы (минимальное время подготовки к пуску), мобильное базирование и большой боковой маневр при спуске с орбиты. Ну и конечно, многоразовость основных элементов системы, которая не только снижает стоимость применения, но и, выражаясь военным языком, "позволяет решать целевые задачи меньшим нарядом оперативных средств". Вспомним знаменитую триаду военных целей в космосе, сформулированную генералом Каманиным еще в середине 1960-х годов: разведка, перехват и удар. Правда, Каманин подразумевал ВОС "Спираль" , но по сути МАКС - "это "Спираль" наших дней". Предельно четко выражены задачи МАКСа в интервью командующего 37-й Воздушной армией Верховного Главнокомандования стратегического назначения генерал-лейтенанта Михаила Опарина, возглавшего Дальнюю авиацию РФ, данным им "Российской газете" 11 марта 1999 года . На вопрос: "Какие задачи может решать МАКС в обеспечении безопасности России?", - он ответил:
    "Во-первых, вести оперативно-стратегическую разведку <...> "Концепция национальной безопасности Российской Федерации" здесь предельно конкретна: "Особое значение для обеспечения национальной безопасности Российской Федерации имеют своевременное обнаружение угроз и определение их источников". А это значит, что страна нуждается в технике, которая обеспечивает быстрое получение важных для безопасности страны в тот или иной момент данных, независимо от времени суток, года или погодных условий. Заменяя собой десятки самолетов-разведчиков, МАКС способен быстро прозондировать практически любой район Земли на интересующий нас предмет и приземлиться буквально рядом с центром обработки полученной информации. Это выгодно отличает систему от спутников.
    <...> мало иметь стратегическую авиацию и высокоточные ракеты, способные "влетать в футбольные ворота" с расстояния в несколько тысяч километров, надо еще точно знать, где эти "ворота" находятся. МАКС дает нам такую способность, позволяет вести разведку в реальном масштабе времени. А это, безусловно, ведет к повышению боевого потенциала Вооруженных Сил РФ в целом.
    <...>Во-вторых, МАКС способен делать то, чего не может сделать ни один самолет - инспектировать космические аппараты на орбите, обслуживать орбитальные станции и с наименьшими затратами выводить в космос спутники. И если после старта с Байконура космическому аппарату еще приходится долго маневрировать в космосе, корректируя орбиту, то космолет стартует с летающего "космодрома", который может прибыть в самый удобный для пуска район Земли. С дозаправкой в воздухе "воздушный старт" способен лететь несколько тысяч километров.
    МАКС может действовать в широком диапазоне космических высот. В специальном варианте с разгонным блоком эта система достигает и наивысших, геостационарных орбит. Такая техника позволит вести действительно воздушно-космические действия и борьбу за ближний космос, преодолевая нынешний разрыв между самолетами и космическими аппаратами. МАКС способен быть еще и "космическим истребителем", способным уничтожить космический эшелон возможного противника.
    В-третьих, МАКС способен успешно решать задачи нанесения ударов высокоточным оружием по сильно защищенным объектам на Земле. Например, по корабельным группировкам, в том числе и по авианосным соединениям и группам, по главным центрам управления агрессора. При этом МАКСы смогут взаимодействовать с самолетами Дальней и морской ракетоносной авиации. МАКС способен выполнять важнейшие задачи обеспечения такого совместного удара - целеуказания, радиоэлектронного подавления противника, разведки результатов удара.
    Прибавьте к этому то, что МАКС может быть системой двойного базирования. То есть космический самолет способен базироваться не только на земном аэродроме, но и длительное время может летать на орбите, пристыковавшись к околоземной станции. В этом случае оперативность действий многоразовой системы сильно возрастает".
    Добавим, что МАКС может быстро перебазирован на другой аэродром старта, что значительно повышает выживаемость системы в угрожающий период и во время военного конфликта.

    Но за время разработки МАКСа поменялись политические, а главное, экономические реалии - нет больше СССР , а вместе с ним исчезло и открытое противостояние глобальных военных блоков. В космосе на смену военно-политическому соперничеству двух сверхдержав пришло широкое международное сотрудничество. Практическое освоение космического пространства поставило новые задачи, решить которые, в силу своих уникальных транспортных и оперативных возможностей, наилучшим образом может именно МАКС, который изначально рассматривался как система двойного применения.
    Наиболее полно (с наибольшей экономической эффективностью) возможности многоцелевой авиационно-космической системы в качестве многоразового транспортного средства, обслуживающего грузопоток по маршруту "Земля-орбита ИСЗ-Земля", могут быть реализованы при его использовании в составе орбитального технологического комплекса по промышленному производству полупроводниковых материалов в условиях космического полета.

    Слева представлен один из вариантов внешнего облика орбитального завода, проработанный в рамках НИР "Эффективность".
    Основой технологического комплекса являются четыре дискообразных молекулярных экрана, движущихся перпендикулярно вектору скорости. Учитывая, что комплекс движется на высоте 400 км в сильно разреженной среде (10 -6 мм.рт.ст), за экраном образуется устойчивая "теневая" зона сверхвысокого вакуума до 10 -14 мм.рт.ст, в которой размещаются производственные установки, производящие методом молекулярно-лучевой эпитаксии наиболее перспективные многослойные полупроводниковые наноструктуры.
    Повышенная производительность орбитального технологического комплекса при значительно более высоком качестве продукции обусловлена сверхнизким уровнем микрогравитации (менее 10 -6 g), что позволяет путем орбитальной кристаллизации полученного в наземных условиях поликристалла получить выход продукции необходимого для микроэлектроники качества до 80% (для сравнения - в земных условиях при производстве арсенида галлия и сверхбольших интегральных схем выход готового продукта всего несколько процентов). Поэтому в орбитальных условиях возможно промышленное производство гетероэпитаксиальных структур соединений GaAr, CdTe, CdZnTe, GeSi/Si и др., позволяющих создать полупроводниковые приборы, имеющие в 5...6 раз более высокое быстродействие и превосходящие в более чем 100 раз по радиационной стойкости (при меньшем электропотреблении и способности работать при более высоких температурах) традиционные приборы на кремниевой основе.
    Расчетная годовая производительность каждой установки - до 8000 пластин диаметром 76...400 мм (для сравнения: производительность аналогичной установки в земных условиях - 1500 пластин диаметром 25...150 мм) обеспечивает экономический эффект (годовую прибыль с учетом затрат на амортизацию, стоимость исходных материалов и семи полетов МАКСа) до
    $260 млн. (при стоимости одной готовой пластины с гетероэпитаксиальной структурой диаметром 400 мм в пределах $13000... 18000).

    Посмотреть во всех деталях работу орбитального технологического комплекса, периодически обслуживаемого орбитальным самолетом МАКС, можно, установив на свой компьютер наш скринсейвер .

    В 1982 году, еще до полета системы «Буран-Энергия», Генеральный конструктор НПО «Молния» Глеб Лозино-Лозинский, проанализировал перспективы создания авиационно-космических систем. Он обобщил опыт работы над проектом «Спираль» , а также над экспериментальным беспилотным ракетопланом БОР-4 и на его основе предложил новую разработку - проект МАКС . В 1988 году большой кооперацией (порядка 70 предприятий авиационной и космической промышленности СССР) был разработан эскизный проект системы МАКС, включивший в себя 220 томов.

    Система МАКС

    Согласно предложенной концепции система МАКС состояла из дозвукового самолета-носителя и установленной на нем орбитальной ступени с внешним топливным баком. В качестве первой ступени «МАКС» планировалось использование тяжелого самолета «Ан-225» («Мрия») или в перспективе Ан-325.

    Предлагаемый проект мог быть реализован в следующих вариантах:

    1. МАКС-ОС с орбитальным самолётом и одноразовым баком;
    2. МАКС-М с беспилотным самолётом;
    3. МАКС-Т с одноразовой беспилотной второй ступенью и грузом до 18 тонн

    Система могла стартовать с обычных аэродромов 1-го класса, оборудованных необходимыми для МАКС средствами заправки компонентами топлива. Что касается применения МАКС, то помимо традиционных задач вывода груза на орбиту, с помощью данной системы можно осуществлять аварийное спасение экипажей космических объектов и наземную разведку. Отсутствие привязки к космодрому делает систему чрезвычайно мобильной.

    По произведенным расчётам, затраты проект МАКС (в отличие от системы “Буран- Энергия ”) окупился бы через 1,5 года, дав в конечном итоге более, чем 8-кратную прибыль. Эта система уникальна, так как в мире не разработано ничего подобного. И что самое существенное, МАКС значительно дешевле ракет за счёт многократного использования самолёта-носителя (до 100 раз). Стоимость выведения груза на низкую околоземную орбиту в проекте МАКС - менее 1000 долл./кг., что не сопоставимо со стоимостью груза, выводимого современными традиционными средствами. Так, средняя стоимость выведения груза в настоящее время составляет около 8000-12 000 долл./кг, для экономичной конверсионной ракеты-носителя «Днепр» эта цена составляет 3500 долл./кг., что, как мы видим, очень далеко от показателей проекта МАКС.

    Общие характеристики системы МАКС:

    • Габариты орбитального самолета «МАКС-ОС»: длина - 19,3 метра, размах крыла - 13,3 метра, высота - 8,6 метра, масса - 27 тонн
    • Cтартовая масса системы: 620 тонн, в том числе 2-й ступени - 275 тонн
    • Полезная нагрузка, выводимая на орбиту до 400 километров: 5,8–6,6 тонны.

    Маршевая двигательная установка включает в себя два двигателя «РД-701», которые работают на трехкомпонентном топливе (жидкий водород, керосин и жидкий кислород), обеспечивая достаточную экологическую чистоту. Базовый пилотируемый вариант самолета «МАКС-ОС» имеет кабину для двух членов экипажа. Разработаны варианты самолета «МАКС-ОС» для транспортно-технического обеспечения орбитальных станций. Вариант «ТТО-1» оборудован стыковочным модулем и второй герметичной кабиной на четырех человек. Вариант «ТТО-2» предназначен для доставки в негерметичном отсеке оборудования, устанавливаемого на наружной стороне орбитальных станций. Для выведения на орбиту тяжелых (до 18 тонн) полезных нагрузок предназначена модификация «МАКС-Т», имеющая вторую беспилотную ступень одноразового применения.

    Особенностью данного проекта является то, что все основные элементы системы в основе своей разработаны. Самолет «Мрия» неоднократно испытывался как транспортная платформа при дальних перевозках орбитального корабля «Буран». При максимальной взлетной массе в 600 тонн «Ан-225» может поднимать полезный груз до 250 тонн, развивая при этом скорость 850 км/ч на высоте от 9000 до 11 000 километров. Подобного самолета, разработанного в КБ Антонова, в мире ни у кого больше нет. Вторая орбитальная ступень разработана во множестве модификаций: космический самолет Челомея, проект “Буран” . Вся техника проверена на работоспособность и, вне всякого сомнения, система должна была эффективно заработать. Чтобы показать уровень данного проекта достаточно вспомнить состоявшийся в ноябре 1994 года в Брюсселе Всемирный салон изобретений, научных исследований и промышленных инноваций «Брюссель-Эврика-94». Проект «МАКС» получил золотую медаль и специальный приз премьер-министра Бельгии…

    Возникает только один закономерный вывод: наши политические лидеры, действующие в духе “перестройки”, не заинтересованы в лидирующем положении России в аэрокосмической сфере. А потому, как и множество подобных проектов, МАКС был закрыт.

    Многоразовая авиационно-космическая система

    Поиски Ноева Ковчега

    Подводные пирамиды Йонагуни

    Орден ассасинов

    Искусственный интеллект создан?

    Ку-клукс-клан

    Сезон замены резины

    Климатические условия первостепенно влияют на дорожную обстановку и как следствие, на поведение водителей. С наступлением холода автовладельцы меняют резину на...

    Боевой космический корабль Буран-Б

    1976 год стал стартом нового космического проекта Советского Союза. Специальным секретным постановлением ЦК КПСС и Совета Министров СССР соответствующим организациям было...

    Мужчина-фантом

    Потусторонний мир продолжает преподносить сюрпризы… Американский врач Натаниел Фодор однажды столкнулся с феноменом – журналисткой Джен, испытывающей на себе любовь...

    Остров Корфу

    Остров Корфу (или Керкира, как его называют греки) – одно из самых популярных туристических направлений современной Греции. С площадью в 593 ...

    Никола Тесла - свободная энергия

    Свободная энергия - миф или реальность? На протяжении тысяч лет, люди пытались получить дармовую энергию в виде механической энергии. На рассвете...

    Мудрецы древности

    Китайская философская проза начинается со времени Конфуция и его современников. Это была поистине удивительная эпоха, когда одна за другой...

    Ландшафтное озеленение

    Ландшафтный дизайнер знает, что любая, самая великолепная дизайнерская задумка померкнет без соответствующего фона. Земля, на которой творит дизайнер, является...

    Изобретение относится к аэрокосмической технике и может быть использовано для выведения на низкие и средние околоземные орбиты различных полезных нагрузок, а также для их оперативной доставки в отдаленные точки Земли или Мирового океана. Согласно изобретению система включает в себя самолет-носитель и ракету-носитель с жидкостными ракетными двигателями. Ракета размещена в транспортно-пусковом контейнере с теплоизоляцией. Контейнер установлен внутри фюзеляжа самолета-носителя, а между его глухим торцом и торцом ракеты образована пневмокамера. В камере расположены устройства заправки ракеты топливом и рабочими телами, элементы дренажа, подпитки двигателей топливом, электрические связи. Все упомянутые средства разъемно подсоединены к торцу ракеты. Контейнер также снабжен устройством пневматического десантирования в виде источника высокого давления, соединенного с пневмокамерой. Свободный торец контейнера герметично соединен по периметру с отверстием фюзеляжа самолета для выхода ракеты-носителя. Изобретение позволяет увеличить грузоподъемность, снизить стоимость выведения полезной нагрузки и обеспечить высокую безопасность (в том числе экологическую) системы и экипажа. 1 ил.

    Изобретение относится к аэрокосмической технике и, в частности, может быть использовано для выведения на низкие и средневысокие околоземные орбиты различных полезных нагрузок, например, спутников связи, навигации, мониторинга, в том числе экологического, аппаратуры для научных исследований, а также для оперативной доставки полезных грузов в отдаленные точки Земли и Мирового океана. По данным европейской фирмы "Евроконсалт" в период 2000 - 2015 годов потребуется вывести в космос около 1800 спутников по более чем 200 проектам, на околоземные орбиты с высотой до 3000 - 5000 км с различными наклонениями. Потенциал рынка стартовых услуг составит около 15-20 млрд. долл. США. Учитывая актуальность создания средств выведения ракет легкого класса, разработки по ним ведутся в США, ФРГ, Великобритании, Украине, России, Японии, Китае. В США создана и эксплуатируется авиационно-космическая система "Пегас" грузоподъемностью около 450 кг, на Украине ведутся работы по проекту "Орiль", в России - по проекту "Штиль-ЗА", "Бурлак-Диана". Проекты "Орiль" и "Штиль-ЗА" используют в качестве ракет-носителей межконтинентальные баллистические ракеты на токсичном топливе АТ-НДМТ и не обеспечивают экологической безопасности эксплуатации. Известны авиационно-космические системы запуска летательных аппаратов с "крыши" самолета-носителя, например ракеты-носителя или малоразмерного космического самолета (патент РФ N 2061630, МКИ 6 B 64 G 1/14). Недостатком таких систем является необходимость запуска ракетных двигателей для ухода с самолета-носителя, что является чрезвычайно опасным при авариях ракеты в процессе ее запуска. Проект "Бурлак-Диана" (журнал "Aviation Week and Space Technol", 11.01.99, стр. 444, USA) и проект германской фирмы Даймлер-Бенц Аэроспейс П. Г. (патент РФ N 2120398, МКИ 6 B 64 G 1/14) используют крылатую ракету-носитель, подвешиваемую снизу под фюзеляжем или крылом самолета-носителя. Недостатками этих проектов являются ограничения по диаметру ракеты-носителя, определяемые располагаемыми размерами между нижней поверхностью самолета и взлетной полосой, а также необходимость создания на ракете-носителе аэродинамических поверхностей для осуществления маневра набора высоты после горизонтального отделения от самолета-носителя. Известна авиационно-космическая система фирмы Rockwell International Corporation (патент США N 5402965, МКИ 6 B 64 G, 1/14), состоящая из самолета-носителя и установленной под ним ракеты-носителя с возвращаемым космическим летательным аппаратом (полезная нагрузка), осуществляющая горизонтальный старт с аэродрома, доставку ракеты-носителя с полезной нагрузкой в точку ее отделения от самолета-носителя, выведение ракетой-носителем полезной нагрузки в заданную точку орбиты и отделение нагрузки с последующим ее возвращением на Землю. Известно также техническое решение по патенту РФ N 2026798, МКИ 6 B 64 D, 5/00 фирмы Orbital Sciences Corporation, US, представляющее ракету-носитель, сбрасываемую с самолета-носителя, содержащую ступени с двигательными установками, крыло и полезную нагрузку. Недостатки вышеупомянутых технических решений по патенту США N 5402965 и патенту РФ N 2026798 повторяют недостатки системы "Бурлак-Диана", описанной выше, и, кроме того, усложняют систему управления из-за необходимости управлять как на участке аэродинамического полета с использованием крыла, так и на участке реактивного полета. Все описанные выше авиационно-космические системы реализуют отделение ракеты-носителя от самолета-носителя либо за счет запуска реактивных двигателей на самолете-носителе, либо за счет использования вытяжных парашютов, либо за счет использования аэродинамических возможностей крыльев ракеты-носителя. Известно техническое решение по патенту США N 5279199, МКИ F 41 F 3/06, B 64 D 1/04 фирмы Хьюс Эйркрафт Компани, представляющее способ и аппарат для запуска (выталкивания) ракеты против направления полета, содержащее пусковую трубу, в которой устанавливается ракета и выталкивающее устройство в виде пневматической подушки с устройством ее наддува. Недостатками этого способа и аппарата выталкивания являются: - неконтролируемые усилия на элементы конструкции ракеты в местах их контактов с пневматической подушкой, приводящие к недопустимым нагрузкам на эти элементы и их возможному разрушению, что снижает надежность ракеты; - проблематичность использования для ракет-носителей со значительной массой, так как исключается возможность размещения установочных элементов (опор) ракеты-носителя в зоне размещения (укладки) пневматической подушки, что приводит к неоптимальному нагружению ракеты-носителя, к увеличению массы ее конструкции и, соответственно, к потере массы полезного груза; - малая эффективность устройства выталкивания с помощью пневматической подушки, так как развиваемое давление в подушке ограничено объемом подушки, размещаемой в габаритах пусковой трубы. Наиболее близким аналогом предлагаемого изобретения является авиационно-космическая система "Пегас" по патенту США N 4901949, МКИ 6 B 64 G 1/14, содержащая самолет-носитель, ракету-носитель, с пороховыми двигателями, крыло и полезную нагрузку. Недостатками данной системы являются упомянутые выше ограничения по диаметру ракеты-носителя, подвешиваемой под самолетом-носителем, наличие на ракете-носителе крыла для набора высоты после горизонтального отделения от самолета-носителя, усложненная система управления (для двух режимов: для полета на крыле и для реактивного полета), а также, как следствие, низкая грузоподъемность этой системы и высокая удельная стоимость выводимой полезной нагрузки. Задачей предлагаемого изобретения является увеличение грузоподъемности авиационно-космической системы, снижение удельной стоимости выведения полезной нагрузки и обеспечение увеличенных габаритов зоны для размещения полезных нагрузок, при одновременном обеспечении безопасности самолета-носителя и его экипажа, а также экологической безопасности системы. Поставленная задача достигается тем, что в авиационно-космической системе, содержащей самолет-носитель, ракету-носитель и полезную нагрузку, ракета-носитель с жидкостными ракетными двигательными установками размещена в транспортно-пусковом контейнере с устройством пневматического десантирования, бортовыми элементами устройств заправки ракеты-носителя топливом и рабочими телами, элементами устройств дренажа и подпитки жидкостных ракетных двигательных установок топливом, при этом транспортно-пусковой контейнер установлен внутри фюзеляжа самолета-носителя. Ракета-носитель установлена в транспортно-пусковом контейнере с помощью установочных элементов, по крайней мере, в двух поясах, а между ее торцом и глухим торцом транспортно-пускового контейнера образована герметичная пневматическая камера, в которой размещены бортовые элементы упомянутых устройств заправки, элементы устройств дренажа и подпитки, которые подсоединены к ракете в ее торце с помощью разъемных соединений, причем устройство пневматического десантирования выполнено в виде источника высокого давления, соединенного с помощью запорной арматуры с пневматической камерой транспортно-пускового контейнера, который снабжен теплоизоляцией. Свободный торец транспортно-пускового контейнера совпадает с отверстием в фюзеляже СН и герметично соединен с периметром этого отверстия. Предложенная авиационно-космическая система изображена нa чертеже, где: 1 - самолет-носитель (СН); 2 - ракета-носитель (РН); 3 - полезная нагрузка (ПН); 4 - жидкостные ракетные двигательные установки (ЖРДУ); 5 - фюзеляж самолета-носителя; 6 - транспортно-пусковой контейнер;
    7 - устройство пневматического десантирования;
    8 - бортовые элементы устройств заправки РН топливом и рабочими телами;
    9 - элементы устройства дренажа;
    10 - элементы устройства подпитки ЖРДУ топливом;
    11 - электрические связи;
    12 - установочные элементы;
    13 - глухой торец транспортно-пускового контейнера;
    14 - пневматическая камера;. 15 - разъемные соединения;
    16 - источник высокого давления;
    17 - запорная арматура;
    18 - теплоизоляция;
    19 - свободный торец транспортно-пускового контейнера;
    20 - разрываемая мембрана. Предложена авиационно-космическая система, содержащая самолет- носитель 1, ракету-носитель 2 с жидкостными двигательными установками 4 и полезной нагрузкой 3. Ракета-носитель 2 размещена в транспортно-пусковом контейнере 6 с помощью установочных элементов 12, по крайней мере, в двух поясах РН 2, при этом транспортно-пусковой контейнер 6 установлен внутри фюзеляжа 5 самолета-носителя 1. В транспортно-пусковом контейнере 6 размещено устройство пневматического десантирования 7, выполненное в виде источника высокого давления 16. Между глухим торцом 13 транспортно-пускового контейнера и торцом ракеты- носителя образована герметичная пневматическая камера 14, в которой расположены бортовые элементы устройства заправки 8 РН 2 топливом и рабочими телами, элементы устройств дренажа 9 и подпитки ЖРДУ топливом 10, которые подсоединены к торцу ракеты-носителя 2 с помощью разъемных соединений 15. Источник высокого давления 16 соединен с помощью запорной арматуры 17 с пневматической камерой 14. Транспортно-пусковой контейнер 6 снабжен теплоизоляцией 18. Свободный торец 19 транспортно-пускового контейнера 6 закрыт разрываемой мембраной 20 при выходе РН 2 из СН 1, причем свободный торец 19 герметично соединен с периметром отверстия в фюзеляже 5 СН 1. Транспортно-пусковой контейнер 6 помимо функций десантирования РН 2 также служит для загрузки в него РН 2 на технической позиции, транспортировки и загрузки в СН 1, для защиты РН 2 от внешних механических и климатических воздействий. Теплоизоляция 18 контейнера служит для термостабилизации топливных баков ЖРДУ 4. Устройство пневматического десантирования 7 служит для выталкивания РН 2 из транспортно-пускового контейнера 6, размещенного в фюзеляже СН 1, и содержит источник высокого давления 16 с запорной арматурой 17 и герметичную пневматическую камеру 14, образованную глухим торцом транспортно-пускового контейнера 13 и торцом РН 2 с установочными элементами 12. Бортовые элементы устройств заправки РН топливом и рабочими телами 8 могут быть выполнены в виде трубопроводов с запорной арматурой и разъемными элементами сопряжения и предназначены для заправки на базовом аэродроме ЖРДУ 4 топливом и систем РН 2 рабочими телами перед стартом СН 1. Элементы устройства дренажа 9 установлены в пневматической камере 14 и служат для сброса паров компонентов топлива, например криогенных, из баков ЖРДУ 4 за борт самолета как в период предстартовой подготовки, так и в период полета самолета. Элементы устройства подпитки ЖРДУ топливом 10 служат для дозаправки баков ЖРДУ как во время предстартовой подготовки СН 1, так и во время полета до выхода РН из контейнера. Размещение бортовых элементов устройств заправки РН топливом и рабочими телами, элементов устройства дренажа и элементов устройства подпитки ЖРДУ топливом, а также их связей с РН в пневматической камере необходимо для рассоединения их от РН ходом ракеты, что упрощает схему отсоединения и повышает надежность системы. Герметизация свободного торца 19 транспортно-пускового контейнера по периметру отверстия в фюзеляже 5 СН позволяет при десантировании из него РН изолировать внутренний объем фюзеляжа, где находятся люди, сопровождающие РН, и тем самым не подвергать их возможной опасности воздействия на них внешней среды. Предложенная авиационно-космическая система функционирует следующим образом. Самолет-носитель 1, например, тяжелый транспортный самолет АН-124-100, с ракетой-носителем 2 на борту стартует с аэродрома базирования и осуществляет полет в расчетный район запуска РН, например в район экватора. В районе запуска РН 2 самолет-носитель 1 выполняет маневр с выходом на участок траектории, где вертикальная перегрузка близка к нулю (участок невесомости). На этом участке при достижении расчетных параметров, соответствующих началу старта РН 2, например, на высоте 10-12 км, угле траектории к местному горизонту 15-25 o и скорости полета 650-750 км/час, подается команда на срабатывание устройства пневматического десантирования 7 и открытие запорной арматуры 17 источника высокого давления 16, из которого газ поступает в пневматическую камеру 14. При достижении избыточного давления газа в пневматической камере 14, например, около одной атмосферы, происходит отсоединение РН 2 с установочными элементами 12 от транспортно-пускового контейнера 6 и под давлением газа начинается выход РН 2 из свободного торца 19 транспортно-пускового контейнера 6, при этом вскрывается мембрана 20 ходом РН. Одновременно ходом РН 2 рассоединяются разъемные соединения 15, отстыковывая бортовые элементы устройств заправки РН топливом и рабочими телами 8, элементы устройства дренажа 9, элементы устройства подпитки ЖРДУ топливом 10, электрические связи 11. В течение расчетного времени, например, за 1,5-2,5 сек, РН 2 осуществляет выход из фюзеляжа самолета-носителя 5, после чего выполняет безмоторный полет в течение времени, обеспечивающего достижение безопасного расстояния от СН 1, например, на удаление 150-200 м. Затем включаются ЖРДУ 4 ракеты-носителя 2 и осуществляется полет ракеты-носителя с доставкой полезной нагрузки 3 на заданную орбиту. Предложенное изобретение позволяет:
    - увеличить габариты зоны для размещения полезных нагрузок за счет использования значительно больших объемов фюзеляжа, например, АН- 124-100 "Руслан", по сравнению с размерами между нижней поверхностью фюзеляжа и взлетной полосой всех известных систем, в том числе системы "Пегас";
    - увеличить грузоподъемность и снизить удельную стоимость выведения полезной нагрузки. Например, при использовании в качестве самолета-носителя АН-124-100 "Руслан", стоимость выведения одного килограмма полезной нагрузки в 5-6 раз меньше подобной стоимости системы "Пегас". Это достигается за счет размещения РН в транспортно-пусковом контейнере с устройством пневматического десантирования, позволяющих реализовать десантирование РН в условиях, близких к невесомости;
    - обеспечить высокую безопасность СН и его экипажа за счет включения ЖРДУ РН на значительном удалении от СН, возможном вследствие того, что РН уже сообщен начальный импульс скорости при десантировании, а также за счет изоляции экипажа от воздействия внешней среды при выходе РН из СН;
    - обеспечить экологическую безопасность системы за счет возможности использования ЖРДУ на экологически чистых компонентах топлива, например "жидкий кислород-керосин" или "жидкий кислород-сжиженный природный газ". Предложенное изобретение может быть реализовано с использованием существующих транспортных самолетов, например, АН-124-100 "Руслан" или АН-225 "Мрия". Использование существующих ЖРД, например, НК-33, НК-43, РД-0124, 11Д58М, а также освоенных технологий изготовления ракет-носителей позволяют создать в кратчайший срок и с минимальными затратами ракету-носитель для предложенной авиационно-космической системы. Транспортно-пусковой контейнер с устройством пневматического десантирования предложенной конструкции выполняются по известным технологиям и с использованием, в том числе, готовых комплектующих.

    Многоцелева́я авиацио́нно-косми́ческая систе́ма (МАКС) - проект использующего метод воздушного старта двухступенчатого комплекса космического назначения, который состоит из самолёта-носителя (Ан-225 «Мрия») и орбитального космического корабля -ракетоплана (космоплана), называемого орбитальным самолётом . Орбитальный ракетоплан может быть как пилотируемым, так и беспилотным. В первом случае он устанавливается вместе с одноразовым внешним топливным баком. Во втором - баки с компонентами топлива и окислителя размещаются внутри ракетоплана. Вариант системы допускает также установку вместо многоразового орбитального самолёта одноразовой грузовой ракетной ступени с криогенными компонентами топлива и окислителя.

    Энциклопедичный YouTube

    • 1 / 5

      Разработка проекта (код разработки - 9А-1048) велась в НПО «Молния» с начала 1980-х годов под руководством Г. Е. Лозино-Лозинского . Широкой общественности проект был представлен в конце 1980-х гг. При полномасштабном разворачивании работ проект мог быть реализован до стадии начала лётных испытаний уже в 1988 г.

      Вместо первой ступени обыкновенной ракеты в проекте используется сверхтяжёлый самолёт Ан-225 ; точнее, на базе Ан-225 предполагалась разработка его нового варианта - Ан-325.

      Вторая ступень может быть выполнена в трех вариантах:

      1. МАКС-ОС-П - базовый вариант с пилотируемым орбитальным самолётом (ракетопланом) и одноразовым баком;
      2. МАКС-М - беспилотный транспортный вариант с полностью многоразовым орбитальным самолётом (ракетопланом);
      3. МАКС-Т - беспилотный транспортный вариант с одноразовой ракетной второй ступенью.

      В вариантах с ракетопланом полезный груз на низкую орбиту составляет 7 тонн, с одноразовой ракетной ступенью - 18 тонн. Стартовая масса системы - 275 тонн.

      Основное назначение многоцелевой системы - доставка грузов и экипажей на орбиту, в том числе на орбитальные станции. МАКС может также использоваться (в том числе оперативно ввиду отсутствия привязки к космодрому и возможности запусков в разных направлениях) для аварийного спасения экипажей космических объектов, для ремонтно-аварийно-технических работ, научных экспериментов, организации производств на орбите, в гражданских и военных целях наземной разведки, экологического и космического контроля.

      При разработке проекта использовался опыт НПО «Молния» и результаты работ по проекту АКС «Спираль » и экспериментальному беспилотному орбитальному ракетоплану БОР-4 . Компоновка базового варианта системы МАКС близка к таковой у системы «Спираль», только вместо гиперзвукового используется обычный самолёт-носитель, а вместо ракетной ступени используются двигатели на самом орбитальном ракетоплане.

      Важным преимуществом этой системы воздушного старта является отсутствие необходимости в космодроме . «Система базируется на обычных аэродромах 1-го класса, дооборудованных необходимыми для МАКС средствами заправки компонентами топлива, наземного технического и посадочного комплекса и вписывается, в основном, в существующие средства наземного комплекса управления космическими системами».

      К преимуществам проекта МАКС можно также отнести бо́льшую экологическую чистоту за счёт применения менее токсичного топлива в разработанном многорежимном трёхкомпонентном двигателе РД-701 керосин /водород +кислород).

      В рамках инициативных работ НПО «Молния» по проекту созданы меньшие и полномасштабные габаритно-весовой макет внешнего топливного бака, габаритно-весовой и технологический макеты космоплана. Реализация проекта по-прежнему возможна при наличии инвесторов.

      Проект «МАКС» получил золотую медаль (с отличием) и специальный приз премьер-министра Бельгии в 1994 году в Брюсселе на Всемирном салоне изобретений, научных исследований и промышленных инноваций «Брюссель-Эврика-94».

      Возобновление проекта

      Развитие идея получает в 2012 году . Российские аэрокосмические предприятия НПО «Молния» и Экспериментальный машиностроительный завод имени В. М. Мясищева разрабатывают аэрокосмические системы для осуществления суборбитальных туристических полётов и выведение на орбиту коммерческих спутников, говорится в материалах к докладу специалистов предприятий, имеющихся в распоряжении.

      «Космические туристы смогут испытытать состояние невесомости в течение 3-5 минут и могут наблюдать поверхность Земли через иллюминаторы с высоты космического полёта. После входа в плотные слои атмосферы космический аппарат выполняет планирующий спуск и посадку на полосу аэродрома », - говорится в материалах. В зависимости от типа самолёта-носителя количество пассажиров может варьироваться от 4 до 14. Предполагается также разработать вариант воздушного старта для доставки на орбиту малых коммерческих спутников. По мнению специалистов, одно из возможных решений этой задачи - размещение полезного груза (спутника с небольшим разгонным блоком) внутри пассажирского отсека.