Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Потери в системах конденсации пара. Технологические процессы и оборудование ТЭС. Основы производства тепловой и электрической энергии: Учебное пособие

    Потери в системах конденсации пара. Технологические процессы и оборудование ТЭС. Основы производства тепловой и электрической энергии: Учебное пособие

    Cтраница 2


    Согласно действующей методике калькулирования, как уже указывалось выше, суммы за невозврат конденсата исключаются из себестоимости энергии на ТЭЦ, что приводит к искусственному занижению уровня себестоимости энергии.  

    В количество воды, передаваемой другим предприятиям, включают воду и пар (невозврат конденсата, подпитка теплосети и др.), а также стоки, направленные на очистные сооружения других предприятий.  

    Однако следует изменить действующий порядок исключения из себестоимости энергии сумм, получаемых от потребителей за невозврат конденсата, так как это приводит к необоснованному занижению себестоимости энергии. Более подробно этот вопрос освещен ниже в гл.  

    Основными такими потерями могут являться: а) расход пара на собственные нужды (при невозврате конденсата этого пара); Ь) утечки пара и конденсата через неплотности трубопроводов; с) потери конденсата дренажей паропроводов при их нормальной работе и при прогреве вновь включаемых участков; d) потери пара от продувки перегревателей при растопке котельных агрегатов; е) потери продувочной воды котлоз.  

    В зависимости от того, какие потребители подключены к ТЭЦ и каковы их относительные потребности в паре, невозврат конденсата производственных потребителей на разных ТЭЦ различен. Он колеб-ляется от 40 до 100 %, если рассчитывать по отношению к количеству отпущенного пара, и от 10 до 40 %, если рассчитывать по отношению к количеству пара, поступающего в турбину. Для ТЭЦ невозврат конденсата от внешних потребителей пара является внешними потерями. Они, так же как и внутристанционные потери, должны восполняться добавочной водой. Общий добавок в основной цикл ТЭЦ определяется суммой внешних и внутристанционных потерь.  

    Для неэкранированных котлов сравнительно небольшой производительности (с давлением не выше 15 am и паронапряжением до 30 кг / м2 час) и с большим невозвратом конденсата более простым является применение упрощенных методов - внутрикотловой и термической обработки воды и частичное катионирование.  

    Баланс воды включает централизованное производство, потребление в технологических подсистемах, в том числе питание парогене-рирующих теплоутилизационных установок, производство и потребление в энергетических подсистемах, потери с отпуском пара внешним потребителям при невозврате конденсата. Баланс охлаждающей воды отражает функционирование прямоточных и оборотных систем водоснабжения.  


    Тарифы на теплоту установлены в предположении 100 % - ного возврата конденсата. Невозврат конденсата потребители оплачивают по себестоимости химически очищенной или обессоленной воды, средней по энергосистеме, увеличенной не более чем на 20 % для обеспечения нормативного уровня рентабельности. Размер оплаты потребителю за возвращенный конденсат определяют по топливной слагаемой себестоимости 4 186 ГДж (1 0 Гкал) теплоты у энергоснабжающей организации.  

    Однотрубная паровая система теплоснабжения с центральной струйной компрессией и с возвратом конденсата.  

    ТЭЦ очень дорого, и поэтому мощность этих установок, как правило, ограничена. Невозврат конденсата вызывает необходимость увеличения мощности во-доподготовительных установок и дополнительного расхода химических реагентов, а также приводит к дополнительным тепловым потерям.  

    Очень большие потери тепла возникают вследствие неисправности конденсационных горшков и вследствие неплотностей фланцевых соединений запорных органов и предохранительных клапанов и от потери горячего конденсата. Невозврат конденсата ухудшает качество питательной воды, что способствует загрязнению поверхности нагрева и ухудшению теплопередачи.  

    На теплоэлектроцентралях (ТЭЦ) потери конденсата складываются из внутристанционных и потерь у потребителей. Обычно невозврат конденсата от потребителей значительно больше внутристанционных потерь, и необходимая добавка воды может доходить до 30 - 40 % и более от выработки пара. У некоторых же потребителей может произойти и загрязнение конденсата, в результате чего он становится непригодным для питания паровых котлов. В этом случае на ТЭЦ с котлами высокого давления или прямоточными целесообразна установка паропреобразователей. Первичным паром для паропреобразователей является пар от одного из отборов турбины.  

    На тепловых электростанциях, вырабатывающих не только электрическую энергию, но и отпускающих тепло в виде пара и горячей воды (ТЭЦ), устанавливаются турбины, работающие с отбором частично отработанного пара из промежуточных ступеней. За счет невозврата конденсата, отпущенного тепловому потребителю пара, потери из цикла значительно возрастают и могут достичь 40 - 60 % от паропроизводительности котлов.  

    Невозврат конденсата, кроме прямой потери тепла, вызывает необходимость дополнительной подачи химически очищенной воды для питания паровых котлов, что обычно ведет к росту продувки, а следовательно, к дополнительным потерям тепла. Кроме того, невозврат конденсата источникам пароснабжения требует увеличивать их производительность и в некоторых случаях усложнять схемы химводоочисток и внутрикотловые се-парационные устройства, что связано с ростом капитальных затрат, а зачастую и эксплуатационных расходов.  

     Сравните основные схемы включения регенеративных подогревателей по эффективности их работы.  Охарактеризуйте расход свежего пара и тепла на турбину с регенеративными отборами.  От каких параметров регенеративного подогрева питательной воды и как зависит к.п.д. турбоустановки?  Что такое охладители дренажа и как они используются?  Что такое деаэрация питательной воды и что она дает на ТЭС?  Какие основные типы деаэраторов существуют?  Как включаются деаэраторы в схему ТЭС?  Что такое тепловой и материальный балансы деаэраторов и как они реализуются?  Что такое питательные насосы и какие основные типы питательных насосов существуют?  Охарактеризуйте основные схемы включения питательных насосов.  Охарактеризуйте основные схемы включения приводных турбин. 91 5. ВОСПОЛНЕНИЕ ПОТЕРЬ ПАРА И КОНДЕНСАТА 5.1. ПОТЕРИ ПАРА И КОНДЕНСАТА Потери пара и конденсата электростанций разделяются на внутренние и внешние. К внутренним относят потери от утечки пара и конденсата в системе оборудования и трубопроводов самой электростанции, а также потери продувочной воды парогенераторов. Потери от утечки пара и воды на электростанциях обуславливаются неплотностью фланцевых соединении трубопроводов, предохранительных клапанов парогенераторов, турбин и другого оборудования электростанции. Рис. 5.1,а Потери пара и конденсата обуславливают соответствующую потерю тепла, ухудшение экономичности и снижение к.п.д. электростанции. Потери пара и конденсата восполняют добавочной водой. Для ее подготовки применяют специальные устройства, обеспечивающие питание парогенераторов водой необходимого качества, что требует дополнительных капитальных вложений и эксплуатационных расходов. Потери от утечки распределены по всему пароводяному тракту. Однако более вероятны они из мест с наиболее высокими параметрами среды. Вторая составляющая внутренних потерь воды обуславливается непрерывной продувкой воды в барабанных парогенераторах (на электростанциях с прямоточными парогенераторами эти потери отсутствуют), ограничивающей концентрацию различных примесей в воде 92 парогенераторов величиной, обеспечивающей надежную их работу и требуемую чистоту производимого ими пара. Снижения продувки и повышения чистоты пара достигают улучшением качества питательной воды, уменьшением потерь пара и конденсата и количества добавочной воды. Рис. 5.1,б Питательная вода прямоточных парогенераторов должна быть особенно чистой, т.к. значительная часть примесей затем вместе с паром выносится в паровой тракт и откладывается в проточной части турбины, снижая ее мощность, к.п.д. и надежность. К внутренним относятся также потери пара и конденсата при неустановившихся режимам работы оборудования: при растопке и остановке парогенераторов, прогреве и продувке паропроводов, пуске и остановке турбины, промывке оборудования. Всемерное снижение этих потерь-существенное требование к пусковым схемам энергоблоков и электростанций. Внутренние потери пара и конденсата не должны превышать при номинальной нагрузке 1,0- 1,6%. В зависимости от схемы отпуска тепла внешним потребителям на ТЭЦ могут быть внешние потери пара и конденсата. Применяют две различные схемы отпуска тепла теплоэлектроцентралью: открытую, при которой потребителям полается пар непосредственно из отбора или противодавления турбины (рис. 5.1,а), и закрытую, при которой пар из от6opa или противодавления турбины, конденсируясь в поверхностном теплообменнике. нагревает теплоноситель, направляемый внешним потребителем, а конденсат греющего пара остается на ТЭЦ (рис. 5.1,б). Если потребителям требуется пар, то в качестве промежуточных теплообменников применяют испарители - парообразователи. Если потребителям тепло отпускается горячей водой, то промежуточным 93 теплообменником служит подогреватель воды, подаваемой в тепловую сеть (сетевой подогреватель) . При закрытой схеме отпуска тепла потери пара и конденсата сводятся к внутренним, и по относительной величине потери рабочей среды такая ТЭЦ мало отличается от КЭС. Количество обратного конденсата, возвращаемого промышленными потребителями пара составляет в среднем 30%-50% расхода отпускаемого пара. Т.е. внешние потери конденсата могут быть значительно больше внутренних потерь. Добавочная вода, вводимая в питательную систему парогенератора при открытой схеме отпуска тепла, должна восполнять внутренние и внешние потери пара и конденсата. Перед вводом в питательную систему парогенераторов применяют:  глубокое химическое обессоливание добавочной воды;  сочетание предварительной химической очистки с термической подготовкой добавочной воды в испарителях. 5.2. БАЛАНС ПАРА И ВОДЫ Для расчета тепловой схемы, определения расхода пара на турбины, производительности парогенераторов, энергетических показателей и т.п. необходимо установить основные соотношения материального баланса пара и воды электростанции. Определим эти соотношения для более общего случая ТЭЦ с отпуском пара промышленному потребителю непосредственно из отбора турбины (рис. 5.1,а). Уравнения материального баланса пара и воды КЭС получаются как частный случай соотношений для ТЭЦ. Паровой баланс основного оборудования электростанции выражается следующими уравнениями. Расход свежего пара D на турбину при отборе пара на регенерацию Dr, и для внешнего потребления Dï, на пропуске пара в конденсатор Dê равен: D=Dr+Dп+Dк (5.1) Для КЭС Dп=0 следовательно: D=Dr+Dк (5.1а) Расход свежего пара па турбоустановку с учетом его расхода Dyo на уплотнения и другие нужды помимо главной турбины D0=D+Dyo. (5.2) Паровая нагрузка парогенераторов Dïã с учетом утечки Dут, включая безвозвратный расход свежего пара на хозяйственно-технические нужды электростанции, составляет: Dпг=D0 +Dут (5.3) В качестве основной расчетной величины расхода рабочего тела целесообразно принимать расход свежего пара на турбоустановку D0. Баланс воды па электростанции выражается следующими уравнениями. 94 Баланс питательной воды Dпв=Dпг+Dпр=D0+Dут+Dпр (5.4) где Dïð-расход продувочной воды парогенераторов; в случае прямоточных парогенераторов Dïð=0; Dïâ=D0+Dóò (5.4a) Поток питательной воды Dïâ составляется в общем случае из конденсата турбины Dê, обратного конденсата тепловых потребителей Dîê, конденсата пара регенеративных отборов Dr, конденсата пара из расширителя продувки парогенераторов D"ï и уплотнений турбины Dy, добавочной воды Dдв=Dут+D/пр+Dвн, а именно: Dпв=Dк+Dок+Dr+D/п+Dy+Dут+D/пр+Dвн Без учета (для упрощения) регенеративных отборов и протечек через уплотнения турбины получим: Dпв=Dк+Dок+Dдв+D/п (5.4б) Потери пара и конденсата ТЭЦ составляются в общем случае из внутренних потерь Dвт и внешних потерь Dвн. Внутренние потери пара и воды на электростанции равны; Dвт=Dут+D/пр (5.5) где D/ïð- потеря продувочной воды при одноступенчатой расширительной установке: в случае прямоточных парогенераторов Dпр=0, D/пр=0 и Dвт=Dут (5.5а) Внешние потери конденсата ТЭЦ с открытой схемой отпуска пара равны: Dвн=Dп-Dок (5.6) где Dîê-количество конденсата, возвращаемого от внешних потребителей. Общая потеря Dïîò пара и конденсата ТЭЦ с открытой схемой отпуска тепла и количество добавочной воды Dдв равны сумме внутренних и внешних потерь: Dпот=Dдв=Dвт+Dвн=Dут+D/пр+Dвн (5.7) При прямоточных парогенераторах Dïð=0 и Dпот=Dут+Dвн Для КЭС и для ТЭЦ с закрытой схемой отпуска тепла Dвн=0 и Dпот=Dвт=Dут+D/пр при прямоточных парогенераторах в этом случае Dпот=Dвт=Dут Перед входом в расширитель продувочная вода проходит через редуктор, и в расширитель поступает пароводяная смесь, которая разделяется в нем па относительно чистый пар, отводимый в один из теплообменников регенеративной системы турбоустановки, и воду (сепарат или концентрат), с которой выводятся примеси, удаляемые из парогенератора с продувочной водой. Количество пара, сепарируемого в расширителе и возвращаемого в питательную систему, достигает 30% расхода продувочной воды, а количество возвращаемого тепла-около 60%, при двухступенчатом расширении-еще выше. 95 Тепло продувочной воды используется дополнительно в охладителе продувки для подогрева добавочной воды. Если охлажденная продувочная вода используется далее для питания испарителей или подпитки тепловой сети, то тепло продувочной воды используется почти полностью. Энтальпия пара и воды на выходе из расширителя соответствует состоянию насыщения при давлении в расширителе; незначительной влажностью пара в расчетах можно пренебречь. Выпар из расширителя продувки барабанного парогенератора и потеря продувочной воды определяются уравнениями теплового и материального балансов расширительной установки. В случае одноступенчатой расширительной установки (рис. 5.1,а): уравнение теплового баланса Dпрiпр=D/пi//п+ D/прi/пр (5.8) уравнение материального баланса Dпр=D/п+D/пр (5.9) где iпр, i/пр и i//п-соответственно энтальпии продувочной воды парогенераторов, продувочной воды и выпара после расширителей продувки, кДж/кг. Отсюда  iпр  i р п Dп  D п р    D пр п (5.10) i п  iпр   и  i   i п р п D  р  D пр  D п  п D пр    р D п р п (5.10а) i   i  р п п Значения iпр, i//п и i/пр определяются однозначно давлением пара в барабане парогенератора и в расширителе продувки, т.е. равны соответственно значениям энтальпии воды при насыщении в барабане парогенератора iпр=i/пг, пара и воды в расширителе продувки. Давление пара в расширителе продувки определяется местом в тепловой схеме, к которому подводится выпар из расширителя. В случае двухступенчатой расширительной установки D/ïð и D/п, D//ïð и D//ï определяются из следующих уравнений теплового и материального баланса. Для расширителя первой ступени Dпрiпр=Dп1i//п1+Dпр1i/пр1 и Dпр=Dп1+Dпр1 Для расширителя второй ступени Dпр1i/пр1=Dп2i//п2+Dпр2i/пр2 и Dпр1=Dп2+Dпр2 96 В этих уравнениях Dïð, Dïð1 è Dпр2-соответственно расходы продувочной воды из парогенератора н расширителей первой и второй ступеней, кг/ч; Dï1 и Dï2-выход пара из расширителей первой и второй ступеней, кг/ч; iïð, i/ïð1 и i/ïð2-энтальпии воды при насыщении на выходе из парогенератора и расширителей первой и второй ступеней, кДж/кг; i//ï1 и i//ï2 -энтальпии насыщенного (сухого) пара на выходе из расширителей первой и второй ступеней, кДж/кг. Очевидно, энтальпии пара и воды-однозначные функции давления в барабане парогенератора pпг и в расширителях первой и второй ступеней pp1 и pp2, МПа. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде (солей, щелочей, кремниевой кислоты, окислов меди и железа) в парогенераторе. Обозначая концентрации примесей в свежем паре, питательной и продувочной воде соответственно Сп, Спв и Спг, напишем уравнение баланса примесей к воде для парогенератора в виде DпрСпг+DпгСп=DпвСпв (5.11) или, воспользовавшись равенством (5.4) Dпв=Dпг +Dпр, DпрСпг+DпгСп=(Dпг +Dпр)Спв (5.11а) откуда С п в  Сп Dпр  Dп г (5.12) Сп г  С п в При малом значении Сп сравнительно с Спг и Спв получим: 1 1 Dпр  Dп г  (D 0  D ут) (5.13) Сп г Сп г 1 1 Сп в Сп в выражая потоки в долях D0, т. е. полагая пр=Dпр/D0 и ут=Dут/D0 получим: 1   ут  пр  (5.13а) Сп г 1 Сп в Таким образом, доля продувки зависит от доли утечки, которая должна быть сведена к минимуму, и от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды (чем меньше Сп.в) и выше допустимая концентрация примесей в воде парогенераторов Спг, тем доля продувки меньше. В формуле (5.13а) концентрация примесей в питательной воде Спв зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды /ïð, зависящаяся от пр. Поэтому долю продувки парогенератора удобнее определить, если концентрацию Сп.в заменить составляющими ее величинами. 97 В случае ТЭЦ с внешними потерями конденсата без учета (для упрощения) регенеративных отборов, протечек через уплотнения турбины и использования продувки, получим уравнения баланса примесей в виде DпрСпг+DпгСп=Dпв Спв=DкСк+DокСок+DдвСдв где Ск, Сок и Сдв и - соответственно концентрации примесей в конденсате турбин, обратном конденсате от потребителей и добавочной воде; при этом Dïã=Dê+Dîê+Dâí+Dóò и, если продувочная вода не используется, Däâ=Dïð+Dóò+Dâí. Из последних уравнений Dпр(Спг-Сдв)=Dк(Ск-Сп)+Dок(Сок-Сп)+(Dут+Dвн)(Сдв-Сп) откуда D к (С к  С п)  D о к (С о к  С п)  (D ут  D вн)(С дв  С п) Dпр  (5.14) С п г  С дв Выражая расходы воды в долях D0=D и полагая СкСп и СокСп, получим приближенно: ( ут   вн)(С дв  С п)  ут   вн  пр   (5.15) С п г  Сдв Сп г 1 С дв так как Сп мал по сравнению с Сдв. Если нет внешних потерь конденсата, т.е. вн=0, то:  ут  пр  (5.15а) Сп г 1 С дв Доля продувки изменяется гиперболически в зависимости от отношения концентраций примесей в продувочной и добавочной воде Спг: Сд.в. Если Спг: Сд.в , т.е. содержание примесей в добавочной воде очень мало, то пр0. Если, наоборот, Спг: Сд.в1, то пр; это означает, что любое большое количество добавочной воды с концентрацией Сд.в=Спг, восполняющей продувку, уходит с продувкой из барабана парогенератора. При отношении Спг:Сд.в=2, в соответствии с формулой (5.15) пр=ут+вн; если âí=0, то пр=ут. При использовании продувочной воды и установке расширителя можно получить в результате аналогичных выкладок:  ут   вн  пр  (5.16) Сп г   р п С дв и при вн=0  ут  пр  (5.16а) Сп г   пр  С дв 98 Из формул (5.15) и (5.15а) можно получить величину допустимых примесей â добавочной воде Сд.в в зависимости от величин Спг, ут и âí в виде Сп г Сдв  (5.17)  ут   вн 1  пр или соответственно при отсутствии внешних потерь Сп г Сдв  (5.17а)  ут 1  пр Таким образом, требования к качеству добавочной воды при прочих равных условиях в значительной мере определяются продувкой и концентрацией примесей в воде парогенераторов. Рис. 5.2 На рис. 5.2 показаны расчетные графики непрерывной продувки парогенераторов пр в зависимости от отношения Спг: Сдв при различных значениях пот=вн+ут. Тепловой расчет охладителя продувки сводится в основном к определению энтальпий добавочной воды iдвоп и продувочной воды iлроп после охладителя, связанных между собой соотношением i пр  iд в   о п оп оп где оп -разность энтальпий охлажденной продувочной и нагретой добавочной воды, которую принимают равной около 40-80 кДж/кг (10- 20°С). 99 Уравнение теплового баланса охладителя продувки ïðè этом имеет вид: D  р (i  р  i п р) п  D дв (i д в  i дв) п п оп оп в этом уравнении все величины, кроме энтальпий i пр и i двп, известны. оп о Используя соотношение между ними и выбрав значение о.п, исключают из уравнения теплового баланса одну из этих величин и определяют вторую, а затем из соотношения между ними определяют и первую. Температуру охлажденной продувочной воды принимают обычно 40- 60°С. На электростанциях без внешних потерь величины D/пр и Dд.в одного порядка, например D/пр=0,40Dд.в; тогда при охлаждении продувочной воды на 100°С, например от 160 до 60°С, добавочная вода нагревается на 40°С, например от 10 до 50°, причем îï=10°C и оп42 кДж/кг. На ТЭЦ с внешней потерей конденсата величина D/ïð может быть значительно меньше величины Dд.в, например D/пр0,1Dдв; тогда можно глубже охладить продувочную воду, например, до 40°С, подогрев добавочную воду до 22°С, причем оп=18°С и îï=76 кДж/кг. 5.3. ИСПАРИТЕЛЬНЫЕ УСТАНОВКИ Возмещение потерь пара и конденсата чистой добавочной водой - важное условие обеспечения надежной работы оборудования электростанции. Добавочной водой требуемой чистоты может служить дистиллят, получаемый из специального теплообменника - испарительной установки. В состав испарительной установки входят испаритель, в котором исходная сырая добавочная вода, обычно предварительно химически очищенная, превращается в пар, и охладитель, в котором полученный в испарителе пар конденсируется. Такой охладитель называется конденсатором испарительной установки или конденсатором испарителя. Таким образом, в испарительной установке происходит дистилляция исходной добавочной воды - переход ее в пар, с последующей конденсацией. Конденсат испаренной воды является дистиллятом, свободным от примесей. Испарение добавочной воды происходит за счет тепла, отдаваемого первичным греющим конденсирующимся паром из отборов турбины; конденсация произведенного в испарителе вторичного пара происходит в результате охлаждения пара водой, обычно - конденсатом турбинной установки (рис. 5.3). При такой схеме включения испарителя и его конденсатора тепло пара отборов турбины используется для подогрева основного конденсата и возвращается с питательной водой в парогенераторы. Таким образом, испарительная установка включается по регенеративному принципу, и ее можно рассматривать как элемент регенеративной схемы турбоустановкн. 100

    Потери пара и конденсата на ТЭЦ делятся на внутренние DBT, потери с проду­

    вочной водой барабанов котлов, внешние £>вн и технологические DTexH. К внутрен­

    ним потерям относятся утечки в элементах оборудования, паровых и водяных

    линиях электростанции.

    Восполнение потерь на ТЭС производится обессоленной водой, при этом рас­

    четную производительность обессоливающей или испарительной установки для

    конденсационных электростанций и отопительных ТЭЦ следует принимать равной

    2 % паровой производительности устанавливаемых котлов. Производительность

    общестанционной испарительной установки или дополнительная производитель­

    ность обессоливающей установки (сверх 2 %) принимается:

    для электростанций с прямоточными котлами - 25 т/ч при блоках мощностью

    200, 250, 300 МВт, 50 т/ч при блоках мощностью 500 МВт, 75 т/ч при блоках мощ­

    ностью 800 МВт;

    для электростанций с барабанными котлами - 25 т/ч.

    На газомазутных ТЭС (при использовании пара на разогрев мазута без возврата конденсата) производительность химобессоливающей установки увеличивается

    на 0,15 т на 1 т сжигаемого мазута.

    Утечки вызывают потери пара и воды и снижают тепловую экономичность

    электростанции. Они существуют на всех линиях пароводяного тракта, однако при

    расчетах полагают, что они сосредоточены в паропроводе свежего пара (перед тур­

    биной). Это упрощает расчеты и приводит к тому, что найденные таким образом

    показатели тепловой экономичности бывают несколько занижены, правда, весьма

    незначительно.

    Заметные значения потерь на ТЭС связаны с непрерывной продувкой барабанов

    котлов. Для уменьшения этих потерь на линиях продувочной воды устанавливают



    расширители продувки. Применение находят схемы с одной и двумя ступенями

    Расход воды при непрерывной продувке котла должен измеряться расходомером

    и для установившегося режима при восполнении потерь обессоленной водой или

    дистиллятом испарителей должен составлять не более 1 и не менее 0,5 % произво­

    дительности котла, а при восполнении потерь химически очищенной водой - не

    более 3 и не менее 0,5 % производительности; при пуске котла после монтажа, ре­

    монта или из резерва допускается увеличение непрерывной продувки до 2-5 %

    производительности котла.

    Предотвращение внешних потерь пара и конденсата при применении паропре-

    образовательной установки (ППУ) связано с недовыработкой мощности турбиной

    из-за необходимости подачи на ППУ пара более высокого потенциала, чем требу­

    ется для технологических целей. Эту недовыработку мощности надо учитывать

    при расчете принципиальной тепловой схемы ТЭС. Внутренние потери и потери,

    связанные с продувкой барабанов котлов, восполняются добавочной водой, посту­

    пающей в конденсатор турбины, где она проходит предварительную деаэрацию.

    Внешние потери восполняются добавочной водой, направляемой в деаэратор

    основного конденсата турбины.

    На ТЭС с внешними потерями рабочего тела добавочная вода, восполняющая

    их, перед подачей ее в деаэратор основного конденсата турбины должна подогре­

    ваться и предварительно деаэрироваться в атмосферном деаэраторе. Схема подог­

    рева и предварительной деаэрации добавочной воды, идущей на восполнение

    внешних потерь, приведена на рис. 5.3.

    Кроме вышеперечисленных потерь пара и конденсата на ТЭС существуют так

    называемые технологические потери (или потери на собственные нужды). Они свя­

    заны с работой форсунок, обдувками и отмывками поверхностей нагрева, обслужи­

    ванием установок для очистки конденсата, деаэрацией подпиточной воды теплосети,

    разгрузкой мазута, отбором проб теплоносителя для химических анализов и др.

    Нормы технологических потерь пара и конденсата разрабатываются электро­

    станцией для каждой технологической операции с учетом возможного повторного

    использования потерь. Технологические потери не учитываются при расчете прин­

    ципиальной тепловой схемы станции, но должны приниматься во внимание при

    выборе установленной производительности водоподготовительной установки.

    Дренажи оборудования и паропроводов как постоянные (например, из уплотне­

    ний насосов), так и периодические (большинство характерно для пускоостановоч-

    ных режимов) собираются в дренажный бак и периодически возвращаются в цикл.

    На современных ТЭС загрязненный конденсат обычно собирается в бак загряз­

    ненного конденсата и после очистки его на ионитовых фильтрах и деаэрации воз­

    вращается в цикл. Если на ТЭС имеются испарители, загрязненный конденсат, про­

    дувочная вода барабанных котлов могут направляться также в эти аппараты. При

    таких схемах общие потери воды на ТЭС резко сокращаются.

    Потери рабочего тела: пара, основного конденсата и питательной воды на ТЭС можно разделить на внутренние и внешние . К внутренним – относят потери рабочего тела через не плотности фланцевых соединений и арматуры; потери пара через предохранительные клапаны; утечку дренажа паропроводов; расход пара на обдувку поверхностей нагрева, на разогрев мазута и на форсунки. Эти потери сопровождаются потерей теплоты, их принято обозначать величиной или выражать (для конденсационных турбоустановок) в долях расхода пара на турбину . Внутренние потери пара и конденсата не должны превышать при номинальной нагрузке 1,0 % на КЭС и 1,2÷ 1,6 на ТЭЦ. На Тепловых электрических станциях (ТЭС) с прямоточными энергетическими котлами эти потери с учетом периодических водно-химических отмывок могут быть больше на 0,3 ÷ 0,5 %. При сжигании мазута в качестве основного топлива, потери конденсата увеличиваются на 6 % в летнее время и на 16 % в зимнее время.

    Для уменьшения внутренних потерь по возможности фланцевые соединения заменяют сварными, организуют сбор и использование дренажа, следят за плотностью арматуры и предохранительных клапанов, заменяют, где возможно предохранительные клапаны на диафрагмы.

    На ТЭС до критического давления, с барабанными котлами основную часть внутренних потерь составляют потери с продувочной водой .

    Внешние потери имеют место при отпуске технологического пара внешнему потребителю из турбин и энергетических парогенераторов (ПГ), когда часть конденсата этого пара не возвращается на ТЭЦ .

    На ряде предприятий химической и нефтехимической промышленности потери конденсата технологического пара могут составить до 70 %.

    Внутренние потери имеют место на конденсационных электростанциях (КЭС) и на теплоэлектроцентралях (ТЭЦ). Внешние потери имеют место только на ТЭЦ с отпуском технологического пара на промышленные предприятия.

    Конец работы -

    Эта тема принадлежит разделу:

    По курсу ТЦПЭЭ и Т 7 семестр, 36 часов лекция 18 лекции

    По курсу тцпээ и т семестр часов.. лекция потери пара и конденсата и их восполнение потери пара и конденсата..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Баланс пара и воды
    Воду, вводимую в питательную систему энергетических котлов для восполнения потерь рабочего тела (теплоносителя), называют добавочной водой

    Назначение и принцип действия расширителей продувки
    Добавочная вода, несмотря на то, что она предварительно очищается, вносит в цикл ТЭС соли и другие химические соединения. Значительная доля солей поступает также через не плотности

    Химические методы подготовки добавочной и подпиточной воды
    На промышленные ТЭС вода обычно поступает из общей системы водоснабжения предприятия, из которой предварительно удаляются механические примеси путем отстаивания, коагуляции и фильтр

    Термическая подготовка добавочной воды парогенераторов в испарителях
    В связи с проблемой охраны окружающей среды от вредных выбросов производств, применение химических методов водоподготовки все более затрудняется ввиду запрета сброса отмывочных вод в водоемы. В это

    Расчет испарительной установки
    Схема к расчету испарительной установки показана на рис. 8.4.3. Расчетиспарительной установки заключается в определении расхода первичного пара из отбора турбины

    Отпуск пара внешним потребителям
    От теплоэлектроцентрали (ТЭЦ) к потребителю тепло подается в виде пара или горячей воды, называемых теплоносителями. Промышленные предприятия потребляют для технологических нужд пар

    Одно-, двух- и трехтрубная системы пароснабжения от ТЭЦ
    На большинстве предприятий необходим пар 0,6 – 1,8 МПа, а иногда 3,5 и 9 МПа, который подается к потребителям от ТЭЦ паропроводами. Прокладка индивидуальных паропроводов к каждому потребителю вызыв

    Редукционно-охладительная установка
    Для снижения давления и температуры пара применяются редукционно-охладительные установки (РОУ). Установки используются на ТЭС для резервирования отборов и противодавления тур

    Отпуск тепла на отопление, вентиляцию и бытовые нужды
    Для отопления, вентиляции и бытовых нужд в качестве теплоносителя применяется горячая вода. Систему трубопроводов, по которым горячая вода подается к потребителям, а охлажденная возвращает

    Отпуск тепла на отопление
    Сетевая установка ГРЭС обычно состоит из двух подогревателей – основного и пикового рис. 9.2.1.

    Конструкции сетевых подогревателей и водогрейных котлов
    Качество сетевой воды, прокачиваемой через поверхности нагрева сетевых подогревателей, значительно ниже качества конденсата турбин. В ней могут присутствовать продукты коррозии, соли жесткости и др

    ЛЕКЦИЯ 24
    (продолжение лекции 23) Водогрейные котлы, как и пиковые сетевые подогреватели, используются на ТЭЦ в качестве пиковых источников теплоты при тепловых нагрузках, превышающих обеспеч

    Деаэраторы, питательные и конденсатные насосы
    Деаэрационно-питательную установку можно условно разделить на две – деаэрационную и питательную. Начнем рассмотрение с деаэрационной установки. Назначен

    ЛЕКЦИЯ 26
    (продолжение лекции 25) Каково назначение питательной установки? Зачем устанавливается бустерный насос? Каковы возможные схемы включения питательных насосов?

    Общие положения расчета принципиальных тепловых схем
    1. РАСЧЁТ ТЕПЛОВОЙ СХЕМЫ Т-110/120-130 (на номинальном режиме работы) Параметры турбоустановки: N0 = 11

    Расчет расхода воды теплосети
    Энтальпия сетевой воды на входе в ПСГ-1 определяется при tос = 35 0С и давление на выходе из сетевого насоса, равном 0,78 МПа, получаем hос = 148 кД

    Расчет подогрева воды в питательном насосе
    Давление питательной воды на выходе из питательного насоса оценивается величиной, на 30 - 40% больше давления свежего пара р0 ; Принимаем 35 %:

    Термодинамические параметры пара и конденсата (номинальный режим работы)
    Таб. 1.1 Точка Пар в отборах турбины Пар у регенеративных подогревателей Обогреваемая

    ЛЕКЦИЯ 29
    (продолжение лекции 28) 1.4.3 Расчет ПНД Произвотится совместный расчет группы ПНД-4,5,6.

    Конденсационные установки
    Каковы назначение и состав конденсационной установки? Как выбираются конденсатные насосы? Конденсационная установка (рис. 26) обеспечивает создание и поддерж

    Системы технического водоснабжения
    Каковы назначение и структура системы технического водоснабжения? Для каких целей используется техническая вода на ТЭС и АЭС? Системой технического водоснабжения

    Топливное хозяйство ЭС и котельных
    Подготовка угля к сжиганию включает в себя следующие стадии: - взвешивание на вагонных весах и разгрузка с помощью вагоноопрокидывателей; если уголь при транспортировке смерз

    Технические решения по предотвращению загрязнения окружающей среды
    ОЧИСТКА ДЫ’ОВЫХ ГАЗОВ Содержащиеся в дымовых газах летучая зола, частицы несгоревшего топлива, окислы азота, сернистые газы загрязняют атмосферу и оказывают вредное влияни

    Вопросы эксплуатации электростанций
    Основные требования к работе ТЭС и АЭС – это обеспечение надежности, безопасности и экономичности их эксплуатации. Надежность означает обеспечение бесперебойного (непр

    Выбор места строительства ТЭС и АЭС
    Каковы основные требования к месту строительства электростанции? Каковы особенности выбора места строительства АЭС? Что такое роза ветров в районе размещения станции? Снач

    Генеральный план электростанции
    Что такое генеральный план электростанции? Что показывается на генеральном плане? Генеральный план (ГП) представляет собой вид сверху на площадку электростан

    Компоновка главного здания ТЭС и АЭС
    Какова структура главного здания ТЭС и АЭС? Каковы основные принципы компоновки главного здания электростанции, какие количественные показатели характеризуют совершенство компоновки? Какие

    Жизнь современного человека на Земле немыслима без использования энергии
    как электрической, так и тепловой. Большую часть этой энергии во всем
    мире до сих пор производят тепловые электростанции: На их долю
    приходится около 75 % вырабатываемой электроэнергии на Земле и около 80 %
    производимой электроэнергии в России. А потому, вопрос снижения
    энергозатрат на выработку тепловой и электрической энергии далеко не
    праздный.

    Виды и принципиальные схемы тепловых электрических станций

    Основным назначением электрических станций является выработка
    электроэнергии для освещения, снабжения ею промышленного и
    сельскохозяйственного производства, транспорта, коммунального хозяйства и
    бытовых нужд. Другим назначением электрических станций (тепловых)
    является снабжение жилых домов, учреждений и предприятий теплом для
    отопления зимой и горячей водой для коммунальных и бытовых целей или
    паром для производства.

    Тепловые электрические станции (ТЭС) для комбинированной выработки
    электрической и тепловой энергии (для теплофикации) называются
    теплоэлектроцентралями (ТЭЦ), а ТЭС, предназначенные только для
    производства электроэнергии, называются конденсационными
    электростанциями (КЭС) (рис. 1.1). КЭС оборудуются паровыми турбинами,
    отработавший пар которых поступает в конденсаторы, где поддерживается
    глубокий вакуум для лучшего использования энергии пара при выработке
    электроэнергии (цикл Ренкина). Пар из отборов таких турбин используется
    только для регенеративного подогрева конденсата отработавшего пара и
    питательной воды котлов.

    Рисунок 1. Принципиальная схема КЭС:

    1 — котел (парогенератор);
    2 — топливо;
    3 — паровая турбина;
    4 — электрический генератор;

    6 — конденсатный насос;

    8 — питательный насос парового котла

    ТЭЦ оборудуются паровыми турбинами с отбором пара для снабжения
    промышленных предприятий (рис. 1.2, а) или для подогрева сетевой воды,
    поступающей к потребителям для отопления и коммунально-бытовых нужд
    (рис. 1.2, б).

    Рисунок 2. Принципиальная тепловая схема ТЭЦ

    а- промышленная ТЭЦ;
    б- отопительная ТЭЦ;

    1 — котел (парогенератор);
    2 — топливо;
    3 — паровая турбина;
    4 — электрический генератор;
    5 — конденсатор отработавшего пара турбины;
    6 — конденсатный насос;
    7— регенеративный подогреватель;
    8 — питательный насос парового котла;
    7-сборный бак конденсата;
    9- потребитель теплоты;
    10- подогреватель сетевой воды;
    11-сетевой насос;
    12-конденсатный насос сетевого подогревателя.

    Приблизительно с 50-х годов прошлого столетия на ТЭС для привода
    электрических генераторов начали применяться газовые турбины. При этом в
    основном получили распространение газовые турбины со сжиганием топлива
    при постоянном давлении с последующим расширением продуктов сгорания в
    проточной части турбины (цикл Брайтона). Такие установки называются
    газотурбинными (ГТУ). Они могут работать только на природном газе или на
    жидком качественном топливе (соляровом масле). Эти энергетические
    установки требуют наличия воздушного компрессора, потребляемая мощность
    которого достаточно велика.

    Принципиальная схема ГТУ изображена на рис. 1.3. Благодаря большой
    маневренности (быстрый пуск в работу и загрузка) ГТУ получили применение
    в энергетике в качестве пиковых установок для покрытия внезапного
    дефицита мощности в энергосистеме.

    Рисунок 3. Принципиальная схема парогазовой установки

    1-компрессор;
    2-камера сгорания;
    3-топливо;
    4-газовая турбина;
    5-электрический генератор;
    6-паровая турбина;
    7-котел-утилизатор;
    8- конденсатор паровой турбины;
    9-конденсатный насос;
    10-регенеративный подогреватель в паровом цикле;
    11-питательный насос котла-утилизатора;
    12-дымовая труба.

    Проблемы ТЭЦ

    Наряду с известными всем проблемами высокой степени износа оборудования
    и повсеместного применения недостаточно эффективных газовых
    паротурбинных блоков в последнее время российские ТЭЦ сталкиваются с
    еще одной, относительно новой угрозой снижения эффективности. Как ни
    странно, связана она с растущей активностью потребителей тепла в области
    энергосбережения.

    Сегодня многие потребители тепла приступают к внедрению мероприятий по
    экономии тепловой энергии. Эти действия в первую очередь наносят ущерб
    работе ТЭЦ, так как приводят к снижению тепловой нагрузки на станцию.
    Экономичный режим работы ТЭЦ - тепловой, с минимальной подачей пара в
    конденсатор. При снижении потребления отборного пара ТЭЦ вынуждена для
    выполнения задания по выработке электрической энергии увеличивать подачу
    пара в конденсатор, что ведет за собой увеличение себестоимости
    вырабатываемой электроэнергии. Такая неравномерная работа приводит к
    увеличению удельных расходов топлива.

    Кроме того, в случае полной загрузки по выработке электрической энергии
    и низкого потребления отборного пара ТЭЦ вынуждена производить сброс
    избытка пара в атмосферу, что также увеличивает себестоимость
    электроэнергии и тепловой энергии. Использование представленных ниже
    энергосберегающих технологий приведет к снижению расходов на собственные
    нужды, что способствует увеличению рентабельности ТЭЦ и увеличению
    контролирования расходов тепловой энергии на собственные нужды.

    Пути повышения эффективности выработки энергии

    Рассмотрим основные участки ТЭЦ: типичные ошибки их организации и
    эксплуатации и возможности снижения энергозатрат на выработку тепловой
    и электрической энергии.

    Мазутное хозяйство ТЭЦ

    Мазутное хозяйство включает: оборудование по приемке и разгрузке вагонов
    с мазутом, склад запаса мазута, мазутнасосную с подогревателями мазута,
    пароспутники, паровые и водяные калориферы.

    Объем потребления пара и теплофикационной воды для поддержания работы
    мазутного хозяйства значителен. На газомазутных ТЭС (при использовании
    пара на разогрев мазута без возврата конденсата) производительность
    обессоливающей установки увеличивается на 0,15 т на 1 т сжигаемого
    мазута.

    Потери пара и конденсата на мазутном хозяйстве можно разделить на две
    категории: возвратные и невозвратные. К невозвратным можно отнести пар,
    используемый для разгрузки вагонов при нагреве смешиванием потоков, пар
    на продувку паропроводов и пропарку мазутопроводов. Весь объем пара
    используемый в пароспутниках, подогревателях мазута, в подогревателях
    насосов в мазутных баках должен возвращаться в цикл ТЭЦ в виде
    конденсата.

    Типичной ошибкой организации мазутного хозяйства ТЭЦ является отсутствие
    конденсатотводчиков на пароспутниках. Различия пароспутников по длине и
    режиму работы приводят к различному съему тепла и образованию на выходе
    с пароспутников пароконденсатной смеси. Наличие же в паре конденсата
    может привести к возникновению гидроударов и, как следствие, выходу из
    строя трубопроводов и оборудования. Отсутствие управляемого отвода
    конденсата от теплообменников, также приводит к пропуску пара в
    конденсатную линию. При сливе конденсата в бак «замазученного»
    конденсата происходят потери пара, находящегося в конденсатной линии, в
    атмосферу. Такие потери могут составлять до 50% расхода пара на мазутное
    хозяйство.

    Обвязка пароспутников конденсатоотводчиками, установка на
    теплообменниках системы регулирования температуры мазута на выходе
    обеспечивает увеличение доли возвращаемого конденсата и снижение расхода
    пара на мазутное хозяйство до 30%.

    Из личной практики могу привести пример, когда приведение системы
    регулирования нагрева мазута в мазутных подогревателях в работоспособное
    состояние позволило снизить расход пара на мазутную насосную станцию на
    20%.

    Для снижения расхода пара и величины потребления мазутным хозяйством
    электроэнергии возможен перевод на рециркуляцию мазута обратно в
    мазутный бак. По этой схеме можно производить перекачку мазута из бака в
    бак и разогрев мазута в мазутных баках без включения дополнительного
    оборудования, что приводит к экономии тепловой и электрической энергии.

    Котельное оборудование

    К котельному оборудованию относятся энергетические котлы, воздушные
    калориферы, подогреватели воздуха, различные трубопроводы, расширители
    дренажей, дренажные баки.

    Заметные потери на ТЭЦ связаны с непрерывной продувкой барабанов котлов.
    Для уменьшения этих потерь на линиях продувочной воды устанавливают
    расширители продувки. Применение находят схемы с одной и двумя ступенями
    расширения.

    В схеме продувки котла с одним расширителем пар из последнего
    направляется обычно в деаэратор основного конденсата турбины. Туда же
    поступает пар из первого расширителя при двухступенчатой схеме. Пар из
    второго расширителя направляется обычно в атмосферный или вакуумный
    деаэратор подпиточной воды тепловой сети или в станционный коллектор
    (0,12—0,25 МПа). Дренаж расширителя продувки подводится в охладитель
    продувки, где охлаждается водой, направляемой в химический цех (для
    подготовки добавочной и подпиточной воды), и затем сбрасывается. Таким
    образом, расширители продувки уменьшают потери продувочной воды и
    увеличивают тепловую экономичность установки за счет того, что большая
    часть содержащейся в воде теплоты при этом полезно используется. При
    установке регулятора непрерывной продувки по максимальному
    солесодержанию увеличивается КПД котла, снижается объём потребляемой на
    подпитку химочищенной воды, тем самым достигается дополнительный эффект
    за счёт экономии реагентов и фильтрующих.

    С повышением температуры уходящих газов на 12-15 ⁰С потери тепла
    увеличиваются на 1%. Использование системы регулирования калориферов
    воздуха котлоагрегатов по температуре воздуха приводит к исключению
    гидроударов в конденсатопроводе, снижению температуры воздуха на входе в
    регенеративный воздухоподогреватель, снижению температуры уходящих
    газов.

    Согласно уравнению теплового баланса:

    Q p =Q 1 +Q 2 +Q 3 +Q 4 +Q 5

    Q p - располагаемое тепло на 1 м3 газообразного топлива;
    Q 1 - тепло используемое на генерацию пара;
    Q 2 - потеря тепла с уходящими газами;
    Q 3 - потери с химическим недожогом;
    Q 4 - потери от механического недожога;
    Q 5 - потери от наружного охлаждения;
    Q 6 - потери с физическим теплом шлаков.

    При снижении величины Q 2 и увеличении Q 1 КПД котлоагрегата повышается:
    КПД= Q 1 /Q р

    На ТЭЦ с параллельными связями, возникают ситуации, когда необходимо
    отключения секций паропроводов с открытием дренажей в тупиковых
    участках. Для визуализации отсутствия законденсачивания паропровода
    приоткрывают ревизки, что ведет к потерям пара. В случае установки
    конденсатотводчиков на тупиковых участках паропроводов, конденсат,
    образующийся в паропроводах, организованно отводится в дренажные баки
    или расширители дренажей, что приводит к возможности срабатывания
    сэкономленного пара на турбинной установке с выработкой электрической
    энергии.

    Так при сбросе трансфера 140 ати через одну ревизку, и при условии, что
    через дренаж поступает пароконденсатная смесь, величину пролета и
    потери, связанные с этим, специалисты Spirax Sarco рассчитывают,
    используя методику, основанную на уравнении Напьера, или истечении среды
    через отверстие с острыми кромками.

    При работе с открытой ревизкой неделю, потери пара будут составлять 938
    кг/ч*24ч*7= 157,6 тонны, потери газа составят около 15 тыс. нм³, или
    недовыработка электроэнергии в районе 30 МВт.

    Турбинное оборудование

    К турбинному оборудованию относятся паровые турбины, подогреватели
    высокого давления, подогреватели низкого давления, подогреватели
    сетевые, бойлерные, деаэраторы, насосное оборудование, расширители
    дренажей, баки низких точек.


    приведет к снижению количества нарушений графиков работы теплосети, и
    сбою в работе системы приготовления химочищенной (химобессоленой) воды.
    Нарушение графика работы теплосети приводит при перегреве к потерям
    тепла и при недогреве к упущению выгоды (продажа меньшего объема тепла,
    чем возможно). Отклонение температуры сырой воды на хим.цех, приводит:
    при снижении температуры - ухудшении работы осветлителей, при увеличении
    температуры - к увеличению потерь фильтрующих. Для снижения расхода
    пара на подогреватели сырой воды используют воду со сброса с
    конденсатора, благодаря чему тепло теряемое с циркуляционной водой в
    атмосферу используется в воде поставляемой в хим.цех.

    Система расширителей дренажей может быть одно- и двухступенчатая.
    При одноступенчатой системе пар с расширителя дренажей поступает в
    коллектор пара собственных нужд, и используется в деаэраторах и
    различных подогревателях конденсат обычно сбрасывается в дренажный бак
    или бак низких точек. При наличии на ТЭЦ пара собственных нужд двух
    разных давлений, используют двухступенчатую систему расширителей
    дренажей. При отсутствии регуляторов уровня в расширителях дренажей
    происходит проскок пара с конденсатом из расширителей дренажей высокого
    давления в расширитель низкого давления и далее через дренажный бак в
    атмосферу. Установка расширителей дренажей с регулированием уровня может
    привести к экономии пара и снижению потерь конденсата до 40% от объема
    пароконденсатной смеси дренажей паропроводов.

    При пусковых операциях на турбинах необходимо открытие дренажей и
    отборов турбины. В процессе работы турбины дренажи закрываются. Однако
    полное закрытие всех дренажей нецелесообразно, поскольку в связи с
    наличием в турбине ступеней, где пар находится при температуре кипения, а
    следовательно, может конденсироваться. При постоянно открытых дренажах
    пар через расширитель сбрасывается в конденсатор, что влияет на давление
    в нем. А при изменении давления в конденсаторе на ±0,01 ат при
    постоянном расходе пара изменение мощности турбины составляет ±2%.
    Ручное регулирование дренажной системы также повышает вероятность
    ошибок.

    Приведу случай из личной практики, подтверждающий необходимость обвязки
    дренажной системы турбины конденсатоотводчиками: после устранения
    дефекта, приведшего к остановке турбины, на ТЭЦ приступили к ее
    запуску. Зная, что турбина горячая, оперативный персонал, забыл открыть
    дренажи, и при включении отбора произошел гидроудар с разрушением части
    паропровода отбора турбины. В результате потребовался аварийный ремонт
    турбины. В случае обвязки дренажной системы конденсатоотводчиками,
    подобной проблемы можно было бы избежать.

    При работе ТЭЦ иногда возникают проблемы с нарушением
    воднохимического режима работы котлов из-за повышения содержания
    кислорода в питательной воде. Одной из причин нарушения воднохимического
    режима является снижение давления в деаэраторах из-за отсутствия
    автоматической системы поддержания давления. Нарушение воднохимического
    режима приводит к износу трубопроводов, увеличению коррозии поверхностей
    нагрева, и как следствие дополнительные затраты на ремонт оборудования.

    Также на многих станциях на основном оборудовании установлены узлы
    учета на основе диафрагм. Диафрагмы имеют нормальный динамический
    диапазон измерения 1:4, с чем связана проблема по определению нагрузок
    при пусковых операциях и минимальных нагрузках. Неправильная работа
    расходомеров приводит к отсутствию контроля над правильностью и
    экономичностью работы оборудования. На сегодняшний день ООО «Спиракс
    Сарко Инжиниринг» готова представить несколько видов расходомеров с
    диапазоном измерения до 100:1.

    В заключение, подведем итог вышесказанному и еще раз перечислим основные мероприятия для снижения энергозатрат ТЭЦ:

    • Обвязка пароспутников конденсатоотводчиками
    • Установка на теплообменниках системы регулирования температуры мазута на выходе
    • Перевод рециркуляции мазута обратно в мазутный бак
    • Обвязка системой регулирования подогревателей сетевой и сырой воды
    • Установка расширителей дренажей с регулированием уровня
    • Обвязка дренажной системы турбины конденсатоотводчиками
    • Установка узлов учета

    Больше интересной информации Вы всегда сможете найти на нашем сайте в разделе