Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Котельная на биотопливе: что необходимо знать. Почему котельные на щепе — убыточны? Очистка дымовых газов

    Котельная на биотопливе: что необходимо знать. Почему котельные на щепе — убыточны? Очистка дымовых газов

    20 апреля 2018

    В предыдущем материале мы подробно описали процесс создания древесных гранул. Закономерно, что следующим шагом в этой цепочке должно стать оборудование, для которого эта продукция выпускается - котельные установки на биотопливе. Наши партнёры - специалисты компании «Ковровские котлы» - поделились своим опытом и рассказали о выборе такого оборудования - с учётом актуальных предложений на рынке.

    Мощность и количество котлов

    Отправной точкой при выборе любой котельной является определение мощности и её распределения по котлам. На первый взгляд, ничего сложного: посчитать по таблице, прикинуть свой объём отапливаемых помещений и/или добавить объём сушильных камер с коэффициентом и получить результат. Однако в этом деле есть несколько очень важных нюансов.
    При выборе оборудования стоит заострить внимание на минимальной мощности автоматизированного твердотопливного котла. Как правило, она составляет от 30% (у современных моделей) до 70%(у самых старых котлов). Поэтому, если диапазон регулировки небольшой, потребитель может попасть в неприятную ситуацию: когда на улице потеплеет, снизить подачу тепла уже не получится. В связи с этим имеет смысл раздробить мощность на два котла: в таком варианте будет проще работать в демисезонные периоды со 100-процентным резервом в случае полной остановки. Таким образом удастся застраховаться от будущих поломок и простоя оборудования - особенно в зимний период. Правда, есть у такого решения и минусы. Два котла чаще всего выходят дороже, и занимают они больше места. К тому же обслуживать две машины затратнее, чем одну, ведь приходится работать с в два раза большим количеством двигателей, датчиков и прочих комплектующих, которые будут требовать необходимого сервиса. Поэтому выбор всегда за потребителем.

    Типы исполнения котлов

    Второе, на что стоит обратить внимание, это тип исполнения самого котла. Извечный вопрос: водотрубный или жаротрубный/дымогарный? Принципиальная разница двух схем теплопередачи заключается в конструкции теплообменной части, где продукты сгорания биомассы передают свою энергию теплоносителю (воде, например). Жаротрубно-дымогарное исполнение - это, по сути, бочка с водой, она пронизана трубами, внутри которых движется горячий поток газов от горения. Водотрубное исполнение - вариант «наоборот»: внутри трубки бежит вода, а снаружи её нагревает тепло.
    Казалось бы, какая разница? На самом деле, большая. В результате сжигания древесины в дымовых газах остаются частицы сажи, которые при некорректной настройке тяги могут налипать на стенках этих труб. От этого никак не защититься. Эти отложения требуют механической чистки ёршиком (возможны бесконтактные решения). Чистить круглую трубу внутри в жаротрубном/дымогарном котле или ту же круглую трубу, к тому же навитую в совсем непрямые экраны, снаружи в водотрубном - это две разные вещи. Вариант «не чистить вообще» следует отбросить сразу, поскольку в таком случае через полгода, а то и раньше, теплопередача уменьшится в среднем на 60-70% и мощность котла упадёт минимум в разы.
    Ещё один большой минус водотрубных котлов - ограничение минимальной скорости потока теплоносителя внутри трубочки, по которой бежит вода. Если она не обеспечена мощным насосом или электроснабжение вдруг прекратится (сломается насос, износится крыльчатка, забьётся фильтр и т. д.), то водотрубный котёл сразу же даст течь. Чтобы нагреть бочку с водой, в которой несколько «кубов» (в жаротрубном котле), и локально трубку, где воды всего несколько сот граммов, до критической температуры разрушения, потребуется разное время А это означает разное время на реагирование персонала.
    Далее, нужно понимать, что водотрубная система менее металлоёмкая, а значит, она намного дешевле в производстве. Даже если сравнить сухую массу котлов, то разница будет отличаться в разы. Производство водотрубных котлов дешевле, нежели жаротрубных. Но при этом на насосы для водотрубных придётся неслабо потратиться. Они должны быть более производительны по протоку.

    Очистка дымовых газов

    Нюанс, на котором следует остановиться - это очистка дымовых газов. Тех самых, о которых шла речь выше, и в которых в любом случае в той или иной мере присутствует сажа. Некоторые котлостроители предлагают оборудование без циклона очистки и дымососа. Но это - путь в никуда. Сэкономить тут не получится, а работа котла в итоге будет неправильной, история может закончиться возгоранием. Часто можно услышать: «Меня не интересуют выбросы и чёрный дым из трубы!», «Кто тут ко мне придёт? Меня не видно, и на окраине я!» или «Я работаю в деревне!». Нет, так дело не пойдёт. Согласитесь, когда вокруг котельной снег становится чёрным, это первый звоночек навострить уши. Если собственник не беспокоится о природе, то его однозначно должна волновать опасность потерять производство во время пожара. Ведь одна такая чёрная частичка, зимой упавшая на снег, летом может долететь ещё недогоревшая.

    Система автоматики

    Следующий момент, требующий более углублённого внимания со стороны покупателя, это система автоматики. Производители могут писать «в автоматическом режиме…», но на деле всё оказывается не так, как себе это представляет заказчик. Всегда требуется уточнение, что именно понимается под термином «система автоматики». Что конкретно работает в автоматическом режиме, а что оператору придётся подкручивать на месте.
    Стоит пояснить, что вопрос здесь заключается в правильной организации горения биотоплива, а точнее - в правильном смесеобразовании в топочном устройстве. Разберёмся, что это такое. Для правильного горения необходимо соблюдать точную пропорцию топлива и кислорода, чтобы достигнуть требуемой температуры теплоносителя, точно так же, как в двигателе автомобиля. Если кислорода будет слишком мало, будет происходить неполное сгорание, и из дымовой трубы пойдёт чёрный дым (углерод не до конца окислился). Опасность состоит в том, что этот процесс может закончиться теперь уже за пределами котельной, что приведёт к возгоранию. Если кислорода будет слишком много, будут образовываться вредные газы с названием NОx, и экологи не упустят такой шанс наказания владельца этого оборудования. Вот и получается, что печку сложить может каждый печник, а вот управлять процессом горения не всем по зубам.
    Из опыта общения с владельцами котельных установок можно сделать вывод, что что многие под автоматизацией понимают механизацию подачи топлива, а кислород регулируют на глаз. Далеко не все знают, что такое газоанализатор и контроль кислорода, и, самое главное, чем грозит неправильная настройка.
    Работа любого оборудования, в том числе котла на биотопливе, сопряжена со многими тонкостями, знания о которых приходят вместе с опытом работы с такими системами. Поэтому при выборе подобных агрегатов лучше всего прибегнуть к помощи специалистов.

    Еще в 2014 году глава региона Алексей Острвоский одобрил инициативу ООО «Смоленская биоэнергетическая компания» – подразделения компании «Биоэнерго» – по модернизации системы централизованного теплоснабжения на территории Угранского района. Спустя год, были запущены 3 новые котельные в селах Всходы и Знаменка, а также в поселке Угра.

    Ранее в перечисленных населенных пунктах отопление осуществлялось с помощью старых котельных с практически истекшим сроком эксплуатации. Новые котельные, для обслуживания которых достаточно одного оператора, удаленно контролирующего подачу тепла, работают на торфе и деревянной щепе.

    В рамках рабочего визита в село Всходы губернатор ознакомился с ходом реализации проекта по модернизации системы центрального теплоснабжения.

    Новая котельная в селе Всходы мощностью 0,75 Гкал/час отапливает библиотеку, среднюю школу и многоквартирный жилой дом. При этом, КПД новых котлов достигает 94 %, тогда как соответствующий показатель угольной котельной составлял всего 50%. Как сообщил директор «Смоленской биоэнергетической компании» Алексей Ефремов, щепа для котельной поставляется угранскими лесообрабатывающими предприятиями, в то время как торф доставляют из Владимирской области,

    Глава региона поручил изучить возможность расширить использование местного сырья:

    - В области есть крупные месторождения торфа хорошего качества. Елена Анатольевна (Соколова,начальник Департамента по строительству и ЖКХ), я поручаю руководителю профильного Департамента совместно с Вами изучить возможность добычи торфа на территории Смоленщины и его применения в качестве топлива для котельных. Это не только позволит создать новые рабочие места в регионе, но и, что немаловажно, будет способствовать снижению цены на топливо, которое не нужно будет доставлять из Владимирской области.

    Сегодня в планах у ООО «Биоэнерго» – расширение и строительство новых котельных. В настоящее время в рамках концессионного соглашения завершается модернизация системы теплоснабжения в Угранском сельском поселении. На эти цели в начале нынешнего года Фондом содействия реформированию жилищно-коммунального хозяйства выделено свыше 51 млн рублей. Средства предназначены для строительства новой котельной, которая заменит две старые, выработавшие свой технический ресурс, а также для строительства и реконструкции сетей теплоснабжения протяженностью более трех километров. Кроме того, у компании есть планы по строительству котельных в Велижском и Демидовском районе. В свою очередь, Губернатор всецело одобрил данную инициативу, особо подчеркнув, что запуск котельных в этих муниципалитетах должен быть реализован в приоритетном порядке.

    Генеральный директор ООО «Биоэнерго» Алексей Гарбузов также проинформировал главу региона об успехах компании. В частности, проект «Биоэнергетика в национальном парке «Смоленское Поозерье» получил высокую оценку на федеральном уровне:

    - 14 ноября мы были признаны победителями конкурса «Чистая энергетика для развития территорий», организованного Русским географическим обществом. Награду компании вручил специальный представитель Президента России Владимира Владимировича Путина по вопросам природоохранной деятельности, экологии и транспорта Сергей Борисович Иванов.

    В ходе посещения котельной начальник регионального департамента по строительству и жилищно-коммунальному хозяйству Елена Соколова заявила, что тепловые пункты, строящиеся ООО «Смоленская биоэнергетическая компания», в случае экономической целесообразности могут быть переведены и на газовое топливо.

    - Я готов дополнительно обсудить с вами дальнейшее взаимодействие в данном направлении и совместно с моими подчиненными наметить программу работы на ближайшие годы. Елена Анатольевна (Соколова), прошу Вас инициировать организацию встречи, как только в этом возникнет необходимость, - отметил в завершение своего визита Алексей Островский, обращаясь к инвесторам.

    Если вы выбираете оборудование для котельной на биотопливе, то главным критерием должен стать тот фактор, какое из видов биотоплива является наиболее доступным для вашего предприятия. Если вы, например, владелец лесопилки и имеете большое количество опилок и древесной щепы, то вам необходимо приобрести оборудование для сжигания влажного топлива. Если же вы директор мебельной фабрики, то, скорее всего, отходами производства вашей компании будет сухая щепа, что позволит применять биокотельные для сухого топлива. В этом случае возрастает экономия энергии в процессе сгорания, что приводит к более высокой эффективности процесса. Это позволяет говорить о преимуществах использования просушенных опилок и стружки. Если же у вас имеется или вы намерены приобрести установку для изготовления пеллет, то в этом случае вы сможете применять оборудование для сжигания облагороженного биотоплива − самый высокотехнологичный способ производства энергии из биомассы.

    Как правило, различают три типа оборудования: для сжигания облагороженного биотоплива с влажностью 5-15%; для сухого топлива с влажностью 15-35%; для влажного топлива с влажностью 35-60%.

    Нужно отметить, что чем выше влажность топлива, тем дороже обходится производство тепла, тем больше котел, топка, мощность вентиляторов, склад для хранения топлива, риск смерзания и т.  д. Кроме влажности определяющими характеристиками топлива при выборе оборудования являются форма и зольность.

    Оборудование для сжигания биотоплива состоит из ряда компонентов, которые могут быть сгруппированы следующим образом:

    • система складирования и подачи топлива;
    • система сжигания;
    • система дымовых газов;
    • система золоудаления;
    • система регулирования и контроля.

    Типичная установка для сжигания щепы представлена на рис. 1.

    Существует несколько способов складирования и подачи топлива. Ниже описывается один из них, показавший себя наиболее приемлемым при сжигании щепы.

    Топливный склад

    Конструкция и размеры топливного склада должны соответствовать типу топлива, размеру котельной, условиям поставки топлива и времени работы котельной. Комбинация наружного склада с запасом топлива примерно на неделю работы котельной с небольшим складом с автоматической подачей, рассчитанным примерно на 48 часов работы, − наиболее часто встречающееся решение.

    Наружный склад, обслуживаемый тракторами, строится на асфальтовой или бетонной площадке. С целью защиты от попадания пыли за пределы склада он ограждается забором либо возводится полностью крытым. Такой тип склада очень рентабелен, а возможность применения тракторов снижает затраты по его обслуживанию и обеспечивает бесперебойную работу.

    Подача топлива на склад может быть решена в разных вариантах. Для этого могут быть использованы самые различные виды машин. Исключение составляют склады с недостаточно высокой крышей, что препятствует использованию транспортных средств с верхней загрузкой. Существует множество различных транспортных средств, так что выбрать оптимальное решение нелегко.

    Как правило, автоматический склад соединен с главным складом и обслуживается тракторами или, в отдельных случаях, тельферами с манипулятором. Если позволяет пространство, можно разгружать щепу прямо на автоматический склад. Для того чтобы упростить загрузку, автоматический склад не имеет ворот, и, поскольку ширина скребкового транспортера около 5 м, тракторы могут наезжать на толкатели. Высота загрузки топлива в автоматическом складе ограничена примерно 3 м и зависит от мощности гидравлической системы.

    Подача топлива



    1. Гидравлическая станция
    2. Упорная балка цилиндров
    3. Гидравлические цилиндры
    4. Толкатели
    5. Вал-разрыхлитель

    6. Приемный канал

    7. Выгружной шнек
    8. Привод шнека

    Для подачи топлива с автоматического склада используются шнековые и скребковые транспортеры. В последние годы предпочтение отдается скребковым транспортерам, поскольку они более прочны и менее чувствительны к качеству топлива. К тому же они позволяют изменять направление скребкового конвейера, что уменьшает количество необходимых трансмиссий и приводов.

    Склады, снабженные донными гидравлическими штанговыми толкателями, являются наилучшим решением и используются в большинстве случаев. Толкатели двигаются вперед или назад по полу склада в зависимости от положения гидравлического привода. Когда толкатель доходит до конечного положения, давление возрастает и переключает привод на обратное направление.

    Толкатель подает топливо на вал-разрыхлитель (установлен в конце автоматического склада), служащий для выравнивания топлива и особенно необходимый в случаях смерзания топлива. Вал также выполняет функцию управления загрузкой шнекового конвейера, выгружающего топливо со склада. Это происходит с помощью устройства, отключающего или запускающего штанговые толкатели. Система конвейеров подает топливо в промежуточный бункер, расположенный над топкой или перед топкой. Этот бункер выполняет три функции:

    • обеспечивает равномерную подачу топлива на решетку толкателем;
    • служит «воздушным замком», препятствующим обратному возгоранию;
    • предотвращает присосы воздуха и обеспечивает возможность правильного регулирования процесса горения.

    Топливный бункер снабжен в верхней части заслонкой, которая при прекращении подачи топлива закрывается.

    Сжигание щепы


    Выбор подходящего оборудования в принципе зависит от того, сухую или влажную щепу предполагается сжигать. Если щепа влажная, предпочтительно остановиться на конструкции котла с предтопком, имеющего тяжелую обмуровку без или с небольшими поверхностями нагрева, чтобы обеспечить достаточно высокую температуру для полноценного сжигания. Причина заключается в том, что при сжигании влажного топлива образуется много газов и требуется больше тепла, чтобы испарить содержащееся в топливе большое количество влаги. Топочные газы не должны вступать в контакт с поверхностями нагрева до того, как их горючая составляющая не выгорела полностью. Если этого не происходит, то конечным продуктом будет являться не СО 2 , а промежуточный продукт − СО. Когда газы полностью сгорели, они отдают тепло охлаждаемым водой поверхностям нагрева котла.

    Если щепа сухая, то температура горения может быть слишком высокой. Это, помимо нежелательных выбросов NO 2 , может привести к серьезным повреждениям обмуровки, в большинстве случаев не приспособленной к температурам свыше 1300°С. Поэтому при сжигании сухого топлива в топке должны иметься охлаждаемые поверхности для отбора излишнего тепла.

    Граница между сухим и влажным топливом лежит в районе 30% влажности. Обычно указывается и высшая граница влажности − 55%. Если влажность топлива выше, очень трудно достичь хорошего сгорания и обеспечить достаточную мощность «нормального», не приспособленного для сжигания топлива такой степени влажности оборудования.

    На рис. 3 схематически показано, как влияет на оборудование влажность топлива.

    Загрузка топки и решетки

    Загрузка топки может происходить различными способами: либо с помощью шнека, либо толкателя (стокера). Последнее решение является преобладающим. Стокер представляет собой гидравлический скребок, расположенный на дне топливного бункера и подающий топливо на решетку. Стокер может считаться первой подвижной ступенью решетки. В зависимости от размеров топки предусматривают один или несколько стокеров. При мощности котла в 4 МВт стокеров обычно два.

    В установках мощностью от 2 до 20 МВт чаще всего используются колосниковые решетки. На решетке происходят следующие процессы:

    • прогрев и сушка топлива, происходящая в верхней части;
    • выход летучих веществ, горючих газов (СО, Н 2 , СН4, которые затем сгорают);
    • горение коксового остатка (углерода).

    Решетки чаще всего бывают наклонными и подвижными, чтобы обеспечить достаточное и контролируемое передвижение топлива в топке. Подвижная решетка, как показывает опыт, препятствует также спеканию золы в большие, мешающие нормальному процессу горения комки. Решетка состоит из нескольких секций. Каждая вторая секция может двигаться вперед и назад, проталкивая топливо. Подвижность достигается с помощью гидравлического привода. При большем количестве топлива частота движений решетки увеличивается. Балки, на которых крепятся элементы решетки, часто имеют водяное охлаждение, в то время как секции решетки охлаждаются первичным воздухом.


    Воздух

    Воздух, необходимый для сжигания топлива, делится на первичный и вторичный. Первичный воздух подается под решетку и предназначен главным образом для сушки и газификации топлива, а также для сжигания той части топлива, которая не газифицируется.

    Первичный воздух подается в несколько зон под подвижной решеткой. Зон этих как минимум две, а в установке мощностью 4 МВт их обычно три, а иногда и четыре. Каждая зона имеет свою заслонку и снабжается воздухом от вентилятора первичного воздуха.

    Вторичный воздух подается отдельным вентилятором, часто с регулируемым числом оборотов. Воздух должен подаваться с большой скоростью через регулируемые сопла так, чтобы обеспечить хорошее смешивание газов и воздуха.

    Третичный воздух − это тоже вторичный воздух, подаваемый на выходе из топки и предназначенный для обеспечения окончательного сгорания. Источником его является чаще всего вентилятор вторичного воздуха.

    Примеры топок

    Существует много поставщиков такого котельного оборудования, о котором идет речь в этой статье. Шведские изготовители представляют собой самую большую группу. Среди них можно назвать KMW, Saxlund, Hotab, Järnförsen, Osby, Zander и Ingerström, TEEM. Эти производители, чьи конструкции решеток и систем подачи топлива могут заметно отличаться друг от друга, поставляют котлы как для сухого, так и для влажного топлива, причем конструкция приспосабливается к тому виду топлива, которым располагает заказчик.

    Котлы

    Тепло дымовых газов передается с помощью теплопередающих (конвективных) поверхностей котла посредством водотрубных, жаротрубных дымотрубных установок. Вертикальный жаротрубный котел − наиболее распространенный тип котла. Такие котлы обладают существенным преимуществом: они не занимают много места и удобны в эксплуатации, поскольку очистка проводится в вертикальном направлении снизу. Существует множество конструкций котлов. Они могут быть интегрированы с топкой или расположены рядом с ней или над ней. Котел может также стоять отдельно и соединяться с топкой через газоход.

    Система дымовых газов

    Система дымовых газов предназначена для отвода дымовых газов после их прохождения через котел и удаления их через дымовую трубу. Система состоит, как правило, из дымососа, системы очистки дымовых газов и газоходов. Дымосос − это очень важный, можно сказать, критический компонент оборудования. Он должен работать постоянно, поддерживая разрежение в топке. Работа дымососа регулируется различными способами: либо с помощью шибера, либо, что обычно применяется в современном оборудовании, с помощью регулятора числа оборотов, что выгоднее с точки зрения энергосбережения.

    Количество дымовых газов в системе зависит от вида топлива, его влажности, температуры дымовых газов и избытка воздуха. Системы дымовых газов в небольших котельных чаще всего рассчитаны на максимальную температуру дымовых газов 250°С. Рабочая температура дымовых газов в таких установках составляет 200°С. Уменьшение коэффициента избытка воздуха с 2 (О 2 =10,7%) до 1,6 (О 2 =7,6%) снижает количество дымовых газов примерно на 20%. Уменьшение влажности с 50 до 40% снижает количество дымовых газов примерно на 7%.

    В последнее время система дымовых газов часто дополняется системой так называемой рециркуляции дымовых газов. Это означает, что дымовые газы после очистки возвращаются в топку и используются в качестве воздуха для горения. В результате интенсивность горения снижается, поскольку в дымовых газах мало кислорода. Другой важный природоохранный и экономический эффект рециркуляции − снижение выбросов NO 2 .

    Рециркуляция дымовых газов осуществляется с помощью отдельного вентилятора, установленного после системы очистки, который подает дымовые газы в топку, чаще всего над решеткой. Регулирование вентилятора может осуществляться как шибером, так и числом оборотов на основе показаний датчика температуры в топке. Вентилятор включается тогда, когда температура превышает, например, 1000°С. Рециркуляция дымовых газов особенно актуальна, когда ожидаются проблемы со слишком высокой температурой в топке. Такие проблемы часто возникают, если в котле используется более сухое, чем расчетное, топливо.

    Очистка дымовых газов

    Существует много конструкций для улавливания летучей золы. С определенной степенью упрощения можно разделить их на следующие основные типы:

    • динамические (инерционные) золоуловители, в которых используются гравитационные и инерционные силы, влияющие на уносимые с газом частицы;
    • текстильные фильтры, изготавливаемые, как правило, из волокна;
    • электрофильтры, в которых используются электростатические силы заряженных частиц;
    • водяные (мокрые) золоуловители, которые вымывают частицы водой, распыляемой в уходящих газах.

    Степень очистки выражается в отношении уловленной золы к общему количеству золы до работы золоуловителя. Обычно количество золы измеряется как до, так и после золоуловителя.

    Степень очистки = (Содержание золы до золоуловителя − Содержание золы после золоуловителя) : Содержание золы до золоуловителя х 100%.

    Степень очистки может быть уточнена только тогда, когда известно распределение частиц золы по размерам.

    Для того чтобы описать летучую золу, используются диаграммы распределения частиц по размерам, или, как их ещё называют, рассевочные кривые. Кривая выводится путем определения количества частиц разного размера при просеивании золы через проволочные сита с различным диаметром отверстий. Ту часть золы, которая не просеивается через сито, взвешивают и учитывают её процентное отношение к общему количеству просеиваемой золы.

    Золоуловитель с достаточно умеренной степенью очистки может показать очень высокий коэффициент очистки, если он используется для очистки газов с высоким содержанием крупных частиц золы, скажем 5%. И все равно может оказаться, что выброс летучей золы будет выше допустимого, поскольку общее содержание золы в газах было велико.

    Выбор метода очистки зависит от нескольких факторов:

    • свойств золы;
    • требований по выбросам;
    • характера топлива;
    • способа сжигания.

    Прежде чем выбирать фильтр, необходимо уточнить все эти данные, иначе результат может быть обескураживающим.

    Мультициклон − самый распространенный тип динамических золоуловителей. Агрегат состоит из нескольких небольших уловителей типа циклон, соединенных параллельно. Диаметр циклонов варьируется от 125 до 250 мм. Небольшие циклоны помещены в кожух, на дне которого чаще всего имеется пылевой бункер. Количество циклонов в мультициклоне может быть от 4 до 200. Мультициклоны дешевы, надежны и прекрасно выполняют свою роль при сжигании твердого топлива до тех пор, пока требования к очистке не особенно высоки, поскольку они не улавливают наиболее легкие частицы.

    Лучше всего мультициклоны работают при большой и постоянной нагрузке. Для того чтобы они функционировали нормально при нагрузке около 50% от номинальной, существуют два метода. Один из них состоит в том, что уже очищенные дымовые газы вновь подают на вход мультициклона, чтобы увеличить поток газов и, соответственно, сохранить необходимую степень очистки (полнопоточное регулирование). Другой метод построен на регулировании соотношения потоков или частичном отключении фильтра. При очень больших колебаниях нагрузки мультициклоны, собственно говоря, непригодны. Впрочем, при низкой нагрузке содержание частиц в дымовых газах и так невелико.

    Удаление золы не представляет трудностей. Зола или собирается в золоприемник, или удаляется шнековым либо иным транспортером. Степень очистки в циклонах составляет 85-92% и зависит от содержания тонких фракций в золе. Если допустимый уровень эмиссии летучей золы составляет 300 мг / нм3 сухого газа, то выбор мультициклона в качестве золоуловителя является наиболее целесообразным.

    При сжигании щепы содержание частиц золы после мультициклона обычно составляет 160-200 мг / нм 3 газов. Мультициклоны имеют стопроцентный доступ для ремонта, поскольку оборудование состоит главным образом из листового металла.

    Текстильный рукавный фильтр − общее название для целого ряда золоуловителей, в которых газ проходит через волокнистый материал и частицы золы осаждаются частично на его поверхности, частично между волокнами. В качестве фильтрующего материала используется полиамид, полиэфир, тефлон и другие. Могут использоваться как тканые, так и нетканые материалы, а также их комбинация.

    Обычно поверхность фильтра имеет форму рукава, но встречаются также складчатые и плоские кассеты. Рукава натянуты на стальные каркасы и чаще всего расположены вертикально, но существуют и конструкции с горизонтальным расположением рукавов. Газы поступают в рукав, и летучая зола оседает на их внутренней поверхности в виде зольных отложений.

    Регулярная очистка фильтров важна для их правильного функционирования. Существует несколько основных методов очистки: встряхивание, обратная продувка и импульсная очистка. Наиболее распространенным методом является импульсная очистка. Она происходит с помощью сжатого воздуха, подаваемого в верхний конец каждого рукава через установленный на трубе мундштук. В этих мундштуках устанавливается сопло Вентури, чтобы быстро преобразовать энергию скорости воздуха в энергию давления. Ударная волна, получаемая таким образом, используется для резкого раздувания рукава, так что зольные отложения при этом отлипают от стенки фильтра.

    Такую очистку с успехом проводят на работающем котле. Под фильтрующими рукавами зола собирается в воронки. Текстильные фильтры обеспечивают очень высокую степень золоулавливания и надежны в эксплуатации, пока фильтрующие материалы не повреждены и проводится их очистка. Теплостойкость материала, из которого изготовлены фильтры, ограничивает их использование температурой 240-280°С. Высокое содержание влаги и низкая температура дымовых газов могут быть причиной конденсации в фильтрующем материале и забивания фильтра. Эта опасность особенно велика в момент запуска котла, поэтому в фильтр вмонтированы специальные петлевые трубы для подогрева, чтобы избежать конденсации. Полагается делать также байпас, так что фильтр можно отключать, если его эксплуатационные характеристики не соответствуют требуемым.

    Степень очистки в фильтрах очень высока и может в зависимости от нагрузки достигать 99,9%. Сопротивление в фильтре текстильном в сравнении с электростатическими фильтрами велико и составляет при нормальных эксплуатационных условиях 1000-1500 Па.

    Фильтры довольно дороги в эксплуатации, поскольку рукава необходимо менять каждые три года. Затраты зависят также и от того, какой материал используется в фильтре. Ремонтодоступность − около 98%.

    В электрофильтрах частицы, уносимые с газами, ионизируются при прохождении мимо проволочных электродов (эмиссионных или коронирующих), навитых на вертикальные пластины. Осадительные электроды, выполненные в виде пластин, заземлены, и благодаря разности потенциалов между коронирующими электродами и пластинами частицы золы оседают на осадительных электродах. Как эмиссионные, так и осадительные электроды очищаются встряхивающими устройствами, приводимыми в действие электромоторами, что обеспечивает их постоянное встряхивание.

    Электростатические фильтры обеспечивают очень высокую степень очистки, очень надежны, эксплуатационные затраты и затраты на их обслуживание невелики. Степень золоулавливания обычно высока, но она зависит от проводящих свойств золы и размеров частиц золы. Эффективность электростатических фильтров и их размеры в гораздо большей степени, чем у других видов фильтров, зависят от физических и химических свойств золы, и такие фильтры обычно велики и дороги. Падение давления в электростатических фильтрах мало − 100-200 Па, поскольку скорость дымовых газов в них низка. Стоимость обслуживания невелика и составляет около 1% инвестиционных затрат. Ремонтодоступность − 99%.

    Конденсация дымовых газов − метод не столько их очистки, сколько утилизации тепла. Тем не менее очищающий эффект метода в отношении золы и других эмиссий весьма значителен. Система конденсации дымовых газов состоит из установки, где дымовые газы насыщаются водой в конденсаторе, в результате чего они охлаждаются. Тепло обычно используется для горячего водоснабжения или в тепловых сетях − локальных или коммунальных. Перед тем как уйти в дымовую трубу, газы обычно снова нагреваются примерно до 100°С. Иногда дымовые газы охлаждаются до очень низкой температуры в увлажнителе, где полученное тепло и влага используются для подогрева воздуха, подаваемого для сжигания топлива. При этом потоки воздуха и дымовых газов увеличиваются, но и повышается количество тепла, которое может быть утилизировано в конденсаторе.

    Очистка дымовых газов частично прямая, за счет отделения частиц золы в конденсаторе, частично непрямая, зависящая от уменьшения потребления топлива при повышении КПД котла. Большое значение имеет конструкция для насыщения газов влагой. Это может быть просто канал, куда впрыскивается вода, или специально сконструированный скруббер с равномерным распределением воды в газах и продолжительным контактом газов с водой.

    Конденсатор всегда сочетается с каким-либо другим оборудованием для очистки газов. Оно варьируется от случая к случаю; есть примеры, где используются мультициклоны, циклоны грубой очистки и рукавные фильтры.

    Степень очистки при конденсации находится в интервале 40-90%, в зависимости от топлива и содержания золы в газах. Можно достичь снижения эмиссии до 30 мг / МДж топлива или 100-125 мг / нм3 газов. Степень очистки конденсата при конденсации дымовых газов зависит, с одной стороны, от того, какие золоуловители установлены до контактного теплообменника, с другой − от того, какое топливо используется. Обычно хороший эффект дает разделение потоков воды от скруббера и контактного теплообменника, поскольку вода в последнем намного чище.

    При сжигании древесного топлива и торфа водяная очистка относительно проста. Часто проводится обычное осаждение, иногда используются флокулянты. Показатель рН регулируется так, чтобы он не превышал 6,5.

    Водная фаза после очистки может использоваться вновь в качестве воды для скруббера, осадок идет в канализацию. Осадок часто используется для увлажнения золы.

    В табл. 1 показаны достоинства (+) и недостатки (-) различных систем золоулавливания.

    Приблизительно правило, касающееся закупочной цены мультициклонов, текстильных и электрических фильтров, таково: они соотносятся друг с другом как 1:3:4.

    Как правило, для очистки дымовых газов при сжигании биотоплива достаточно мультициклона. Но в определенных случаях, в частности если котельная находится в плотно заселенном районе, требования к выбросам золы повышаются и обойтись только мультициклоном не удается. Наиболее приемлемой альтернативой в таких случаях является установка конденсатора дымовых газов после мультициклона, что в большинстве случаев и делается. Таким образом достигается более высокая степень очистки и повышается коэффициент полезного действия котельной. Как уже было сказано, в отдельных случаях КПД может превышать 100%.

    Шлакоудаление

    Зола, образующаяся при горении, делится на топочную и летучую. Топочная зола и шлак удаляются непосредственно из топки, в то время как летучая зола уносится дымовыми газами и улавливается оборудованием для очистки дымовых газов. В топках с подвижной решеткой большая часть золы удаляется с помощью мощного, поперечно расположенного в конце решетки шнекового транспортера или другого специального устройства. Шнек рассчитывается так, чтобы он мог справиться со спекшейся, твердой золой. Эти узлы подвергаются большим нагрузкам и должны быть защищены от слишком высокой температуры. Это означает, что надо следить, чтобы транспортер был всегда покрыт защитным слоем золы. В небольших котельных зола часто удаляется вручную. Летучая зола, составляющая лишь небольшую часть от общего количества золы, улавливается.

    Мокрое шлакоудаление

    При этом способе зола, как топочная, так и летучая, падает в заполненный водой желоб, откуда она транспортируется далее. В желобе, расположенном под топкой, под уровнем воды имеются «воронки» для подачи первичного воздуха в различные зоны топки. Для изготовления зольных транспортеров используется обычная сталь, поскольку зола имеет щелочную реакцию и рН воды может достигать 12. При значении рН свыше 10 ржавления не происходит. Если рН воды слишком низок, его можно корректировать с помощью гидроксида натрия.

    Влажное золоудаление удобно и надежно. Исчезают проблемы с запылением или тлеющей горячей золой. При этом способе золоудаления помимо всего прочего легче герметизировать топку. Впрочем, у этого метода есть и недостатки. Износ подвижных частей в воде может быть весьма заметным и требовать больших ремонтных работ. Щелочная вода представляет собой определенный риск для здоровья персонала. К тому же такая конструкция дороже и требует большей высоты помещения котельной.

    Сухое шлакоудаление

    Этот способ шлакоудаления может осуществляться как вручную, так и механически или пневматически. Пневматический транспорт золы обычно применяется в котельных мощностью свыше 10 МВт, в то время как в небольших котельных преобладает механическое золоудаление. Как уже было сказано, механическое шлакоудаление происходит с помощью шнековых транспортеров, расположенных под уровнем дна топки с одной из её сторон. Этот транспортер забирает золу не только в конце решетки, но и проваливающуюся через решетку. Эта зола подается на шнек толкателями в каждой из первичных зон. На этот же шнековый транспортер подается зола после золоулавливания, например из циклонов.

    Зола в конечном итоге поступает в герметичный контейнер, чтобы избежать пыли. Помимо герметичности контейнер должен быть хорошо изолирован и находиться вне помещения. Удаление золы может происходить и с помощью ленточного транспортера, но шнек предпочтительнее, поскольку он может работать при больших углах наклона.

    Сухое шлакоудаление очень распространено, прежде всего, по причине его дешевизны. Недостатками сухого шлакоудаления являются пыль, а также то, что при этом бывает трудно избежать присосов воздуха в топку через шнековый транспортер.

    Системы регулирования

    Современные котлы, работающие на биотопливе, оснащены более или менее сложными системами регулирования, автоматизирующими эксплуатацию котла. Система регулирования должна обеспечивать работу котла в так называемом модульном режиме, что означает, что мощность котла все время регулируется так, чтобы соответствовать потребностям тепловой сети. В этом случае все котельное оборудование, по крайней мере дымососы, работает постоянно. Модульный режим тем не менее возможен только в тех случаях, когда котел работает с нагрузкой выше минимальной, которая обычно составляет около 25% максимальной мощности.

    При нагрузке ниже минимальной котел работает в режиме «включен / выключен»: котел работает только часть суток, а в остальное время его останавливают. Крайне желательно, чтобы котельные на биотопливе работали в модульном режиме максимальное количество времени. Не существует единой системы регулирования для работающих на биотопливе котлов. Такие системы, изготовленные различными производителями, могут значительно отличаться. Для небольших, работающих на щепе котлов существует потребность в автоматическом управлении уровнем топлива в топливном бункере, тягой для поддержания постоянного разрежения в котле и топке, а также температурой воды на выходе из котла для поддержания соответствия мощности котла потребностям сетей.

    Регулировка наличия топлива в топливном бункере важна по трем причинам: чтобы обеспечить равномерную подачу толкателем топлива на решетку; чтобы обеспечить «воздушный замок» и воспрепятствовать обратному возгоранию; чтобы воспрепятствовать неконтролируемой подаче воздуха и таким образом обеспечить хорошее управление процессом горения.

    Уровень топлива в топливном бункере должен быть всегда выше минимума, чтобы не дать возможности пламени распространиться с решетки назад в бункер. Чтобы этого не произошло, в верхней части топливного бункера имеется специальная крышка (демпфер), который автоматически закрывается, если в бункере нет топлива, и препятствует распространению огня. Помимо этого имеется автоматический разбрызгиватель воды (спринклер), включающийся автоматически в тех случаях, когда температура в бункере слишком высока. В бункере установлен также температурный датчик, дающий сигнал тревоги, так что оператор котельной может включить спринклер вручную.

    Минимальный уровень топлива в бункере часто регулируется с помощью инфракрасного датчика. Передатчик и приемник расположены по обе стороны, так что, когда уровень опускается до минимального, включается автоматическая подача топлива с топливного склада. Загрузка топлива останавливается либо через определенное время, либо с помощью ещё одного датчика.

    Количество топлива между минимальным и максимальным уровнем зависит от размеров котла. По практическим соображениям подача топлива в бункер не должна происходить чаще, чем 10 раз в час. Поддержание разрежения в топке и в котле очень важно с точки зрения безопасности. Разрежение, задаваемое в пределах 5-10 мм водного столба, регулируется механическим шибером на дымососе или, в отдельных случаях, регулированием числа его оборотов. Кратковременное повышение давления допустимо, но только на очень короткое время − 10-15 секунд.

    Регулятор мощности является наиболее важным элементом системы. Его главной задачей является обеспечение того, чтобы температура воды на выходе из котла поддерживалась на постоянном, заранее выбранном уровне, например 110°С. Для поддержания этой температуры требуется управление подачей воздуха, движением решетки и подачей топлива.

    Как это в принципе происходит? Если истинное значение температуры воды ниже, чем желаемое, а сетевая нагрузка возрастает, то регулятор мощности обеспечивает следующие меры:

    • дается команда на увеличение оборотов вентиляторов первичного и вторичного воздуха;
    • дается команда на увеличение частоты движения решетки;
    • дается команда на более частую подачу топлива толкателем.

    В результате этих мер увеличивается также подача топлива в бункер со склада, поскольку бункер опорожняется быстрее, в то же самое время дымосос увеличивает обороты вследствие увеличения количества газов. В дополнение к указанной схеме в современных котлах предусмотрено также автоматическое регулирование содержания О2 в дымовых газах. Это осуществляется с помощью отдельного регулятора на вентиляторе вторичного воздуха, который, таким образом, управляется в зависимости от нескольких параметров.

    Очень важно также поддерживать на заданном уровне температуру обратной воды, которая на входе в котел никогда не должна быть ниже 70°С. Для того чтобы достичь этого, должен иметься обводной контур (байпас) с насосом, обеспечивающим подмешивание воды до нужной температуры.

    Регулирование байпасом может происходить с помощью регулятора температуры или насоса с регулируемым числом оборотов. Иногда байпасом управляют вручную. Необходимые параметры устанавливаются поставщиками при запуске котельной, они же производят наладку систем регулирования. Тем не менее необходимо постоянно следить за настройкой и, возможно, корректировать её, поскольку отдельные параметры эксплуатации могут изменяться, например вид и качество топлива.

    Каждая котельная должна иметь систему безопасности, обеспечивающую оповещение и остановку котла, если возникает какая-то угроза безопасности эксплуатации.

    Сжигание соломы

    В лесной местности целесообразно использовать древесные отходы для получения тепла, в сельскохозяйственных районах имеет смысл применять солому, лузгу и другие продукты сельского хозяйства.

    Рассмотрим процесс сжигания соломы. Один из самых простых способов, который активно применяется в Европе (особенно в Дании), − сжигание целых тюков соломы. Вначале тюк соломы с помощью фронтального подъемника загружается через открытую топочную дверцу в топку, затем дверца закрывается и топливо зажигается. Воздух для горения подается сверху. Установка работает циклически.

    Автоматизация сжигания соломы достигается за счет первоначального её измельчения. Возможна также непрерывная подача целых тюков соломы без предварительного измельчения.

    Татьяна ШТЕРН, к. т.н., доцент

    Автоматизированные котельные на биотопливе

    Котельная на биотопливе предназначена для получения тепловой энергии путем сжигания биотоплива и передачи ее потребителю посредством нагретого теплоносителя с целью отопления жилых и производственных зданий, а также технологических помещений с температурой теплоносителя 95–115 о С. Комплекс котельной представляет логическую систему взаимосвязей обеспечения и доставки биотоплива к зданию самой котельной, хранения и подачи биотоплива, его сжигания и получения тепловой энергии.

    Котельная на биотопливе, принципиальный состав оборудования:

    система приемки, складирования и подачи биотоплива (топливный приемник, загрузчик, топливный склад);
    система сжигания биотоплива с производством тепловой энергии (водогрейный биотопливный котел, или несколько котлов);
    система аспирации дымовых газов (золоуловители циклонного или кассетного типа с дымососом, дымоходы, боровные части, дымовые трубы);
    система золоудаления (устанавливается как опция на котлы на биотопливе с высоким процентом зольности);
    система контроля и управления (система автоматического регулирования дозирования подачи топлива и управления процессами оптимального горения и теплообмена в котле).

    В обеспечение технологичности изготовления, сокращения объема монтажных работ, повышения уровня ремонтопригодности и удобства обслуживания, оборудование котельной сгруппировано в модули:

    Котельная на биотопливе, основные модули:


    1 - приемно-выгрузочный модуль для приемки биотоплива из самосвального автотранспорта и выгрузки на перегрузочный транспортер;

    2 - накопительно-выгрузочный модуль для накопления необходимого объема топлива, обеспечивающего бесперебойную работу котельной с номинальной мощностью в течение 4-5 суток, и дозированной выгрузки биотоплива на транспортеры, подающие топливо в топку котлов;

    3 - водогрейные котлы работающие на биотопливе, и обеспечивающие производство тепловой энергии в форме нагретой до 95-105 о С воды;

    4 - система контроля и автоматизированного управления, обеспечивающая текущий контроль и регулирование параметров котельной: разрежение в топочном объеме котла; надлежащее качество сжигания топлива; теплопроизводительность котлов.

    Котельная на биотопливе. Функциональная схема.

    Доставка биотоплива к котельной осуществляется автотранспортом с использованием самосвальных прицепов, обеспечивающих как боковую так и заднюю выгрузку топлива в механизированный приемник. Механизированный приемник имеет защитную откидывающуюся крышку. Открытие крышки перед загрузкой топлива осуществляется механическим приводом. Загруженное в приемник топливо перемещается при помощи подвижных стокеров на наклонный скребковый транспортер, который поднимает топливо к оперативному бункеру-дозатору далее шнековым транспортером в котлы на биотопливе. Управление работой транспортеров и приемника производится с пульта управления в автоматическом режиме. Управление производительностью выгрузки подаваемого в котел биотоплива осуществляется изменением периода возвратно-поступательного движения стокерных толкателей задаваемого автоматической системой управления котла. Поддержание требуемой теплопроизводительности котла обеспечивается в автоматическом режиме системой управления по заданной температуре в прямой линии первого контура изменением производительности выгрузки топливного склада. В системе управления котельной предусмотрена защита от перегрузок оборудования и блокировка аварийных режимов работы при повышении предельных значений температуры в топке, температуры воды в прямой линии, при падении давления воды в системе ниже предельно допустимого значения.

    Основное оборудование котельной (механизированный топливный склад, средства подачи топлива - скребковые и шнековые транспортеры, водогрейные котлы на биотопливе) располагается в быстровозводимом неутепленном здании ангарного типа. Дополнительное оборудование котельной (насосно-распределительные станции, средства контроля и автоматического управления, система водоподготовки, мембранные и расширительные баки, запорно-регулирующая арматура и прочие теплотехнические узлы и агрегаты) размещаются в отдельных отапливаемых помещениях операторской и машинном отделении.

    В качестве биотоплива используются возобновляемые энергетические ресурсы, такие как торф (кусковой и фрезерный), отходы лесопиления (кора, щепа, опилки). Фракция топлива ограничена размерами 50х50х5 мм. Подготовка топлива по фракционности производится при помощи роторных дробилок или молотковых дробилок.

    Котел на биотопливе способен использовать древесные отходы с высокой относительной влажностью без предварительной просушки. Влажность топлива может достигать 55%.

    Трубная обвязка котельной.

    Рекомендации для проектирования зданий котельных и топливных складов

    Котельные на биотопливе по назначению подразделяются на:

    Отопительные - для обеспечения теплом систем отопления, вентиляции и горячего водоснабжения;
    отопительно-производственные - для обеспечения теплом систем отопления, вентиляции, горячего водоснабжения и для технологического теплоснабжения;
    производственные - для технологического теплоснабжения.

    Котельные на биотопливе по размещению подразделяются на:

    Отдельно стоящие;
    пристроенные к зданиям другого назначения;
    встроенные в здания другого назначения;
    крышные (только для газовых и жидкотопливных котельных).

    Для производственных зданий промышленных предприятий допускается проектирование пристроенных, встроенных котельных. Для котельных, пристроенных к зданиям указанного назначения, общая производительность устанавливаемых котлов, единичная производительность каждого котла и параметры теплоносителя не нормируются. При этом котельные должны располагаться у стен, где расстояние от стены котельной до ближайшего проема по горизонтали должно быть не менее 2 м. Расстояние от перекрытия котельной до нулевой точки по вертикали не менее 8 м. Не допускается проектирование пристроенных котельных непосредственно примыкающих к жилым зданиям со стороны входных подъездов и участков стен с оконными проемами, где расстояние от внешней стены котельной до ближайшего окна жилого помещения по горизонтали менее 4 метров, а расстояние от перекрытия котельной до ближайшего окна по вертикали менее 8 метров. Общая тепловая мощность индивидуальной котельной не должна кратно превышать потребности в теплоте здания или сооружения, для теплоснабжения которого она предназначена.

    Технологическая схема и компоновка оборудования котельной на биотопливе должны обеспечивать:
    оптимальную механизацию и автоматизацию технологических процессов, безопасное и удобное обслуживание оборудования;
    установку оборудования по очередям; наименьшую протяженность коммуникаций; оптимальные условия для механизации ремонтных работ;
    возможность въезда в котельную напольного транспорта (автопогрузчиков, электрокаров) для транспортирования узлов оборудования и трубопроводов при производстве как ремонтных, так и монтажных работ.

    Земельные участки для строительства котельных на биотопливе выбираются в соответствии со схемой теплоснабжения, проектами планировки и застройки городов, поселков и сельских населенных пунктов, генеральными планами предприятий, схемами генеральных планов групп предприятий с общими объектами (промышленных узлов).
    Размеры земельных участков котельных на биотопливе, располагаемых в районах жилой застройки, следует принимать в соответствии со строительными нормами и правилами по планировке и застройке городов, поселков и сельских населенных пунктов. При проектировании генерального плана котельной следует предусматривать возможность размещения укрупнительно-сборочных площадок, складских, а также временных сооружений, необходимых на период производства строительно-монтажных работ.
    Ограждение котельных следует проектировать в соответствии с Указаниями по проектированию ограждений площадок и участков предприятий, зданий и сооружений.
    При проектировании зданий и сооружений котельных следует руководствоваться строительными нормами и правилами по проектированию производственных зданий, административных и бытовых зданий, сооружений промышленных предприятий.
    Размеры пролетов зданий и сооружений котельных следует принимать кратными 6 м. Шаг колонн следует принимать 6 м. При специальном обосновании шаг колонн допускается принимать 12 м. Здания котельных необходимо проектировать с пролетами одного направления. Компоновочные решения с пролетами разных направлений допускаются в условиях стесненной площадки строительства при проектировании реконструкции котельных. Объемно-планировочные и конструктивные решения зданий и сооружений котельных могут допускать возможность их расширения. Для обеспечения возможности крупноблочного монтажа оборудования в стенах и перекрытиях зданий котельных должны предусматриваться монтажные проемы, согласно рекомендациям монтажных организаций. Такие проемы, как правило, следует предусматривать в торцевой стене со стороны расширения котельной.

    Встроенные котельные на биотопливе должны отделяться от смежных помещений противопожарными стенами 2 типа или противопожарными перегородками 1 типа и противопожарными перекрытиями 3 типа. Пристроенные котельные должны отделяться от основного здания противопожарной стеной 2 типа. При этом стена здания, к которой пристраивается котельная, должна иметь предел огнестойкости не менее 0,75 ч, а перекрытие котельной должно выполняться из негорючих материалов. Выходы из встроенных и пристроенных котельных надлежит предусматривать непосредственно наружу. Оконные переплеты выше указанного уровня следует проектировать с одинарным остеклением. Площадь и размещение оконных проемов в наружных стенах следует определять из условия естественной освещенности, а также с учетом требований аэрации по обеспечению необходимой площади открывающихся проемов. Площадь оконных проемов должна быть минимальной. Коэффициент естественной освещенности при боковом освещении в зданиях и сооружениях котельных надлежит принимать равным 0,5, кроме машинного зала, помещений со щитами автоматики и ремонтных мастерских, для которых этот коэффициент принимается равным 1,5.

    Котлы на биотопливе серии КТУ мощностью от 300 до 1000 кВт могут устанавливаться без специального фундамента или на армированные монолитные бетонные плиты толщиной не менее 200 мм. Котел на биотопливе серии КТУ мощностью от 1500 до 2500 кВт устанавливаются на специальный фундамент, проект которого высылается фирмой производителем.

    Также ПО "ТЕПЛОРЕСУРС" производит

    Июня 23 , 2010

    В Гдове Псковской области завершается строительство биотопливной котельной. Она будет работать на торфе и заменит неэффективную городскую котельную № 3, которая отапливалась дровами.

    22 июня объект посетили первый заместитель губернатора Псковской области Сергей Перников и заместители главы региона Сергей Федоров и Геннадий Безлобенко.
    Инвестором проекта выступила торфодобывающая компания ООО «ЕРТ» (Псковский район) при поддержке администрации региона. Представитель компании-инвестора Игорь Шадловский рассказал, что строительные работы начались в ноябре 2009 года, все оборудование было приобретено у разработчиков из г. Владимир. В реализацию проекта вложено 25 млн рублей.
    «Это будет первая котельная на торфе в Гдовском районе. Пока все остальные работают на дровах. Тестовый запуск котельной состоялся в начале июня, на полную мощность она заработает в предстоящий отопительный сезон. Котельная будет отапливать 14 многоэтажных домов», - рассказал Игорь Шадловский и добавил, что на сегодня завершаются работы по благоустройству прилегающей территории. Он также подчеркнул, что котельная полностью автоматизирована, управлять ею можно с мобильного телефона. Обслуживать объект будет один оператор, работу прежней обеспечивали 16 человек. Гарантийный срок службы оборудования составит 10 лет.
    Сергей Перников поинтересовался необходимыми объемами торфа для начала отопительного сезона и возможно ли в работе котельной использовать альтернативные виды топлива. Инвестор сообщил, что потребуется от 2,5 до 4 тыс тонн торфяной крошки, а котлы могут работать и на щепе.
    Первый заместитель губернатора по итогам визита подчеркнул, что в настоящее время в Псковской области многие котельные работают неэффективно, поскольку используют дорогостоящие уголь и мазут. В связи с этим администрацией региона разработана программа по переводу котельных на местные виды топлива. В настоящее время она находится на согласовании в Минэкономразвития РФ и Минрегионразвития РФ. Предварительно, на уровне специалистов, данная концепция уже получила одобрение, отметил Сергей Перников.
    По его словам, одобрение концепции на федеральном уровне создаст условия для привлечения дополнительного финансирования из госбюджета. Сергей Перников напомнил, что в 2010 году на реализацию ряда мероприятий по реконструкции котельных в областном бюджете предусмотрено 100 млн рублей и часть из них уже освоена. Всего на местные виды топлива предполагается перевести 215 котельных.
    «В настоящее время датско-российской компанией проводится аудит котельного хозяйства всего региона, через 2,5 месяца будут известны его результаты. На их основе планируется выработать мероприятия для реализации концепции», - подчеркнул Сергей Перников. Он также добавил, что Администрацией Псковской области рассматривается возможность запуска котельной на торфе в Плюсском районе.
    «Мы будем смотреть, как эти котельные отработают предстоящий отопительный сезон. Полученный опыт поможет выстроить систему эффективного перевода котельных на местные виды топлива - торф и щепу. В связи с тем, что добываются они на территории региона, у нас появятся дополнительные возможности для развития экономики Псковской области, создания новых рабочих мест. И, наконец, это позволит решить самую главную задачу - эффективно использовать местное сырье и получать тепло по доступным ценам, которые будут не выше имеющихся сегодня, а по ряду районов мы получим снижение», - сказал Сергей Перников.