Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Как советский союз снимал высадку на луну. «Луноход

    Как советский союз снимал высадку на луну. «Луноход

    «Луноход»

    «Луноход» — транспортное устройство, управляемое автоматически или космонавтами, способное передвигаться по Луне и предназначенное для проведения исследования Луны. Перед советскими учеными и конструкторами при разработке и создании первого автоматического лунохода встала необходимость решения комплекса сложных проблем. Надо было создать совершенно новый тип машины, способной длительное время функционировать в необычных условиях открытого космоса на поверхности другого небесного тела. Основные задачи: создание оптимального движителя с высокой проходимостью при малых массе и энергопотреблении, обеспечивающего надежную работу и безопасность движения, систем дистанционного управления движением лунохода; обеспечение необходимого теплового режима с помощью системы терморегулирования, поддерживающей температуру газа в приборных отсеках, температуру элементов конструкции и оборудования, расположенных внутри герметичных отсеков и вне их (в открытом космосе в периоды лунных дней и ночей), в заданных пределах; выбор источников питания, материалов для элементов конструкции: разработка смазочных материалов и систем смазок для условий вакуума и другое.

    Научная аппаратура лунохода должна была обеспечить: изучение топографических, и селено-морфологических особенностей местности; определение химического состава и физико-механических свойств грунта; исследование радиационной обстановки на трассе перелета к Луне, в окололунном пространстве и на поверхности Луны; изучение рентгеновского космического излучения; эксперименты по лазерной локации Луны. Первый луноход — советский «Луноход-1», предназначенный для проведения комплекса научных исследований на поверхности Луны, был доставлен на Луну космическим аппаратом «Луна-17» и проработал на ее поверхности почти год (с 17.11.1970 по 4.10.1971). «Луноход-1» состоит из двух частей: герметичного приборного отсека с аппаратурой и самоходного шасси. Масса «Лунохода-1» 756 кг, длина (с открытой крышкой) 4,42 м, ширина 2,15 м, высота 1,92 м. Приборный отсек служит для размещения аппаратуры бортовых систем и зашиты ее от воздействия внешней среды в условиях космоса. Имеет форму усеченного конуса с выпуклыми верхним и нижним днищами. Корпус отсека изготовлен из магниевых сплавов, обеспечивающих достаточные прочность и легкость. Верхнее днище отсека используется как радиатор-охладитель в системе терморегулирования и закрывается крышкой. В период лунной ночи крышка закрывает радиатор и препятствует отводу теплоты из отсека благодаря тепловому излучению радиатора. В течение лунного дня крышка открыта, и элементы солнечных батарей, расположенные на ее внутренней стороне, обеспечивают подзарядку аккумуляторов, питающих бортовую аппаратуру электроэнергией.

    В приборном отсеке размещены системы терморегулирования, электропитания, приемные и передающие устройства радиокомплекса, приборы системы дистанционного управления и электронно-преобразовательного устройства научной аппаратуры. В передней части расположены: иллюминаторы ТВ камер, электрический привод подвижной остронаправленной антенны, служащей для передачи на Землю ТВ изображений лунной поверхности; малонаправленная антенна, обеспечивающая прием радиокоманд и передачу телеметрической информации, научные приборы и оптический уголковый отражатель, изготовленный во Франции. По левому и правому бортам установлены: 2 панорамные телефотокамеры (причем в каждой паре одна из камер конструктивно объединена с определителем местной вертикали), 4 штыревые антенны для приема радиокоманд с Земли. Для подогрева газа, циркулирующего внутри аппарата, служит изотопный источник тепловой энергии. Рядом с ним расположен прибор для определения физико-механических свойств лунного грунта.

    Резкие температурные перепады при смене дня и ночи на поверхности Луны, а также большая разница температур между деталями аппарата, находящимися на солнечной стороне и в тени, обусловили необходимость разработки специальной системы терморегулирования. При низких температурах в период лунной ночи для обогрева приборного отсека автоматически прекращается циркуляция газа-теплоносителя по контуру охлаждения и газ направляется в контур подогрева.

    Система электропитания лунохода состоит из солнечных и химических буферных батарей, а также приборов автоматического управления. Управление приводом солнечных батарей осуществляется с Земли; при этом крышка может быть установлена на любой угол в пределах от 0 до 180°, необходимый для максимального использования солнечного излучения.
    Бортовой радиокомплекс обеспечивает прием команд из Центра управления и передачу информации с борта аппарата на Землю. Ряд систем радиокомплекса используется не только при работе на поверхности Луны, но и на участке перелета с Земли на Луну. Две ТВ системы лунохода служат для решения самостоятельных задач. Система малокадрового телевидения предназначена для передачи на Землю ТВ изображений местности, необходимых экипажу, управляющему с Земли движением лунохода. Возможность и целесообразность применения такой системы, для которой характерна более низкая по сравнению с вещательным телевизионным стандартом скорость передачи изображения, была продиктована специфическими лунными условиями. Основное из них — медленное изменение ландшафта при движении лунохода. Вторая ТВ система служит для получения панорамного изображения окружающей местности и съемки участков звездного неба, Солнца и Земли с целью астроориентации. Система состоит из четырех панорамных телефотокамер.

    Самоходное шасси предназначено для перемещения лунохода по поверхности Луны. Характеристика шасси: число колес — 8 (все ведущие); колесная база — 170 мм; колея — 1600 мм; диаметр колеса по грунтозацепам — 510 мм; ширина колеса — 200 мм. Шасси выполнено таким образом, чтобы луноход имел высокую проходимость и надежно работал в течение длительного времени при минимальной собственной массе и потребляемой электроэнергии. Шасси обеспечивает передвижение «Лунохода» вперед (с двумя скоростями) и назад, повороты на месте и в движении. Оно состоит из ходовой части (упругая подвеска и движитель), блока автоматики, системы безопасности движения, прибора и комплекса датчиков для определения механических свойств грунта и оценки проходимости шасси. Поворот достигается за счет различной частоты вращения колес правого и левого бортов и изменением направления их вращения. Торможение осуществляется переключением тяговых электродвигателей шасси в режим электродинамического торможения. Для удержания лунохода на уклонах и его полной остановки включаются дисковые тормоза с электромагнитным управлением. Блок автоматики управляет движением лунохода по радиокомандам с Земли, измеряет и контролирует основные параметры самоходного шасси и автоматическую работу приборов для исследования механических свойств лунного грунта. Система безопасности движения обеспечивает автоматическую остановку лунохода при предельных углах крена и дифферента и перегрузках электродвигателей колес.

    Прибор для определения механических свойств лунного грунта позволяет оперативно получать информацию о грунтовых условиях движения. Пройденный путь определяется по числу оборотов ведущих колес. Для учета их пробуксовки вносится поправка, определяемая с помощью свободно катящегося девятого колеса, которое специальным приводом опускается на грунт и поднимается в исходное положение. Управление аппаратом осуществляется из Центра дальней космической связи экипажем в составе командира, водителя, штурмана, оператора, бортинженера.

    Режим движения выбирался в результате оценки телевизионной информации и оперативно поступающих телеметрических данных о крене, дифференте, пройденном пути, состоянии и режимах работы приводов колес. В условиях космического вакуума, радиации, значительных перепадов температур и сложного рельефа местности по трассе движения все системы и научные приборы лунохода функционировали нормально, обеспечив выполнение как основной, так и дополнительных программ научных исследований Луны и космического пространства, а также инженерно-конструкторских испытаний.

    «Луноход-1» детально обследовал лунную поверхность на площади 80000 м2. С помощью ТВ систем было получено более 200 панорам и свыше 20000 снимков поверхности. Более чем в 500 точках по трассе движения изучались физико-механические свойства поверхностного слоя грунта, а в 25 точках проведен анализ его химического состава. Пройденное расстояние 10 км 540 м. Длительность активного функционирования «Лунохода-1» составила 301 сутки 6 ч 37 мин; прекращение работы было вызвано выработкой ресурсов его изотопного источника теплоты. В конце работы он поставлен на практически горизонтальной площадке в такое положение, при котором уголковый отражатель обеспечил многолетнее проведение лазерной локации его с Земли.

    16.1.1973 с помощью автоматической станции «Луна-21» в район восточной окраины Моря Ясности (древний кратер Лемонье) был доставлен «Луноход-2». Выбор указанного района посадки диктовался целесообразностью получения новых данных из сложной зоны сочленения моря и материка. Усовершенствование конструкции и бортовых систем, а также установка дополнительных приборов и расширение возможностей аппаратуры позволили значительно повысить маневренность и выполнить большой объем научных исследований. За 5 лунных дней в условиях сложного рельефа «Луноход-2» прошел расстояние 37 км.

    Краткая история создания, запусков и работы луноходов


    В последние месяцы мы с вами стали свидетелями беспрецедентной по своей сложности эпопее американских марсоходов «Spirit» и «Oportunity» на поверхности Марса. Получен и передан на Землю огромный объем информации, пройдены километры пути, а главное – доказано, что, несмотря на огромное расстояние, вызывающее задержку в передаче сигнала в одну сторону примерно на 15 минут, исследования поверхности Красной планеты с помощью автоматических самоходных аппаратов возможны и крайне эффективны. В связи с этим, не лишним будет вспомнить, что первыми планетоходами, работавшими на поверхности иного небесного тела были советские «Луноходы», тем более, что в прошлом году исполнилось 35 лет с момента начала работы первого из них – «Лунохода-1».

    Замысел послать на Луну самоходную лабораторию, управляемую с Земли, появился у генерального конструктора первых советских ракетно-космических систем Сергея Павловича Королева и его соратников еще в конце пятидесятых годов прошлого века, человечество делало лишь первые робкие шаги в освоении космического пространства, а мысли конструкторов уже были обращены к новым горизонтам – Луне, Марсу, Венере. Автоматическая станция, совершившая посадку на поверхность нашего естественного спутника, обладает возможностью обследовать лишь незначительный участок поверхности вокруг себя. Сделав эту станцию подвижной, появляется возможность значительно расширить исследуемую площадь, выбирать наиболее интересные с точки зрения ученого объекты для исследования.

    Поначалу эту идею развивал один из ближайших соратников главного конструктора Михаил Клавдиевич Тихонравов, который занимался перспективными проектами в области космонавтики. Однако, чтобы сделать саму машину, были необходимы специалисты в других областях. Потребовалось создать принципиально новое шасси, систему связи, навигации, энергоснабжения и терморегуляции.

    Работы по созданию шасси лунохода были переданы в ленинградский ВНИИ-100 (позже ВНИИТрансМаш), разрабатывавший до этого ходовые части советских танков. Работы возглавил Александр Кемурджиан, который и считается создателем ходовой части лунохода. Организации была поручена разработка самоходного шасси с блоком управления движением и системой безопасности с комплектом информационных датчиков.

    Основная работа по созданию Лунохода была сосредоточена в конструкторском бюро им. С. А. Лавочкина, том самом, где в годы Великой Отечественной войны создавались истребители, позже там создавались все советские межпланетные автоматические станции, проложившие космические трассы к Луне, Венере и Марсу. Главным конструктором на протяжении многих лет был выдающийся ученый Георгий Николаевич Бабакин.

    Масса и геометрические размеры создаваемых луноходов были обусловлены следующими предпосылками: максимальной возможной массой доставляемой на поверхность Луны унифицированной посадочной ступенью и габаритами головного обтекателя ракеты-носителя «Протон», с помощью которой связка посадочная ступень-луноход, выводились на траекторию полета к Луне.

    Первоначальные планируемые параметры «Лунохода»: масса аппарата - 900 кг, диаметр приборного контейнера - 1800 мм, максимальная скорость передвижения по Луне - 4 км/час, предельное энергопотребление в течение 10 мин - 1 кВт, номинальное энергопотребление – 0,25 кВт. То есть все системы лунохода, а это и двигатели и мощные передатчики для связи с Землей и научная аппаратура должны были потреблять мощность равную мощности, потребляемой простым утюгом. Невысокая скорость передвижения была обусловлена необходимостью обеспечения безопасности движения аппарата в сложных условиях и большой инерционностью контура управления аппарата.

    Луноходу отводилось место и в рамках проводимой тогда подготовки к первой советской пилотируемой лунной экспедиции. Он не только должен был детально обследовать предполагаемый район посадки пилотируемой лунной кабины, но и играть роль радиомаяка, для осуществления посадки в заранее выбранное место. Предполагалось, что перед осуществлением высадки космонавта, на Луну будут отправлены два лунохода для выбора основного и запасного района прилунения. В запасной район потом должна была сесть в автоматическом режиме резервная беспилотная лунная кабина. В основном районе прилунилась бы лунная кабина с космонавтом. Основной режим посадки лунной кабины был избран автоматическим - на радиомаяк лунохода. Если же при посадке основной лунный корабль получал повреждения, которые не позволили бы ему стартовать с Луны, то космонавт должен был воспользоваться одним из луноходов для поездки к резервной лунной кабине. На луноходе предполагалось иметь запас кислорода, разъемы для шлангов лунного скафандра, место космонавта с пультом управления спереди аппарата в виде небольшой площадки. Очевидно, что в этом случае скорость движения могла быть больше.

    Постепенно формировался и облик «лунного странника». Он кажется необычным: ажурные колеса, корпус, похожий на котел с откинутой назад круглой крышкой, глаза-телекамеры, поднятая вверх, как рука в приветствии, остронаправленная антенна. Тем не менее «Луноход» создавался как научный аппарат и его облик является результатом работы инженерной мысли.

    Герметичный корпус «Лунохода-1» является основной частью конструкции и служит для размещения аппаратуры бортовых систем и защиты ее от воздействия окружающей среды. Для Луны, вследствие практически полного отсутствия атмосферы, характерны значительные перепады температуры от 150-ти градусной жары лунным днем до 150-ти градусного мороза ночью.
    Герметичный контейнер корпуса выполняет также роль несущей конструкции шасси и служит для крепления на нем элементов ходовой части. Корпус имеет форму усеченного конуса с выпуклыми верхним и нижним днищем, с целью уменьшения массы, корпус изготовлен из магниевых сплавов. Верхнее днище используется как радиатор-охладитель системы терморегулирования. Необходимая площадь поверхности радиатора для сброса излишнего тепла во время лунного дня, равного 13,66 суток и определила конусную форму приборного отсека с большим диаметром верхнего днища, с целью уменьшения нагрева поверхности радиатора-охладителя лучами солнца, его поверхность покрыта светоотражающим материалом.

    Сверху радиатор-охладитель закрывается крышкой, выполняющей двойную функцию. В течение лунного дня, когда луноход получает энергию от солнца и активно работает, крышка открыта, при этом она используется как панель солнечной батареи. Электропривод крышки позволяет фиксировать ее в любом положении в диапазоне углов от 0 до 180°, что обеспечивает высокую точность установки солнечной батареи в направлении солнца. Наведение солнечной батареи по азимуту осуществлялось поворотом всего лунохода. Светоотражающее покрытие верхней части корпуса даже несколько повышало эффективность работы солнечной батареи Лунохода, переотражая часть солнечных лучей на нее когда солнце стояло низко над лунным горизонтом и панель солнечной батареи располагалась под углом близким к 90°.

    В течение лунной ночи, из-за недостатка энергии луноход временно простаивает, емкости его аккумуляторов не хватило бы на работу в этих условиях, крышка закрывает радиатор и препятствует излучению тепла из контейнера. Необходимо хотя бы обеспечить «спящей» аппаратуре нормальную температуру внутри контейнера, для подогрева газа, циркулирующего внутри аппарата, служит изотопный источник тепловой энергии, вынесенный назад за пределы корпуса. Емкость аккумуляторов для этой цели опять же была бы недостаточна. Вблизи изотопного источника находятся электроприводы подъема и опускания девятого колеса и прибор для оценки физико-механических свойств лунного грунта.

    Корпус лунохода для сохранения тепла покрыт снаружи теплоизолирующим покрытием, толщиной около 20 см. Из-под него выступают колеса, антенны, телекамеры и телефотометры. Покрытие составлено из тонких полотнищ металлизированной майларовой пленки, разделенных между собой слоями ткани, чтобы полотнища не слипались.

    На передней части корпуса расположены иллюминаторы телевизионных камер на высоте 950 мм от грунта, электромеханический привод подвижной остронаправленной антенны, служащей для передачи на Землю телевизионных изображений лунной поверхности; малонаправленная антенна, обеспечивающая приём радиокоманд и передачу телеметрической информации, при определенном снижении скорости передачи возможна телевизионная связь и через малонаправленую антенну лунохода, что позволяет управлять луноходом в аварийной ситуации. Тут же установлены научные приборы и оптический уголковый отражатель, изготовленный во Франции. По левому и правому бортам установлены: две панорамные телефотокамеры, причём, в каждой паре одна из камер конструктивно объединена с датчиком местной вертикали, датчики выполнены в виде стеклянной чаши с радиальной калибровочной шкалой и металлическим шариком. Изображение калибровочной сетки и шарика проецируется в камеры и передается как часть панорам. По бортам лунохода попарно расположены четыре штыревые антенны для приёма радиокоманд с Земли в метровом диапазоне частот.
    Бортовой радиокомплекс обеспечивает приём команд из Центра управления и передачу информации с борта аппарата на Землю. Ряд систем радиокомплекса используется не только при работе на поверхности Луны, но и на участке перелёта с Земли к Луне.

    Научная аппаратура на борту лунохода представлена коллиматорным рентгеновским телескопом для исследования рентгеновского космического излучения, радиометром для исследования радиационной обстановки на трассе перелета и на поверхности Луны, а также автоматической спектрометрической аппаратурой «Рифма» для определения химического состава лунного грунта, состоящей из выносного блока в котором расположены радиоактивных источника рентгеновского излучения и система детекторов, в качестве которых применены газоразрядные счетчики. Методика исследования химического состава грунта предусматривает получение дифференциального энергетического спектра его рентгеновского излучения.
    Исследование физико-механических свойств грунта проводилось путем внедрения в грунт конусно-лопастного штампа и последующий его поворот. При внедрении штампа определяются показатели несущей способности грунта и его уплотняемость, при повороте – сопротивление вращательному срезу.

    Для осуществления движения лунохода в строго определенном направлении, например при движении к месту посадки резервной лунной кабины, необходимо было создать специальную навигационную систему, компас был неприменим из-за отсутствия у Луны мощного магнитного поля. Помимо ориентации по звездам, чье положение на небе регистрировалось при получении изображения при помощи панорамных телекамер, применялся и курсовой гироскоп, регистрирующий углы поворота лунохода при движении. Об углах крена и дифферента, что было важно для предотвращения опрокидывания лунохода, экипажу сообщал еще один гироскопический датчик - гировертикаль.

    Одним из самых важных элементов создаваемого аппарата явилось его шасси. В те годы, когда создавался Луноход, мягкая посадка на поверхность Луны еще не была отработана, и о свойствах лунного грунта практически ничего не было известно. Существовало несколько его моделей, по одной из них, вся поверхность Луны была покрыта толстым слоем пыли, толщиной несколько метров. Поэтому выбор типа движителя для будущего самоходного аппарата был далеко не очевиден. В первую очередь рассматривались колеса и гусеницы. Колесный луноход в сравнении с гусеничным характеризуется такими качествами: обладает большим коэффициентом полезного действия движителя и более широким набором грунтов, по которым может пройти луноход, имеется возможность отключения части приводов колес, обладают более простой конструкцией и большим сроком службы. Преимуществами гусеничных луноходов являются: более низкое удельное давление на грунт, меньшая масса при равной проходимости. В то же время практика работы земных машин показывает, что гусеничный движитель обладает таким существенным недостатком, как возможность расклинки его камнями и сброс гусеницы. Изменение числа колес или гусениц не приводит к существенным изменениям показателей луноходов. Увеличение числа колес приводит к усложнению конструкции, в то же время увеличивается проходимость, представляется возможность использования колес меньшего диаметра, что приводит к уменьшению габаритов лунохода.

    Советская автоматическая станция «Луна-9» впервые в мире совершила мягкую посадку на Луну и передала панорамы ее поверхности, а так же определила свойства грунта. Он оказался достаточно твердым, слой пыли - небольшим. Поэтому конструкторы отказались от гусениц в пользу колес.

    Посылке Лунохода на Луну предшествовал длительный цикл испытаний. Предстояло не только убедиться в правильности выбранных конструктивных решений, но и научиться управлять этим принципиально новым самоходным аппаратом. Необходимо было удостовериться, что аппарат не выйдет из стоя раньше запланированного трехмесячного срока ни из-за отказа техники, ни по вине экипажа. Было обустроено несколько полигонов для отработки движения луноходов – в Ленинграде, под Симферополем, на Камчатке. Для тренировки экипажа был создан полигон – лунодром размером 70 на 120 м, идентичный лунному рельефу, с углублениями, кратерами, разломами, россыпью камней различной величины. Для создания лунных условий на Земле решили использовать вулканический шлак, вулканический туф и вулканическую пемзу. С помощью системы кранов и резиновых жгутов создали систему, с помощью которой можно было как бы "обезвесить" машину и получить данные о ее движении в условиях лунной гравитации, составляющей 1/6 от земной. К этому времени лунная поверхность была более или менее изучена по фотопанорамам космических аппаратов «Луна-9» и «Луна-13». Технологический образец лунохода, представляющий собой подлинное шасси с бортовым радиотехническим комплексом и выдерживающим все габаритные размеры лунной лаборатории выводили на лунодром. Экипаж осуществлял его управление точно так же, как это должно быть в реальной обстановке. Командная, телеметрическая, телевизионная информация поступала на пункт управления и анализировалась, по этой информации экипаж принимал решение о дальнейшем движении. Все радиокоманды передавались по кабелям длиной более 100 м.

    Для управления луноходом отобрали 11 офицеров (в порядке распределения по экипажам):
    командиры - Николай Еременко. Игорь Федоров
    водители - Габдухай Латыпов, Вячеслав Довгань
    штурманы-навигаторы - Константин Давидовский, Викентий Самаль
    бортинженеры - Леонид Мосензов Альберт Кожевников
    операторы остронаправленной антенны - Валерий Сапранов, Николай Козлитин
    резервный водитель и оператор - Василий Чубукин.

    Экипаж лунохода имел в своем распоряжении видеоконтрольные устройства - мониторы, на которых отображалась телеметрическая информация о состоянии систем лунохода, а также телевизионное изображение поверхности Луны. Для управления были разработаны специальные пульты, оборудованные ручками управления по типу тех, которыми оснащены пилотируемые космические корабли. Любое изменение положения ручки автоматически преобразовывалось в команды, которые передавались на луноход. На полигоне имитировали и особо контрастное освещение поверхности, характерное для Луны вследствие отсутствия атмосферы.

    Колесный движитель в первначальном варианте имел четыре колеса диаметром 1100 мм т.е. два по бортам и пятое измерительное колесо для определения пройденного пути. Восьмиколесное шасси впервые появляется позднее, в варианте повышенной надежности. Очень серьезной проблемой было создание пар трения, способных длительное время работать в условиях вакуума и больших перепадов температур от –150 до +150°С. Отдельные экспериментальные узлы и устройства будущего лунохода прошли испытания в условиях космического полета. Так, на «Луне-10» и «Луне-11» был установлен редуктор, который работал в открытом космосе.

    Шасси выполнено таким образом, чтобы луноход имел высокую проходимость и надёжно работал в течение длительного времени при минимальной собственной массе и потребляемой электроэнергии. Шасси обеспечивает передвижение лунохода вперёд (с двумя скоростями) и назад, повороты на месте и в движении. Оно состоит из ходовой части, представляющей собой восемь ведущих мотор-колес, каждое колесо имело каркас из трех титановых ободьев, обтянутых сеткой из нержавеющей стали, снабженных титановыми грунтозацепами. и индивидуальную эластичную подвеску колес, электрическую трансмиссию с индивидуальным приводом колес, тормозной системы, устройства разблокировки колес, блока автоматики, системы безопасности движения, прибора и комплекса датчиков для определения механических свойств грунта и оценки проходимости шасси. Поворот достигается за счёт различных скоростей вращения колёс правого и левого бортов и изменением направления их вращения, так называемый бортовой поворот. Основным достоинством данного вида поворота является возможность осуществления поворота с предельно малым радиусом, простота конструкции, для осуществления поворота могут использоваться те же агрегаты, что и для изменения скорости движения. Торможение осуществляется переключением тяговых электродвигателей шасси в режим электродинамического торможения. Для удержания лунохода на уклонах и его полной остановки включаются дисковые тормоза с электромагнитным управлением.

    В самом начале работы «Лунохода-1» при выполнении поворота произошел отказ электромагнитов управления фрикционными дисковыми тормозами, из-за чего колеса оказывались заблокированны тормозами, включенными не только при стоянке аппарата, но и во время движения. Такой отказ мог, как минимум, существенно замедлить движение «Лунохода-1», а в худшем случае привести к полной остановке. Этого, однако, не произошло, поскольку еще на этапе разработки шасси, конструкторы учли факторы риска. В итоге электромеханический привод колес, имея резерв по крутящему моменту, работал с этой дополнительной нагрузкой. При подготовке к запуску «Лунохода-2» этот недостаток устранили, а самоходное шасси стало более совершенным. «Луноход-2» мог разворачиваться без остановок прямо на ходу.

    Блок автоматики управляет движением лунохода по радиокомандам с Земли, измеряет и контролирует основные параметры самоходного шасси и автоматическую работу приборов для исследования механических свойств лунного грунта. Система безопасности движения обеспечивает автоматическую остановку при предельных углах крена и дифферента и перегрузках электродвигателей колёс. Прибор для определения механических свойств лунного грунта позволяет оперативно получать информацию о грунтовых условиях движения. Пройденный путь определяется по числу оборотов ведущих колёс. Для учёта их пробуксовки вносится поправка, определяемая с помощью свободно катящегося девятого колеса. Предусмотрено и устройство разблокировки колес, заклиненных в результате выхода из строя редуктора или тягового электродвигателя, оно предназначено для разрыва кинематической связи между колесным редуктором и ступицей колеса. Конструктивно устройство выполнено в виде кольцевого пироузла. В этом случае по команде с Земли пиротехническое устройство обеспечивает разрушение вала и переводит заблокированное колесо в ведомый режим работы. Луноход имел возможность продолжать движение и при трех-пяти нерабочих колесах из восьми.

    Система электропитания «Лунохода-1» выполнена по схеме генератор на основе солнечных элементов - буферные серебряно-кадмиевые аккумуляторные батареи и обеспечивает питание всех систем постоянным током. Площадь солнечной батареи составляла 3,5 м2, а вырабатываемая мощность - 180 Вт. Емкость батарей - 200 АЧч.

    Обеспечение теплового режима работы систем лунохода осложнено широким диапазоном изменения интенсивности внешних тепловых потоков при различных режимах работы. Для «Лунохода-1» температура газа внутри герметичного контейнера поддерживалась в пределах 0…40 °С. Для систем, установленных внутри контейнера лунохода применялась активная циркуляционная система терморегулирования, включающая контуры нагрева и охлаждения. Горячий контур состоит из изотопного источника тепла, содержащего радиоактивный изотоп Полоний-210, и теплообменника. Полоний-210 имеет период полураспада равный примерно 0,5 года, что и определяет примерный срок его службы. Во время лунной ночи по достижении нижнего предела температуры автоматически перекрывается магистраль холодного контура и газ направляется в горячий контур к теплообменнику, оттуда в герметичный контейнер. Холодный контур включает в себя радиатор-охладитель, излучающий тепло в космическое пространство.

    Одной из ключевых систем при работе лунохода является система, передающая изображение поверхности Луны на Землю. Без нее работа самоходного аппарата оказалась бы невозможна. Луноход оборудован двумя системами передачи телевизионных изображений, принципиально отличающимися друг от друга, и предназначенными для решения самостоятельных задач.
    Система малокадрового телевидения предназначена для передачи на Землю телевизионных изображений местности, необходимых экипажу, управляющему с Земли движением лунохода.

    Вторая телевизионная система служит для получения высококачественного панорамного изображения окружающей местности и съёмки участков звёздного неба, Солнца и Земли с целью астроориентации. Система состоит из четырех панорамных телефотокамер. Во время стоянок лунохода (объекты передачи неподвижные) включались панорамные камеры. Скорость строчной развертки составляла 1 строку за 0,25 сек. В угле 30°. Развертка 500 на 6000 строк. Высокая стабильность и линейность развертки позволили производить с помощью четырех панорамных камер измерение расстояний до отдельных объектов и на этой основе строить топографический план местности. Панорамные изображения давали возможность выбрать исходное направление движения. Передача сигнала изображения в этом случае велась через остронаправленную антенну, неподвижность лунохода давало возможность обеспечить точную ориентацию антенны и требуемое отношение сигнал/шум в тракте передачи.

    Оперативную информацию для вождения передавали камеры телевизионной системы управления. Обеспечить передачу изображения в вещательном формате 625 строк 25 кадров в секунду было невозможно ввиду ограниченной мощности передатчика и невозможности точной ориентации остронаправленной антенны на Землю в процессе движения. Была создана малокадровая система передачи изображения, построена на основе телевизионной трубки - видикона. Время необходимое для передачи кадра - 3…20 сек. Четкость 300…400 строк. Основное отличие видикона, используемого в данной малокадровой системе, состоит в способности сравнительно длительного и регулируемого запоминания (от 3 до 20 сек) сигналов изображения. При этом передающая камера работает, подобно фотоаппарату, в режиме короткого экспонирования слоя с помощью затвора. Электромеханический затвор, установленный перед видиконом, имеет основную выдержку 1/25 сек: при такой выдержке не происходит заметного смаза изображения по время движения лунохода. Телевизионный сигнал после усиления в камере поступает на преобразователь и затем на модулятор передатчика. Время срабатывания затвора, длительность кадра, а также ширина спектра телевизионного сигнала, формируемого преобразователем, задаются синхрогенератором, управляемым по командам с Земли. Камера снабжена одним широкоугольным объективом с F = 6,7 мм. Угол зрения каморы в горизонтальной плоскости составляет около 50 градусов, а в вертикальной 38, причем ось визирования камер наклонена вниз на 15°. Телевизионное изображение передается на Землю на несущей частоте 750 МГц Узкополосный телевизионный сигнал, передаваемый малокадровой системой, после преобразования в стандартные параметры подается на мониторы пульта управления для водителей, штурманов и других членов экипажа, непосредственно управляющих движением лунохода с Земли.

    Таким в общих чертах было устройство первого в мире планетохода созданного в конце шестидесятых годов в Советском Союзе. Гарантийный срок активных передвижений лунохода по Луне определялся в 3 месяца

    Первая попытка направить на наш естественный спутник самоходный аппарат была предпринята 19 февраля 1969 года, еще до высадки на Луну американских астронавтов. В 9 часов 48 минут стартовала ракета-носитель «Протон» с луноходом на борту, но на 51 секунде полета ракеты разрушился головной обтекатель ракеты-носителя. Вслед за этим произошел мощный взрыв. Это произошло из-за ошибочных расчетов обтекателя на прочность.

    Следующая попытка была предпринята через два года и 17 ноября 1970 года станция «Луна-17» благополучно прилунилась в Море Дождей в точке с координатами 38° 17" с.ш. 35° 00" з.д. После прилунения было произведено раскрытие двух пар трапов. Луноход имел возможность съехать с посадочной ступени и вперед и назад, в зависимости от обстановки. Телефотометры передавали панораму места посадки. В 09:28 17 ноября «Луноход-1» съехал с посадочной ступени на лунный грунт. До этого момента на Луне уже побывалт четыре американских астронавта Армстронг, Олдрин, Конрад и Бин. Самым сложным оказалось, все-таки, управление аппаратом. По вновь прибывающему кадру водитель оценивал обстановку появившегося лунного ландшафта, докладывал командиру о предполагаемых дальнейших действиях как по выбору маршрута («вперед», «назад», «направо», «налево», на месте, в движении), так и по скорости движения, обходу, препятствий и пройденного пути, а затем – после получения разрешения командира – выдавал необходимые команды на борт «Лунохода-1».

    В процессе управления выяснилось, что телевизионные камеры стояли на «Луноходе-1» слишком низко. Работала лишь одна из двух, вторая была запасной. Картинка с луны была очень контрастной, без полутеней. Весь первый лунный день экипажи лунохода приноравливались к необычным телеизображениям. Первые двое суток из 14 уходило на подзаряд бортовых аккумуляторов. После этого начиналось движение. В середине лунного дня, когда солнце стоит слишком высоко, теней практически, ухудшались условия работы экипажа, на получаемом с Луны телеизображении было сплошное светлое пятно. Экипажу приходилось делать перерыв в работе на два-три дня. За двое суток до конца лунного дня необходимо было готовиться к лунной ночи. Луноход разворачивался на восток, чтобы при восходе Солнца солнечная батарея, поднятая на 90°, была освещена прямыми лучами. Длительность же ежедневных сеансов связи составляла в среднем 4-6 часов при работе «Лунохода-1» и до 11 часов при работе «Лунохода-2»

    Технические характеристики «Лунохода-1»

    Общая масса, кг 756
    Масса шасси, кг 105
    Скорости движения, км/ч
    первая передача 0,8
    вторая передача 2,0
    Колесная формула 8х8
    База, мм 1705
    Колея, мм 1600
    Ширина колеса, мм 200
    Просвет, мм 380
    Трансмиссия Электрическая с индивидуальным приводом колес
    Тормозная система Электродинамические замедлители и механические однодисковые тормоза с электромагнитным приводом
    Способ поворота бортовой
    Подвеска Независимая, торсионная с качанием рычагов направляющего механизма в продольной плоскости
    Радиус поворота, м
    в движении 2,7
    на месте 0
    Несущая конструкция Безрамная с несущим герметичным контейнером
    Углы статической устойчивости, градус
    продольный 43
    поперечной 45
    Типовые преодолеваемые препятствия
    выступ, м 0,35
    уступ, м 0,4
    трещина, м 1,0
    подъем, градус 20
    Напряжение электропитания, В 27

    Три первых месяца помимо изучения лунной поверхности луноход выполнял программу поиска района посадки лунной кабины. Сначала аппарат шел на юго-восток. Маршрут движения «Лунохода-1» проходил через район Моря дождей, представляющий собой свободный от влияния крупных кратеров участок лунных морей, образованный в результате излияния базальтовых лав. Рельеф относительно спокойный. В конце третьего дня направление его маршрута изменилось на северо-западное. Перед экипажами стояла задача: с использованием только навигационных средств (а не по колее) вывести луноход к посадочной ступени. Это удалось. 18 января «Луноход-1» вернулся на место своей посадки. После этого аппарат пошел на север, продолжая научную программу.

    Таблица. 1. Расстояние пройденное «Луноходом-1» по лунным дням.

    Лунные дни Расстояние пройденное
    «Луноходом-1» по лунным дням, м

    №1(17-24.11.1970) 197
    №2(08-23.12.1970) 1522
    №3(07-21.01.1971) 1936
    №4(07-20.02.1971) 1573
    №5(07-20,03.1971) 2004
    №6(06-20.04.1971) 1029
    №8(04-11.06.1971) 1560
    №9(03-17.07.1971) 219
    №10(02-16.08.1971) 215
    №11(31.08-15.09.1971) 88

    Порой Луноход попадал в серьезные, почти критические ситуации, например в 6 лунный день, 12 апреля 1971 года луноход попал в сложный кратер с очень сыпучими, крутыми краями. Выбраться из него было чрезвычайно сложно. Пробуксовка колес достигала 90%, углы наклона - 24°.

    «Луноход-1» детально обследовал лунную поверхность на площади 80 000 кв. м2. Для этого с помощью телевизионных систем было получено более 200 панорам и свыше 20 000 снимков поверхности. Более чем в 500 точках по трассе движения изучались физико-механические свойства поверхностного слоя грунта, а в 25 точках проведён анализ его химического состава. Прекращение активного функционирования «Лунохода-1» было вызвано выработкой ресурсов его изотопного источника тепла. В результате чего во время лунной ночи температура в герметичном контейнере упала ниже допустимой, что привело к выходу из строя аппаратуры управления. К тому же выработали свой ресурс и аккумуляторные батареи, потерявшие способность накапливать достаточное количество электроэнергии. В конце работы «Луноход-1" поставлен на практически горизонтальной площадке в такое положение, при котором уголковый светоотражатель обеспечил многолетнее проведение лазерной локации его с Земли. Пройденное расстояние -10540 м. длительность активного функционирования-301 сут 06 час 37 мин.

    Опыт успешной эксплуатации «Лунохода-1», подтолкнул инженеров к созданию более совершенной его модификации. К тому же на поверхности Луны есть много участков поверхности, интересных для исследования, в частности граница морского района с материковым, туда и было решено направить младшего брата «Лунохода-1» - «Луноход-2».

    Прежде всего, в конструкцию лунохода был внесен ряд изменений. Конструкторы прислушались к пожеланиям экипажей и сделали третью верхнюю телекамеру, на уровне роста человека. Это существенно улучшило обзор, усовершенствование телевизионной системы увеличило скорость передачи изображений до одного кадра за 3 секунды. Изменился и приборный состав лунохода. Масса «Лунохода-2» возросла до 836 кг. В системе энергопитания «Лунохода-2» были установлены две доработанные аккумуляторные батареи суммарной разрядной емкостью 250 АЧч. Кремниевые фотоэлементы солнечной батареи были заменены фотоэлементами из арсенида галлия. В состав научной аппаратуры вошли: спектрометрическая аппаратура «Рифма-М» для определения химического состава лунного грунта, радиометр для исследования радиационной обстановки на трассе перелета и на поверхности Луны, трехкомпонентный феррозондовый магнитометр на штанге длиной 1,5 метра в передней части лунохода для магнитной съемки по трассе движения, измерения намагниченности отдельных образований на поверхности Луны и измерения вариации магнитного поля Луны, астрофотометр прибор для измерения свечения лунного неба с поверхности Луны в видимом и ультрафиолетовом диапазонах.

    «Луноход-2» в составе станции «Луна-21» был запущен 8 января 1973. «Луна-21» совершила посадку 16 января 1973 гола в Море Ясности в точке с координатами 25° 51" с.ш. 30° 27" вд. Всего в 172 км к югу за месяц до этого осуществила посадку лунная кабина «Аполлона-17». Посадка станции произошла в 3 метрах от края кратера. Стенки кратера были достаточно круты. Поскольку посадка проводилась «вслепую», можно считать везением, что посадочная ступень, вместе с самоходным аппаратом, не опрокинулась. Съехал аппарат прямо в кратер, который при первом осмотре местности не заметили. К счастью, аппарат не перевернулся. Но вот с гироскопической навигационной системой лунохода на этот раз не повезло, она вышла из строя. В результате возросла нагрузка на штурманов экипажа. Четыре месяца экипаж водил «Луноход» без показаний значения углов и дифферента на приборах, ориентируясь только по горизонту Луны и Солнцу, доверяясь исключительно интуиции, поскольку уже не могли рассчитывать на срабатывание блоков защиты и аварийную остановку аппарата при крене и дифференте выше допустимых значений. При этом выручила детальная фотокарта района посадки, по некоторым данным, тайно переданная советским инженерам американскими коллегами, получившими подробные фотографии лунной поверхности в рамках подготовки программы «Аполлон».

    Несмотря на отказ навигационной системы, «Луноход-2» оказался работоспособнее своего предшественника. Сказывался и опыт экипажей, и верхняя третья телекамера. В сложных для проходимости местах можно было сделать стереоскопические панорамы с помощью телефотометров, установленных с каждой стороны лунохода, попарно. Поэтому пройденное расстояние за лунный день доходило до 16,5 км. Пройденный путь «Лунохода-2» по лунным дням приведен в Таблице 2. «Луноход-2» начал свою работу внутри 55-километрового древнего кратера Лемонье, недалеко от его южной кромки. С южной стороны кратер граничит со слабо приподнятой холмистой равниной. В начале работы маршрут движения проходил в типично морском районе. При выходе в предматериковую зону 12 февраля 1973 года луноход достиг ближайшего выступа береговой линии Залива Лемонье (холмы Встречные). Далее он исследовал предгорья гор Тавр, обследовал крупный кратер (диаметр 2 км). Продолжая движение на восток 14 марта луноход вернулся в морскую зону и направился к разлому Борозде Прямой (длина 16 км, ширина 300 м., глубина 40…80 м.). 11 апреля он подходил до расстояния 50 м от края разлома. 13-18 апреля луноход обогнул разлом с юга и вышел на его восточную границу.

    Свой маршрут «Луноход-2» закончил на пятый лунный день 9 мая 1973 года внутри одного из кратеров, который преодолевал аппарат. На стенке этого кратера находился еще один, вторичный, маленький, который не был замечен. Чтобы выбраться из этого кратера оператор-водитель принял вместе с экипажем решение сдать «Луноход-2» назад. Солнечная панель при этом была откинута назад. Крышкой солнечной панели «Луноход-2» въехал в стенку этого кратера. Лунный грунт попал на солнечную панель, упал ток поступающий от солнечных элементов. При попытке, подняв крышку вертикально, стряхнуть лунный грунт, запылился радиатор-охладитель, в результате чего недопустимо возросла температура в приборном отсеке до +47°С. В последний раз телеметрическая информация была принята с "Лунохода-2" 10 мая 1973 года.

    Таблица 2. Расстояние пройденное «Луноходом-2» по лунным дням.


    Лунные дни Расстояние пройденное «Луноходом-2»
    по лунным дням, м

    №1(16-2401.1973) 1148
    №2(07-22.02.1973) 9919
    №3(09-23.03.1973) 16533
    №4(08-23.04.1973) 8600
    №5(07-0 9 .05.1973) 800

    И все же экипаж с честью справлялся с непредвиденными трудностями, особенно возникавшими при движении «Лунохода-2» по сыпучим грунтам и крутым склонам с россыпями камней на рекордно длинной трассе в 37 километров. За четыре месяца с «Луноходом-2» было проведено 60 сеансов радиосвязи. С помощью телевизионной аппаратуры, установленной на борту внеземной лаборатории, на Землю были переданы 86 панорам и свыше 80 тысяч телевизионных снимков лунной поверхности. В ходе съемки были получены стереоскопические изображения наиболее интересных особенностей ее рельефа, позволившие провести детальное изучение его строения. Успешная работа «Лунохода-1» и «Лунохода-2» продемонстрировала широкие возможности и перспективы по исследованию поверхности Луны и других небесных тел с помощью передвижных лабораторий.
    Закончил свое путешествие и второй аппарат, но конструкторы и не думали останавливаться на достигнутом, ища возможности для дальнейших усовершествований.

    Еще через два года был изготовлен очередной, третий луноход. Аппарат стал еще одним шагом вперед по сравнению со своими предшественниками. Еще совершенной стала телевизионная система лунохода. Прежде всего, она была стереоскопической: разработчики смогли обеспечить одновременную передачу с двух телекамер сразу. Телевизионная стереопара стояла в поворотном гермоблоке, который значительно расширял возможности обзора. Теперь аппарату не требовалось разворачиваться целиком для обзора местности. Гермоблок стоял на выносной штанге, как и дополнительная камера на «Луноходе-2.» От телекамер, жестко закрепленных на гермоотсеке лунохода конструкторы вообще отказались. Аппарат был полностью укомплектован научным оборудованием, прошел весь цикл наземных испытаний и подготовлен к экспедиции на Луну. Но так и остался на Земле. Запустить его планировалось в 1977 году. Но к этому времени ракета-носитель «Протон» стала активно использоваться для вывода на геостационарную орбиту советских спутников связи. Лишнего носителя для пуска «Луны-25» не нашлось. «Луноход-3» вместо Луны попал в музей НПО имени Лавочкина. Там он находится и по сей день.

    При работе «Луноходов» имели место два отличающихся по задачам вида движения: передвижение к заранее намеченному пункту и движение на ограниченном участке поверхности при проведении научных экспериментов в сложных рельефных условиях. В первом случае одним из основных критериев эффективности движения является средняя скорость, во втором – точное выдерживание заданного маршрута и преодоление различных элементов рельефа. Под опасными ситуациями понимались такие, когда происходила остановка лунохода при срабатывании бортовой системы безопасности, а также ситуации, выход из которых сопровождался значительными потерями времени и уменьшением скорости движения. Наиболее опасными ситуациями были следующие: срабатывание защиты по крену и дифференту и по перегрузкам электродвигателей, непреднамеренный заезд в кратеры диаметром 2 м. и углом наклона стенок 15…25°. Основными причинами возникновения опасных ситуаций были ошибки в определении размеров препятствий и расстоянии до них, а так же в ряде случаев потеря водителем ориентировки на местности. Последнее объясняется неблагоприятными условиями освещенности при высоком Солнце.

    Технико-эксплуатационные параметры «Лунохода-1» и «Лунохода-2»

    Параметр «Луноход-1» «Луноход-2»

    Время работы, сут. 302 125
    Пройденный путь, км 10,5 37
    Средняя скорость движения, км/ч 0,14 0,34
    Максимальная продолжительность
    непрерывного движения, с
    на первой передаче 50 437
    на второй передаче 9 200
    Частота попадания в опасные
    ситуации на 1 км пути 1-1,5
    Предельный угол преодолеваемого подъема, градус 22-27
    Удельные энергозатраты, ВтЧч/м 0,2-0,22
    Коэффициент буксования (средний) 0,05-0,07

    В ходе работы советских самоходных аппаратов «Луноход-1» и «Луноход-2» был поставлен ряд рекордов. Это абсолютные рекорды по продолжительности активного существования на лунной поверхности - 301 сутки 6 ч 37 мин, максимальной массе автоматических самодвижущихся аппаратов - 756 и 840 кг соответственно, пройденному расстоянию - 10 540 и 37 000 м соответственно, скорости движения и продолжительности активных действий.

    Так закончилась жизнь этих славных «лунных странников». На Луне не идут дожди и не дуют ветра, миллионы лет на поверхности Луны будут сохраняться отпечатки колес «Лунохода-1» и «Лунохода-2» они сам, мы надеемся, навечно останутся на месте своей последней стоянки, как памятник людям их создавшим, смелым мечтателям и гениальным конструкторам и ученым, нашим с вами соотечественникам.

    В январе 1973 года стартовала советская космическая платформа «Луна-21», которая доставила на поверхность спутника Земли «Луноход-2». Аппарат массой 836 килограммов прошел по Луне более 40 километров. Как происходила подготовка к полету и сама экспедиция, рассказал руководитель разработки телевизионных систем советских луноходов, сотрудник (РКС) профессор Арнольд Селиванов.

    «Лента.ру» : Арнольд Сергеевич, как было принято решение о создании подвижной автоматической станции для исследования Луны?

    Селиванов : Это государственное решение, на реализацию которого требуются большие деньги и значительное время. Такие большие проекты формируются на очень высоком уровне, значительно более высоком, чем начальник отдела разработки космической аппаратуры, которым я тогда работал.

    Чтобы сделать луноход, надо было отдельно разработать ходовую часть - шасси, систему дистанционного управления, конструкцию посадочной платформы - и решить много других уникальных задач. Я не могу точно сказать, когда начали решать эти задачи, но это произошло задолго до запуска первого лунохода, еще при жизни .

    Это был его проект?

    Думаю, можно сказать, что именно Королев определил идеологию и начал подбор исполнителей для отдельных частей аппарата. Но реализовывали его уже другие. Дело Королева продолжил главный конструктор Георгий Бабакин.

    В нашей организации работы велись под общим руководством главного конструктора Михаила Рязанского и директора .

    Мы делали «глаза» аппарата - телевизионные системы для управления движением и съемки панорам Луны, а также радиосистемы для передачи изображения, телеметрии и команд управления. Кроме того, мы создали наземный комплекс космической связи и обеспечивали траекторные измерения во время полета и посадки станции «Луна-21».

    Эксперты-баллистики смогли очень точно навести станцию: расстояние между намеченной и фактической точками посадки составило всего 300 метров - высокая точность для того времени. Это стало результатом работы созданных в нашем институте специализированных радиотехнических средств и методик измерения.

    Как проходила работа?

    Это была авральная работа, но в космических проектах по-другому просто не бывает. Мы всегда делаем что-то новое, и запустить это новое надо в очень жесткие сроки, которые зачастую нам диктует небесная механика. Это очень хорошо дисциплинирует коллектив.

    К тому же мы были молоды, могли выносить высокие нагрузки и ощущали свою причастность к очень важному делу - освоению космоса.

    Вы сказали, что делали «глаза» лунохода. Что они могли видеть?

    На луноходах было сразу две телевизионные системы. Одна была предназначена для оперативного управления аппаратом. Ее камеры ориентировались по направлению движения. Вторая обеспечивала панорамирование в двух плоскостях: в горизонтальной плоскости лунохода - для высокоточной топографической съемки на 360 градусов, и в вертикальной плоскости было установлено по одной камере с левого и правого борта - для решения навигационных задач. К слову, качество панорамных изображений вполне соответствует современному уровню.

    Телевизионная система играла ключевую роль в управлении движением аппарата. Насколько сложно было наладить качественное взаимодействие на уровне «человек-машина»?

    Луноход - это робот, подобный современным радиоуправляемым игрушкам, которые можно купить в детском магазине. Принципиальное отличие состоит в том, что он находится на другом небесном теле на расстоянии почти 400 тысяч километров от Земли.

    Радиосигнал проходит это расстояние за время немногим больше секунды. Вследствие этого общая задержка в контуре управления движением лунохода составляет существенно более трех секунд: около одной секунды тратится на приход команды от Земли, еще около секунды - на подтверждение исполнения команды луноходом, и более секунды - на собственно исполнение команды луноходом, реакцию водителя и исполнительных механизмов.

    Это можно сравнить с торможением автомобиля на скользкой дороге. Вы нажали на тормоз, а машина еще какое-то время продолжает движение вперед.

    На лунном расстоянии очень сложно создать высокоскоростной радиоканал, способный передавать подвижные изображения, подобно вещательному телевидению. Водитель лунохода вместо динамической телевизионной картинки наблюдал лишь слайды с изображением поверхности Луны, сменявшиеся с частотой в диапазоне от одного слайда в три секунды до одного слайда в двадцать секунд.

    Как это происходит на практике?

    Допустим, вам требуется продвинуться на расстояние десять метров вперед, вы отправляете команду и ждете ее исполнения, и лишь через несколько секунд видите изображение нового участка поверхности. Так очень легко попасть в аварийную ситуацию. Водителю надо постоянно предугадывать развитие событий. Эта нетривиальная задача требовала особых навыков у водителей. Они отрабатывались на Земле на специальных «лунодромах».

    На них воспроизводились лунные условия?

    Основных лунодромов было два. На этапе разработки технических решений испытывался макет лунохода, который передвигался в ангаре. Его подвешивали на специальных резиновых канатах, чтобы имитировать лунную силу тяжести, которая в шесть раз меньше, чем на Земле. В таком «обезвешенном» состоянии сцепление колес становилось меньше, и тогда можно было понять, как он реально будет двигаться по Луне. Так имитировалось поведение шасси, сначала без телевидения - мы участвовали на этом этапе как наблюдатели.

    Потом, когда луноход уже был создан, небольшой «лунодром» был построен в Симферополе, около наземного Центра управления, буквально во дворе. Все как сегодня в компьютерной игре: экраны, джойстики. Задержка в передаче сигнала была смоделирована. Там луноход управлялся не по радио, а по проводам. Он ехал, а за ним передвигался провод с пультом управления. На этом этапе уже использовались наши камеры.

    И я, и сотрудники моего отдела участвовали в тренировках, управляли луноходом на Земле. Важно было самим сыграть роль водителей, чтобы понять, как работает телевизионная система управления в данных условиях.

    Чем оборудование, которое вы делали для «Лунохода-2», отличалось от «Лунохода-1»?

    На первом аппарате две телевизионные камеры были установлены очень низко, поэтому они видели перед собой лишь небольшой участок поверхности. Поначалу все считали, что очень важно видеть то, что находится непосредственно перед луноходом, чтобы рассмотреть более мелкие предметы, не пропустить какие-то препятствия. Тем более что изображение более далеких объектов давали четыре панорамные камеры - правда, они работали не все время. Надо было часто останавливаться, чтобы осмотреться, что заметно снижало скорость движения первого лунохода.

    Эти обстоятельства были учтены на втором луноходе: была установлена дополнительная камера на высоте человеческого роста. Она оказалась наиболее эффективной в реальной работе. В результате качество изображения получилось намного выше, скорость движения аппарата и управляемость существенно возросли, и он прошел значительно большее расстояние за меньшее время.

    Как выбирали водителя?

    «Луноходом» управлял не один человек. Было два экипажа. Кроме управления движением был еще один контур управления. Поскольку очень мощного передатчика на «Луноход-2» не поставишь, то пришлось делать направленную на Землю антенну с узким лучом. Антенна тоже была на приводе. В некоторых случаях при движении по неровной местности существенно смещалось направление антенны, и требовалось возвращать ее обратно, в нужный сектор. Была даже такая должность - оператор направленной антенны, и был специальный второй джойстик для управления ею.
    Таким образом, экипаж состоял из пяти человек: водитель, командир, штурман, оператор остронаправленной антенны и бортинженер. Все они специальным образом отбирались для этой цели, их психологически готовили к управлению.

    В чем заключалась психологическая часть подготовки?

    Например, до них постоянно доводили одну мысль: «Уважаемые товарищи, имейте в виду, что вам доверили бесценный космический аппарат, а потому очень осторожно к нему относитесь, и при малейшем подозрении, что возникнет аварийная ситуация, выключайте его».

    Между нами говоря, палку немного перегибали, и это приводило к стрессу. Водители были в напряженном состоянии, и через определенное время их надо было менять.

    Это было известно заранее, поэтому в команде управления были свои специалисты по психологии и врачи. Водителям мерили давление, контролировали их состояние. К ним относились почти как к космонавтам.

    Подбирали людей с идеальным здоровьем?

    Космонавтов подбирают больше по физическим данным, а здесь важнее была гибкость нервной системы. Нужно было уметь воспринять эту работу. Подобрали молодых офицеров - людей, которые никогда не управляли никаким видом транспорта до этого. Это очень необычный способ управления, поэтому исходили из того, чтобы не всплыли ранее полученные навыки и привычные автоматизмы. В конце концов были созданы очень хорошие экипажи, которые отлично справлялись со своей задачей.

    Вы помните свои чувства, когда ваша разработка начала работать на Луне? Как это было?

    Потрясающее ощущение, но оно быстро проходит. Вообще восторг и энтузиазм были всеобщими. Когда луноход заработал на Луне, появилось множество желающих посмотреть, как это все происходит. Представляете, как это интересно? Говорят, что министр попросил, чтобы ему дали возможность «порулить», и такая возможность ему была предоставлена. Желающих ощутить причастность к управлению луноходом начальников более низкого ранга было и вовсе огромное количество.

    Это не могло повредить миссии?

    Участие посторонних людей в управлении было кратковременным и скорее символическим: им позволяли направить одну-две команды под надзором экипажа, не более того.

    После путешествия первого лунохода стало ясно, что на Земле лунные условия полностью имитировать не удалось. Лунный грунт - реголит - имеет очень специфические светооптические характеристики. Под определенным углом он хорошо отражает свет в сторону источника освещения. Если Солнце светит точно сзади и при небольшом угле, то в ближней зоне получается светлое пятно - большая освещенность и не видно теней.

    Можно ошибиться, и это вводит водителя в напряженное состояние, он уменьшает скорость движения. Чтобы появились тени и рельеф был виден лучше, приходилось немного поворачивать. Соответствующие рекомендации выдавались тем, кто прокладывал маршрут перед каждым сеансом движения, длившемся несколько часов. Весь накопленный опыт был использован для модернизации «Лунохода-3». К сожалению, он остался в истории как музейный экспонат.

    Почему нет видеофильма с Луны?

    Мы думали об этом. С технической точки зрения тогда это было затруднительно, хотя и возможно, а сегодня в целом проблем нет. Например, путешествие «Лунохода-2» отражено более чем в 80 тысячах кадров и 86 панорамах. Из них можно сделать красивый документальный фильм о путешествии по поверхности Луны. Но в то время подобная задача не считалась первостепенной…

    Сейчас эти кадры находятся в Архиве космической информации и ждут своего режиссера - было бы желание и средства.

    Вы помните, как закончил свое путешествие «Луноход-2»?

    В конце своего пути «Луноход-2» попал в сложную «дорожную ситуацию». Он должен был преодолеть старый, сильно разрушенный кратер, что было обычным делом и неоднократно происходило ранее во время его движения. Но проявилась одна особенность: на дне этого кратера за многие годы скопилось необычно большое количество реголита. Колеса стали погружаться в реголит, и «Луноход-2» забуксовал. Ситуация хорошо известная обычным водителям, когда автомобиль застревает в песчаном грунте. Решили выбираться задним ходом.

    В январе 1973 года стартовала советская космическая платформа «Луна-21», которая доставила на поверхность спутника Земли «Луноход-2». Аппарат массой 836 килограммов прошел по Луне более 40 километров. Как происходила подготовка к полету и сама экспедиция, рассказал руководитель разработки телевизионных систем советских луноходов, сотрудник АО «Российские космические системы» (РКС) профессор Арнольд Селиванов.

    Арнольд Сергеевич, как было принято решение о создании подвижной автоматической станции для исследования Луны?

    Это государственное решение, на реализацию которого требуются большие деньги и значительное время. Такие большие проекты формируются на очень высоком уровне, значительно более высоком, чем начальник отдела разработки космической аппаратуры, которым я тогда работал.

    Арнольд Селиванов

    Чтобы сделать луноход, надо было отдельно разработать ходовую часть - шасси, систему дистанционного управления, конструкцию посадочной платформы - и решить много других уникальных задач. Я не могу точно сказать, когда начали решать эти задачи, но это произошло задолго до запуска первого лунохода, еще при жизни Сергея Королева.

    Это был его проект?

    Думаю, можно сказать, что именно Королев определил идеологию и начал подбор исполнителей для отдельных частей аппарата. Но реализовывали его уже другие. Дело Королева продолжил главный конструктор НПО им. С.А. Лавочкина Георгий Бабакин.

    В нашей организации работы велись под общим руководством главного конструктора Михаила Рязанского и директора Леонида Гусева.

    Мы делали «глаза» аппарата - телевизионные системы для управления движением и съемки панорам Луны, а также радиосистемы для передачи изображения, телеметрии и команд управления. Кроме того, мы создали наземный комплекс космической связи и обеспечивали траекторные измерения во время полета и посадки станции «Луна-21».

    Эксперты-баллистики смогли очень точно навести станцию: расстояние между намеченной и фактической точками посадки составило всего 300 метров - высокая точность для того времени. Это стало результатом работы созданных в нашем институте специализированных радиотехнических средств и методик измерения.

    Как проходила работа?

    Это была авральная работа, но в космических проектах по-другому просто не бывает. Мы всегда делаем что-то новое, и запустить это новое надо в очень жесткие сроки, которые зачастую нам диктует небесная механика. Это очень хорошо дисциплинирует коллектив.

    К тому же мы были молоды, могли выносить высокие нагрузки и ощущали свою причастность к очень важному делу - освоению космоса.

    Вы сказали, что делали «глаза» лунохода. Что они могли видеть?

    На луноходах было сразу две телевизионные системы. Одна была предназначена для оперативного управления аппаратом. Ее камеры ориентировались по направлению движения. Вторая обеспечивала панорамирование в двух плоскостях: в горизонтальной плоскости лунохода - для высокоточной топографической съемки на 360 градусов, и в вертикальной плоскости было установлено по одной камере с левого и правого борта - для решения навигационных задач. К слову, качество панорамных изображений вполне соответствует современному уровню.

    Телевизионная система играла ключевую роль в управлении движением аппарата. Насколько сложно было наладить качественное взаимодействие на уровне «человек-машина»?

    Луноход - это робот, подобный современным радиоуправляемым игрушкам, которые можно купить в детском магазине. Принципиальное отличие состоит в том, что он находится на другом небесном теле на расстоянии почти 400 тысяч километров от Земли.

    Радиосигнал проходит это расстояние за время немногим больше секунды. Вследствие этого общая задержка в контуре управления движением лунохода составляет существенно более трех секунд: около одной секунды тратится на приход команды от Земли, еще около секунды - на подтверждение исполнения команды луноходом, и более секунды - на собственно исполнение команды луноходом, реакцию водителя и исполнительных механизмов.

    Это можно сравнить с торможением автомобиля на скользкой дороге. Вы нажали на тормоз, а машина еще какое-то время продолжает движение вперед.

    На лунном расстоянии очень сложно создать высокоскоростной радиоканал, способный передавать подвижные изображения, подобно вещательному телевидению. Водитель лунохода вместо динамической телевизионной картинки наблюдал лишь слайды с изображением поверхности Луны, сменявшиеся с частотой в диапазоне от одного слайда в три секунды до одного слайда в двадцать секунд.

    Как это происходит на практике?

    Допустим, вам требуется продвинуться на расстояние десять метров вперед, вы отправляете команду и ждете ее исполнения, и лишь через несколько секунд видите изображение нового участка поверхности. Так очень легко попасть в аварийную ситуацию. Водителю надо постоянно предугадывать развитие событий. Эта нетривиальная задача требовала особых навыков у водителей. Они отрабатывались на Земле на специальных «лунодромах».

    На них воспроизводились лунные условия?

    Основных лунодромов было два. На этапе разработки технических решений испытывался макет лунохода, который передвигался в ангаре. Его подвешивали на специальных резиновых канатах, чтобы имитировать лунную силу тяжести, которая в шесть раз меньше, чем на Земле. В таком «обезвешенном» состоянии сцепление колес становилось меньше, и тогда можно было понять, как он реально будет двигаться по Луне. Так имитировалось поведение шасси, сначала без телевидения - мы участвовали на этом этапе как наблюдатели.

    Потом, когда луноход уже был создан, небольшой «лунодром» был построен в Симферополе, около наземного Центра управления, буквально во дворе. Все как сегодня в компьютерной игре: экраны, джойстики. Задержка в передаче сигнала была смоделирована. Там луноход управлялся не по радио, а по проводам. Он ехал, а за ним передвигался провод с пультом управления. На этом этапе уже использовались наши камеры.

    И я, и сотрудники моего отдела участвовали в тренировках, управляли луноходом на Земле. Важно было самим сыграть роль водителей, чтобы понять, как работает телевизионная система управления в данных условиях.

    Чем оборудование, которое вы делали для «Лунохода-2», отличалось от «Лунохода-1»?

    На первом аппарате две телевизионные камеры были установлены очень низко, поэтому они видели перед собой лишь небольшой участок поверхности. Поначалу все считали, что очень важно видеть то, что находится непосредственно перед луноходом, чтобы рассмотреть более мелкие предметы, не пропустить какие-то препятствия. Тем более что изображение более далеких объектов давали четыре панорамные камеры - правда, они работали не все время. Надо было часто останавливаться, чтобы осмотреться, что заметно снижало скорость движения первого лунохода.

    Эти обстоятельства были учтены на втором луноходе: была установлена дополнительная камера на высоте человеческого роста. Она оказалась наиболее эффективной в реальной работе. В результате качество изображения получилось намного выше, скорость движения аппарата и управляемость существенно возросли, и он прошел значительно большее расстояние за меньшее время.

    Как выбирали водителя?

    «Луноходом» управлял не один человек. Было два экипажа. Кроме управления движением был еще один контур управления. Поскольку очень мощного передатчика на «Луноход-2» не поставишь, то пришлось делать направленную на Землю антенну с узким лучом. Антенна тоже была на приводе. В некоторых случаях при движении по неровной местности существенно смещалось направление антенны, и требовалось возвращать ее обратно, в нужный сектор. Была даже такая должность - оператор направленной антенны, и был специальный второй джойстик для управления ею.

    Таким образом, экипаж состоял из пяти человек: водитель, командир, штурман, оператор остронаправленной антенны и бортинженер. Все они специальным образом отбирались для этой цели, их психологически готовили к управлению.

    В чем заключалась психологическая часть подготовки?

    Например, до них постоянно доводили одну мысль: «Уважаемые товарищи, имейте в виду, что вам доверили бесценный космический аппарат, а потому очень осторожно к нему относитесь, и при малейшем подозрении, что возникнет аварийная ситуация, выключайте его».

    ЛИ414 Видикон с регулируемой памятью типа «Пермахон»

    Между нами говоря, палку немного перегибали, и это приводило к стрессу. Водители были в напряженном состоянии, и через определенное время их надо было менять.

    Это было известно заранее, поэтому в команде управления были свои специалисты по психологии и врачи. Водителям мерили давление, контролировали их состояние. К ним относились почти как к космонавтам.

    Подбирали людей с идеальным здоровьем?

    Космонавтов подбирают больше по физическим данным, а здесь важнее была гибкость нервной системы. Нужно было уметь воспринять эту работу. Подобрали молодых офицеров - людей, которые никогда не управляли никаким видом транспорта до этого. Это очень необычный способ управления, поэтому исходили из того, чтобы не всплыли ранее полученные навыки и привычные автоматизмы. В конце концов были созданы очень хорошие экипажи, которые отлично справлялись со своей задачей.

    Вы помните свои чувства, когда ваша разработка начала работать на Луне? Как это было?

    Потрясающее ощущение, но оно быстро проходит. Вообще восторг и энтузиазм были всеобщими. Когда луноход заработал на Луне, появилось множество желающих посмотреть, как это все происходит. Представляете, как это интересно? Говорят, что министр Сергей Афанасьев попросил, чтобы ему дали возможность «порулить», и такая возможность ему была предоставлена. Желающих ощутить причастность к управлению луноходом начальников более низкого ранга было и вовсе огромное количество.

    Это не могло повредить миссии?

    Участие посторонних людей в управлении было кратковременным и скорее символическим: им позволяли направить одну-две команды под надзором экипажа, не более того.

    После путешествия первого лунохода стало ясно, что на Земле лунные условия полностью имитировать не удалось. Лунный грунт - реголит - имеет очень специфические светооптические характеристики. Под определенным углом он хорошо отражает свет в сторону источника освещения. Если Солнце светит точно сзади и при небольшом угле, то в ближней зоне получается светлое пятно - большая освещенность и не видно теней.

    Платформа «Луноход-2»

    Можно ошибиться, и это вводит водителя в напряженное состояние, он уменьшает скорость движения. Чтобы появились тени и рельеф был виден лучше, приходилось немного поворачивать. Соответствующие рекомендации выдавались тем, кто прокладывал маршрут перед каждым сеансом движения, длившемся несколько часов. Весь накопленный опыт был использован для модернизации «Лунохода-3». К сожалению, он остался в истории как музейный экспонат.

    Почему нет видеофильма с Луны?

    Мы думали об этом. С технической точки зрения тогда это было затруднительно, хотя и возможно, а сегодня в целом проблем нет. Например, путешествие «Лунохода-2» отражено более чем в 80 тысячах кадров и 86 панорамах. Из них можно сделать красивый документальный фильм о путешествии по поверхности Луны. Но в то время подобная задача не считалась первостепенной…

    Оптико-механическое сканирующее устройство панорамных камер

    Сейчас эти кадры находятся в Архиве космической информации и ждут своего режиссера - было бы желание и средства.

    Вы помните, как закончил свое путешествие «Луноход-2»?

    В конце своего пути «Луноход-2» попал в сложную «дорожную ситуацию». Он должен был преодолеть старый, сильно разрушенный кратер, что было обычным делом и неоднократно происходило ранее во время его движения. Но проявилась одна особенность: на дне этого кратера за многие годы скопилось необычно большое количество реголита. Колеса стали погружаться в реголит, и «Луноход-2» забуксовал. Ситуация хорошо известная обычным водителям, когда автомобиль застревает в песчаном грунте. Решили выбираться задним ходом.

    «Луноход-2» на поверхности Луны

    В конце концов «Луноход-2» выбрался из кратера, но оказалось, что из-за энергичных маневров крышка, покрытая солнечными батареями, и радиатор охлаждения частично засыпало лунной пылью. Это привело к недопустимому росту температуры внутри лунохода и уменьшению тока зарядки аккумуляторов. Следующую лунную ночь он не пережил - не проснулся…

    Это было печально, но не трагично, ведь «Луноход-2» многократно перевыполнил свое задание.

    Луноход-1 был первым из двух автоматических аппаратов, изучавших Луну в рамках советской программы «Луноход». Космический корабль, доставивший Луноход-1 на поверхность Луны, назывался Луна-17. Луноход-1 стал первым управляемым колесным роботом, который работал за пределами Земли. Дата начала работы аппарата на Луне — 17 ноября 1970 года. Луноход-2 был запущен спустя три года.

    «Луноход» — транспортное устройство, управляемое автоматически, способное передвигаться по Луне и предназначенное для проведения исследования Луны.

    Перед советскими учеными и конструкторами при разработке и создании первого автоматического лунохода встала необходимость решения комплекса сложных проблем. Надо было создать совершенно новый тип машины, способной длительное время функционировать в необычных условиях открытого космоса на поверхности другого небесного тела. Основные задачи: создание оптимального двигателя с высокой проходимостью при малых массе и энергопотреблении, обеспечивающего надежную работу и безопасность движения, систем дистанционного управления движением лунохода; обеспечение необходимого теплового режима с помощью системы терморегулирования, поддерживающей температуру газа в приборных отсеках, температуру элементов конструкции и оборудования, расположенных внутри герметичных отсеков и вне их (в открытом космосе в периоды лунных дней и ночей), в заданных пределах; выбор источников питания, материалов для элементов конструкции: разработка смазочных материалов и систем смазок для условий вакуума и другое.

    Научная аппаратура лунохода должна была обеспечить: изучение топографии местности; определение химического состава и физико-механических свойств грунта; исследование радиационной обстановки на трассе перелета к Луне и на ее поверхности; изучение рентгеновского космического излучения; эксперименты по лазерной локации Луны. Первый луноход — советский “Луноход-1″ был доставлен на Луну космическим аппаратом “Луна-17″ и проработал на ее поверхности почти год (с 17.11.1970 по 4.10.1971).

    “Луноход-1″ состоит из двух частей: герметичного приборного отсека с аппаратурой и самоходного шасси. Масса “Лунохода-1″ 756 кг, длина (с открытой крышкой) 4,42 м, ширина 2,15 м, высота 1,92 м. Приборный отсек служит для размещения аппаратуры бортовых систем и зашиты ее от воздействия внешней среды в условиях космоса. Имеет форму усеченного конуса с выпуклыми верхним и нижним днищами. Корпус отсека изготовлен из магниевых сплавов, обеспечивающих достаточные прочность и легкость. Верхнее днище отсека используется как радиатор-охладитель в системе терморегулирования и закрывается крышкой. В период лунной ночи крышка закрывает радиатор и препятствует отводу теплоты из отсека благодаря тепловому излучению радиатора. В течение лунного дня крышка открыта, и элементы солнечных батарей, расположенные на ее внутренней стороне, обеспечивают подзарядку аккумуляторов, питающих бортовую аппаратуру электроэнергией.

    В приборном отсеке размещены системы терморегулирования, электропитания, приемные и передающие устройства радиокомплекса, приборы системы дистанционного управления и электронно-преобразовательного устройства научной аппаратуры. В передней части расположены: иллюминаторы ТВ камер, электрический привод подвижной остронаправленной антенны, служащей для передачи на Землю ТВ изображений лунной поверхности; малонаправленная антенна, обеспечивающая прием радиокоманд и передачу телеметрической информации, научные приборы и оптический уголковый отражатель, изготовленный во Франции. По левому и правому бортам установлены: 2 панорамные телефотокамеры (в каждой паре одна из камер конструктивно объединена с определителем местной вертикали), 4 штыревые антенны для приема радиокоманд с Земли. Для подогрева газа, циркулирующего внутри аппарата, служит изотопный источник тепловой энергии. Рядом с ним расположен прибор для определения физико-механических свойств лунного грунта.

    Резкие температурные перепады при смене дня и ночи на поверхности Луны, а также большая разница температур между деталями аппарата, находящимися на солнечной стороне и в тени, сделали необходимой разработку специальной системы терморегулирования. При низких температурах в период лунной ночи для обогрева приборного отсека автоматически прекращается циркуляция газа-теплоносителя по контуру охлаждения и газ направляется в контур подогрева.
    Система электропитания лунохода состоит из солнечных и химических буферных батарей, а также приборов автоматического управления. Управление приводом солнечных батарей осуществляется с Земли; при этом крышка может быть установлена на любой угол в пределах от 0 до 180°, необходимый для максимального использования солнечного излучения.

    Бортовой радиокомплекс обеспечивает прием команд из Центра управления и передачу информации с борта аппарата на Землю. Ряд систем радиокомплекса используется не только при работе на поверхности Луны, но и на участке перелета с Земли на Луну. Две ТВ системы лунохода служат для решения самостоятельных задач. Система малокадрового телевидения предназначена для передачи на Землю ТВ изображений местности, необходимых экипажу, управляющему с Земли движением лунохода. Возможность и целесообразность применения такой системы, для которой характерна более низкая по сравнению с вещательным телевизионным стандартом скорость передачи изображения, была продиктована специфическими лунными условиями. Основное из них — медленное изменение ландшафта при движении лунохода. Вторая ТВ система служит для получения панорамного изображения окружающей местности и съемки участков звездного неба, Солнца и Земли с целью астроориентации. Система состоит из четырех панорамных телефотокамер.

    Самоходное шасси предназначено для перемещения лунохода по поверхности Луны. Характеристика шасси: число колес — 8 (все ведущие); колесная база — 170 мм; колея — 1600 мм; диаметр колеса по грунтозацепам — 510 мм; ширина колеса — 200 мм. Шасси выполнено таким образом, чтобы луноход имел высокую проходимость и надежно работал в течение длительного времени при минимальной собственной массе и потребляемой электроэнергии. Шасси обеспечивает передвижение “Лунохода” вперед (с двумя скоростями) и назад, повороты на месте и в движении. Оно состоит из ходовой части (упругая подвеска и движитель), блока автоматики, системы безопасности движения, прибора и комплекса датчиков для определения механических свойств грунта и оценки проходимости шасси. Поворот достигается за счет различной частоты вращения колес правого и левого бортов и изменением направления их вращения. Торможение осуществляется переключением тяговых электродвигателей шасси в режим электродинамического торможения. Для удержания лунохода на уклонах и его полной остановки включаются дисковые тормоза с электромагнитным управлением. Блок автоматики управляет движением лунохода по радиокомандам с Земли, измеряет и контролирует основные параметры самоходного шасси и автоматическую работу приборов для исследования механических свойств лунного грунта. Система безопасности движения обеспечивает автоматическую остановку лунохода при предельных углах крена и дифферента и перегрузках электродвигателей колес.Прибор для определения механических свойств лунного грунта позволяет оперативно получать информацию о движения. Пройденный путь определяется по числу оборотов ведущих грунтовых условиях колес. Для учета их пробуксовки вносится поправка, определяемая с помощью свободно катящегося девятого колеса, которое специальным приводом опускается на грунт и поднимается в исходное положение. Управление аппаратом осуществляется из Центра дальней космической связи экипажем в составе командира, водителя, штурмана, оператора, бортинженера.

    Режим движения выбирался в результате оценки телевизионной информации и оперативно поступающих телеметрических данных о крене, дифференте, пройденном пути, состоянии и режимах работы приводов колес. В условиях космического вакуума, радиации, значительных перепадов температур и сложного рельефа местности по трассе движения все системы и научные приборы лунохода функционировали нормально, обеспечив выполнение как основной, так и дополнительных программ научных исследований Луны и космического пространства, а также инженерно-конструкторских испытаний.

    “Луноход-1″ детально обследовал лунную поверхность на площади 80000 м2. С помощью ТВ систем было получено более 200 панорам и свыше 20000 снимков поверхности. Более чем в 500 точках по трассе движения изучались физико-механические свойства поверхностного слоя грунта, а в 25 точках проведен анализ его химического состава. Пройденное расстояние 10 км 540 м. Длительность активного функционирования “Лунохода-1″ составила 301 сутки 6 ч 37 мин; прекращение работы было вызвано выработкой ресурсов его изотопного источника теплоты. В конце работы он поставлен на практически горизонтальной площадке в такое положение, при котором уголковый отражатель обеспечил многолетнее проведение лазерной локации его с Земли.

    16.1.1973 с помощью автоматической станции “Луна-21″ в район восточной окраины Моря Ясности (древний кратер Лемонье) был доставлен “Луноход-2″. Района посадки был выбран, чтобы получить новые данных о сложной зоне сочленения лунного «моря» и «материка». Усовершенствование конструкции и бортовых систем, а также установка дополнительных приборов и расширение возможностей аппаратуры позволили значительно повысить маневренность и выполнить большой объем научных исследований. За 5 лунных дней в условиях сложного рельефа “Луноход-2″ прошел расстояние 37 км.

    Подпишитесь на нас