Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Методы получения чистого пара сепарация ступенчатое испарение. Основные преимущества ступенчатой схемы испарения

    Методы получения чистого пара сепарация ступенчатое испарение. Основные преимущества ступенчатой схемы испарения

    Более совершенным является водный ре­жим, организованный по схеме ступенчатого испарения. Барабан делят перегородкой на два отсека (рис. 15.13). К каждому из отсеков присоединяют свою группу контуров циркуляции, не имеющих связи по воде. Лишь отверстие в разделяю­щей барабан перегородке соединяет водяной объем обоих отсеков. Питательную воду по­дают в первый (большой) отсек, продувку осуществляют через второй (малый) отсек. Котловая вода из первого отсека через отвер­стие в перегородке поступает во второй отсек, и уровень воды в нем устанавливается ниже, чем в первом. Весь пар из барабана отводят через первый отсек.

    Отсек, где солесодержание воды невелико, называют чистым, а второй, в котором находится вода высокого солесодержания, - солевым отсеком. Отношение (Скв –концентрация примесей в котловой воде) называют кратностью концентрации. Приняв для примера, что 80% всего количества пара образуется из воды с низким солесодержанием, и поэтому основная масса пара получается более высокого качества, чем в схеме одноступенчатого испарения, и лишь 20% пара образуется из такой же воды, как в простой схеме. Следовательно, качество па­ра, полученного при двухступенчатой схеме, оказывается значительно выше, чем при одно­ступенчатой. Перетекание воды из чистого отсека в со­левой является внутренней продувкой чистого отсека. В отличие от внешней внутренняя про­дувка не сопровождается потерей ни теплоты, ни рабочей среды, и поэтому ее значение вы­бирают только из соображения максимально возможного улучшения качества пара. В свою очередь значение этой продувки определяет производительность солевого отсека. В связи с этим возникает вопрос о выборе оптималь­ной производительности солевого отсека, ко­торая устанавливается расчетом.

    При внутрибарабанном ступенчатом испа­рении ввиду ограниченности высот водяного и парового объемов разность уровней невелика, и это может вызвать обратные перетоки воды. Увеличение разности за счет повышения уров­ня воды в чистом отсеке связано с уменьше­нием высоты парового объема и, следователь­но, с ростом капельного уноса, а снижение его в солевом отсеке может вызвать нарушение циркуляции.

    При использовании выносных циклонов в качестве сепарационного объема и звена, за­мыкающего контур циркуляции солевого от­сека, разность уровней в отсеках может быть выбрана достаточной по условиям предотвра­щения обратного перетока воды. Поэтому схемы с выносными циклонами предпочтитель­ны, особенно при небольшой производительно­сти солевого отсека.



    Эффективность ступенчатого испарения возрастает с увеличением числа ступеней ис­парения, однако это нарастание с ростом чис­ла ступеней затухает. Наибольшее распро­странение получили двух- и трехступенчатые схемы. При этом вторая ступень испарения может быть организована либо внутри бара­бана, как показано на рис. 15.13, либо вне его - в выносных циклонах (рис. 15.15). В трехступенчатой схеме обычно первую и вто­рую ступени выполняют в барабане, а третью - в выносном циклоне (рис. 15.16).

    В выносных циклонах можно выполнять любой высоты паровой и водяной объемы. Это обеспечивает хорошую осушку пара (за счет большой высоты парового объема) и надеж­ную работу циркуляционных контуров (за счет большой высоты водяного объема), а также предотвращает вынос воды из соле­вого в чистый отсек.

    Ступенчатое испарение позволяет повы­сить чистоту пара при заданном качестве пи­тательной воды и данном значении продувки. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку. Ступенчатое испарение позволяет также повысить экономичность паротурбинной установки вследствие уменьшения продувки без заметного снижения качества пара.


    Пар, выходящий из барабанов котлоагрегатов, не должен содер­жать значительного количества влаги, солей, шлама, так как часть поверхности пароперегревателя будет местом испарения и выпадения содержащихся в воде солей, и металл труб может быть поврежден. Могут иметь место нарушения плотности соединений, а при бросках влаги - гидравлические удары и даже разрушения паропроводов.

    В паре могут содержаться нелетучие и летучие вещества. Нелету­чие вещества обычно попадают в пар из котловой воды, в которой они находятся в растворенном виде или взвешенном состоянии. Раствори­мость их в паре низкого давления мала. Летучие вещества - аммиак МН3, двуокись углерода С02, азот N2 и водород Н2 - содержатся в виде газов и не дают отложений. Двуокись углерода, соединяясь с кальцием, может давать отложения. Аммиак, попадая в теплооб­менники с латунными трубками, вызывает их обесцинкование и раз­рушение; кроме того, аммиак токсичен. Двуокись углерода может вызвать коррозию; окислы железа дают шлам и отложения на обогре­ваемых поверхностях нагрева.

    В связи с этим к пару предъявляются определенные требования по общему содержанию солей, пересчитанному на натрий: при давлении до 1,4 МПа (14 кгс/см2) - 1,0 мг/кг; до 2,2 МПа (22 кгс/см2) - 0,5 мг/кг и до 4,5 МПа (45 кгс/см2) -0,3 мг/кг. Следовательно, с ро­стом давления ужесточаются требования к качеству пара.

    Загрязнение пара веществами происходит главным образом за счет выноса примесей, содержащихся в питательной и котловой воде. Для получения пара необходимого качества питательную воду очищают раз­личными способами и отделяют влагу от пара путем сепарации. Увеличению влажности пара способствует неправильный режим подачи воды в барабан - его перепитка, резкие колебания давления пара, несоблюдение требований, предъявляемых к качеству питательной воды. В частностей повышение ее щелочности, например, приводит к образованию и уносу пены из-за уменьшения объема парового прост­ранства. Если пар попадает под уровень воды, то пузырьки пара, выходя на поверхность воды - зеркало испарения, разрывают оболочку и об­разуют крупные и мелкие капельки, выносимые в паровое пространство.

    При поступлении пароводяной смеси из труб в паровое пространст­во, кроме образования капель за счет разрыва оболочек пузырей пара, происходят удары струй воды о поверхность уровня, стенки барабана и расположенные в объеме детали.

    Увеличение солесодержания котловой воды повышает ее поверхно­стное натяжение, что приводит к явлению набухания воды пузырями пара и росту его влажности. Повышение давления в барабане ухудшает

    Осаждение мелких капель. Большой дйаметр барабана, низкое располо­жение уровня воды в нем позволяют иметь большую высоту парового пространства. Капли влаги, вынесенные в паровое пространство, по­теряв начальную скорость и объединившись на пути с другими каплями в большом объеме, будут выпадать быстрее. Чем больше действительная высота парового пространства, тем лучше при прочих равных условиях будет происходить естественная сепарация. Наилучшая сепарация для обычных нагрузок зеркала испарения в котельных агрегатах низкого и среднего давлений достигается на высоте 0,6-1,0 м, вследствие чего внутренний диаметр барабана обычно составляет 1,2-1,6 м. В прежних конструкциях котлов низкого давления влажность пара составляла 3-6%; теперь же она не превышает 0,5% и снижается с ростом дав­ления до 0,1-0,2%.

    Увеличение содержания солей в котловой воде не только приводит к набуханию, но и по достижении определенной величины (критиче­ской) вызывает резкий рост уноса влаги. До этого содержания солей унос влаги примерно пропорционален содержанию солей в котловой воде. Загрязнение пара летучими веществами при низких и средних давлениях пара незначительно из-за малой растворимости солей в паре.

    Для осуществления естественной сепарации пара, уменьшения уноса капель и получения сухого и чистого пара важно равномерное распределение выхода пара из экранных и кипятильных труб по длине барабана, предупреждение ударов струй воды о стенки и устройства

    А - труба с отверстиями; б - отбойные щитки; в <- отбойные щитки, жалюзийный сепаратор и дырчатый лист; г -утопленные листы, жалюзийный сепаратор с дырчатым листом; д - щитки, утопленный лист и жалюзийный сепаратор с дырчатым листом; е - внутрибарабанные циклоны, жалюзийный сепаратор и дырчатый лист (иногда циклоны размещены вие барабана - выносные

    Циклоны).

    В барабане, о зеркало испарения и равномерная загрузка барабана. Необходимо также обеспечение равномерного отбора пара по длине ба­рабана для получения низких скоростей пара в паровом пространстве барабана, где происходит первичное отделение влаги. Однако естествен­ной сепарации влаги для получения сухого пара недостаточно. Дальней­шее улавливание влаги осуществляют механической сепарацией в устройствах, в которых используются силы инерции, центробежные силы, смачивание и поверхностное натяжение слоя жидкости. Такие устройства позволяют уловить капельки воды, вынесенные из парового пространства.

    Принципиальные схемы сепарирующих устройств в барабанах кот - лоагрегатов низкого и среднего давлений показаны на рис. 4-6.

    Простейшей из них является труба в паровом пространстве бараба­на с отверстиями разного диаметра на боковых образующих, распреде­ленными неравномерно по длине для лучшей сепарации в объеме (схе­ма рис. 4-6,а). Скорость пара в трубе (конечную) принимают 30- 40 м/с, скорость в отверстиях принимают большей скорости в трубе. Вместо установки трубы можно отделить часть парового пространства листом и выполнить в нем отверстия по тому же принципу, что и в тру­бе. При надлежащей высоте парового пространства, равномерном под­воде пароводяной смеси и отборе пара по длине барабана иногда доста­точной является установка отбойных щитков (схема рис. 4-6,6).

    Для получения лучших результатов сепарации пара можно сочетать установку отбойных щитков с установкой перфорированных листов перед трубами, отводящими пар. Часто перед этим листом устанавли­вают жалюзи, в которых пар, изменяя несколько раз направление дви­жения, заставляет воду по инерции осаждаться на стенках листов жа­люзи, Такая схема изображена на рис. 4-6,в.

    Если пароводяная смесь входит в барабан под уровень воды, то равномерного распределения пара можно достигнуть, установив под уровнем воды лист с отверстиями, а для очистки пара подать на этот лист питательную воду.

    В верхней части барабана, как это видно из схемы рис. 4-6,г, устройства могут быть сохранены такими же, как и на предыдущей схеме. При вводе пароводяной смеси под и над уровнем целесообразно схему рис. 4-6,г дополнить отбойными щитками, - схема рис. 4-6,д) против труб, по которым пароводяная смесь поступает в барабан.

    При больших нагрузках внутри барабана для получения пара высо­кого качества на вводе пароводяной смеси устанавливают циклоны, в которых при закручивании потока отделившаяся вода по стенкам сте­кает вниз, а пар через жалюзи на крышке циклона выходит в паровое пространство; под циклоном выполняют поддон, предупреждающий проход пара вниз. Перед пароотводящими трубами из барабана, как это видно из схемы рис. 4-6,е, ус"^анавливают лист с отверстиями и жалюзи.

    Так как качество пара, выходящего из барабана, зависит от солесо - держания котловой воды, то значение величины солесодержания огра­ничивают, удаляя накапливающиеся соли вместе с горячей водой, осу­ществляя продувку.

    Если удаление воды с солями выполняется постоянно, продувку на­зывают непрерывной. В нижних элементах котлоагрегата - ниж­них коллекторах экранов, в нижнем барабане - при работе и особенно при малых нагрузках и при останове может скапливаться шлам. Для его удаления при растопках и пониженных нагрузках из нижних точек
    проводят продувку, которую называет периодической или шла­мовой.

    Поскольку при продувке теряется не только вода, но и теплота, величину продувки ограничивают.

    Способ, дающий возможность получать пар высокого качества при небольших размерах продувки, названный ступенчатым испаре­нием, был предложен в СССР проф. Э. И. Роммом в 1937 г. и получил широкое распространение. Сущность этого способа состоит в разделе­нии поверхностей нагрева, кол­лекторов и барабанов на ча­сти, в которых происходит по­степенное упаривание воды. Питательную воду подают в первую часть, называемую чистым отсеком, который производит 80-85% пара; в нем поддерживают опреде­ленное и невысокое солесодер­жание котловой воды за счет увеличенной продувки во ВТО* рую часть - соленый от­сек. Пар из чистого отсека будет удовлетворительного ка­чества, а котловая вода в со­леном отсеке будет иметь по­вышенное солесодержание, что и уменьшит размер продувки. Пар же из соленого отсека будет невысокого качества и потребует хорошей очистки, но его будет немного-15-20%; поэтому общее качество п^ра, выдаваемого котло­агрегатом, будет удовлетворительным. Обычно ступенчатое испарение осуществляют в двух, реже - трех ступенях [Л. 15].

    На принципиальной схеме, показанной на рис. 4-7, изображено трехступенчатое испарение котловой воды в котлоагрегате, имеющем котельный пучок (I ступень испарения); фестон и задний экран (II сту­пень) и боковые экраны (III ступень испарения), пар из которых посту­пает в вынесенный из барабана циклон-сепаратор, а из последнего идет в барабан. Производительность I ступени п-70%, II ступени - п2- =20% и III ступени пз=10% общей производительности котлоагрегата.

    Уравнение баланса солей для котлоагрегата с трехступенчатым испарением при солесодержании питательной воды 5П. В, воды в чистом отсеке 5ь соленом отсеке 52 И циклоне 5пр при величине продувки р будет иметь вид:

    (100 Р) 5П. в = (пг + п2 4- р) 51 = (п3 -|~ р) (4-20)

    Из этого уравнения можно найти процент продувки и солесодержа­ние котловой воды в каждом из отсеков.

    Продувка котлоагрегата р, %, составит:

    О ___ ^П. В (100 р)

    1 пь + пг + р %

    Во II ступени испарения аналогично

    В III ступени и в продувке

    О _____ ^п. в (100 Ч~ /О

    Наличие трех ступеней испарения при продувке в 5% даже при со - лесодержании питательной воды в 500 мг/кг позволяет иметь со л есо дер­жание в продувке

    Зщ, = 500 (1^° + 5)- = 10 500 мг/кг.

    Из схемы на рис. 4-7 и формулы (4-20) видна эффективность при* менения ступенчатого испарения, особенно при повышенном содержании солей в питательной воде.

    Из-за возможного образования отложений на поверхностях нагре­ва больше трех ступеней испарения не делают. В СССР все котельные заводы изготавливают котлоагрегаты со ступенчатым испарением.

    Качество перегретого пара, отвечающее требованиям ПТЭ электростанций и сетей, обеспечивается в прямоточных котлах питанием их водой высокой чистоты, а в барабанных котлах - за счет высокой чистоты насыщенного пара, которая достигается путем питания котла водой надлежащего качества, организацией продувки водяного объема, ступенчатым испарением, промывкой насыщенного пара высоких давлений питательной водой с последующим уменьшением его влажности путем сепарации влаги.

    Поддержание солесодержания котловой воды барабанных котлов в пределах норм при их эксплуатации осуществляется с помощью продувки (периодической и непрерывной). Периодическая продувка осуществляется из нижних точек барабана и коллекторов 2 раза в смену в целях вывода из котла твердых примесей (шлама и продуктов коррозии). Непрерывная продувка осуществляется из барабана или выносных циклонов для удаления части котловой воды с повышенной концентрацией растворенных примесей. Расход продувки устанавливается на базе результатов теплотехнических испытаний котла.

    Ступенчатое испарение

    Улучшение качества пара в барабанных котлах без увеличения непрерывной продувки достигается организацией в них ступенчатого испарения.

    Ступенчатое испарение (рис.) реализуется путем разделения барабана котла на несколько ступеней (отсеков) с самостоятельными контурами циркуляции и организацией последовательного поступления в них котловой воды и непрерывной продувки из последней ступени. Концентрация солей в котловой воде по ступеням изменяется от меньшей концентрации к большей, насыщенный пар отводится только из чистого отсека. Пар солевых отсеков поступает в паровое пространство чистого отсека и вместе с общим потоком пара чистого отсека проходит завершающую ступень сепарации. В зависимости от качества питательной воды применяются схемы как с одной, так и с двумя или тремя ступенями испарения. На практике чаще всего используется двухступенчатая схема испарения с выносной второй ступенью (рис.). Выбор каждой ступени испарения осуществляется из условия обеспечения минимального соле- и кремнесодержания пара до промывочного устройства с использованием уравнений солевых балансов.

    Схема двухступенчатого испарения в барабанах котла
    I, II - соответственно первая и вторая ступени испарения; 1 - подъемные трубы; 2 - опусные трубы; 3- подвод питательной воды; 4 - барабан; 5 - пароотводящие трубы; 6 - пароперепускные трубы; 7 - выносной циклон; 8 - коллектор; 9 - продувка; 10 - водоперепускные трубы

    Допустимое значение влажности пара на выходе из барабана определяется давлением и наличием промывки. При отсутствии последней влажность пара должна быть не более 0,02 %. При высоких давлениях, когда необходимое качество пара достигается промывкой его питательной водой, влажность может быть выше, но не более 0,1 %.

    Внутрибарабанные устройства

    Необходимый уровень влажности пара достигается с помощью внутрибарабанных устройств за счет снижения кинетической энергии пароводяных струй, истекающих из парообразующих труб, начального разделения пароводяной смеси, равномерной раздачи пара по зеркалу испарения и полной его осушки.

    Тип и конструктивное оформление применяемых в барабане устройств зависят от единичной мощности котла и параметров пара. Гашение кинетической энергии струй пароводяной смеси и начальное разделение последней в барабанах котлов среднего давления осуществляются с помощью отбойных щитков, жалюзийнодроссельных стенок с горизонтальным расположением пластин и других устройств, а в котлах высокого давления - внутрибарабанных циклонов (рис.).

    Схемы типовых внутрибарабанных устройств котлов высокого (а), среднего (б) и низкого (в) давления
    а - для котлов высокого давления с внутрибарабанными циклонами; б и в - для котлов среднего давления с отбойными щитками и погруженным дырчатым щитом соответственно; 1 - барабан; 2 - ввод пароводяной смеси; 3 - короб; 4 - циклон; 5 - сливной короб; 6 - крышка; 7 - дырчатый лист промывочного устройства; 8 - пароприемный потолок; 9 - раздающий короб питательной воды; 10 - пароотводящие трубы; 11 - подвод питательной воды; 12 - опускные трубы; 13 - труба аварийного слива воды; 14 - жалюзийный сепаратор; 15 - затопленный дырчатый щит; 16 - отбойные подушки

    Равномерное распределение пара по сечению барабана и пароотводящим трубам обеспечивается с помощью установки соответственно дроссельных щитов в водяном объеме (дырчатых погруженных щитов) и дырчатых листов в паровом объеме на выходе из барабана (пароприемных потолков).

    Тонкая осушка достигается за счет осадительной сепарации в паровом объеме барабана и использования в котлах с давлением меньше 11 МПа жалюзийного сепаратора.

    Размеры барабана определяются исходя из допустимой удельной паровой нагрузки (средняя массовая нагрузка на метр длины цилиндрической части).

    Схемы типовых внутрибарабанных устройств, проверенных в и освоенных в производстве, показаны на рис. Погруженный дырчатый щит (в) располагают на 50-75 мм ниже наинизшего массового уровня в барабане с расстоянием до его стенок, не менее 150 мм для стока воды. Отверстия в погруженном щите выполняют диаметром не менее 10 мм для предотвращения забивания шламом. Щит снабжают закраинами высотой не менее 50 мм, чтобы предотвратить прорыв пара помимо щита. Питательную воду подают поверх дырчатого щита со скоростью не менее 1, но не более 4 м/с во избежание попадания относительно холодной воды на противоположную стенку корпуса барабана.

    В паровом пространстве барабана перед пароотводящими трубами на максимальной конструктивно выполнимой высоте устанавливается потолочный дырчатый лист (пароприемный потолок). Диаметр отверстий 5 мм. Степень перфорации определяется из условия обеспечения рекомендуемых значений скорости пара в отверстиях потолочного дырчатого листа.

    Для тонкой очистки пара от капель воды в барабанах с давлением меньше 11,3 МПа используют жалюзийный сепаратор (рис.). Отделение капель воды в нем происходит за счет изменения направления движения пароводяного потока при прохождении криволинейных каналов, образуемых волнистыми пластинами, установленными с шагом 10 мм. Капли влаги, попадая на пластины, смачивают их поверхность и стекают в виде струек, захват влаги из которых невозможен, так как скорости пара малы, а капли влаги укрупнены.

    Горизонтальный жалюзийный сепаратор
    1 - дырчатый щит; 2 - жалюзийный сепаратор

    По расположению в паровом пространстве пакеты жалюзи подразделяются на горизонтальные (рис.) и наклонные, устанавливаемые под углом 10-30° к вертикали. Наклонные пакеты жалюзи обеспечивают относительно большую эффективность сепарации и работают при более высоких допустимых скоростях набегания среды. Поэтому их целесообразнее всего применять при высоких удельных нагрузках барабана.

    Снижение уноса кремниевой кислоты в котлах высокого давления достигается за счет промывки пара питательной воды в паропромывочном устройстве барабана (а). Оно состоит из барботажных дырчатых листов, устройств подачи питательной воды на них и сливных коробов.

    Начальное разделение пароводяной смеси, гашение кинетической энергии двухфазного потока, а также двухступенчатая сепарация пара в барабанах котлов высокого давления осуществляются во внутрибарабанных циклонах (рис.). Эти устройства, кроме того, позволяют снизить пенообразование котловой воды, устранить захват пара в опускные трубы. Первая ступень сепарации - центробежная, она создается за счет тангенциальной подачи пароводяной смеси в циклон, вторая - осадительная. Важно обеспечить равномерное распределение потока по сечению циклона для получения возможно меньших скоростей. Это достигается установкой в верхней части циклона жалюзийного сепаратора. Уровень воды в барабане должен быть не выше середины подводящего патрубка. Для предотвращения прорыва пара через циклон он перекрывается донышком, образующим кольцевое сечение, с расположенными в нем направляющими лопатками. Последние дают возможность осуществить спокойный сток воды. Внутрибарабанные циклоны обеспечивают равномерную выдачу пара в паровой объем барабана по его длине и являются хорошими сепараторами. Однако установка их сложна, особенно монтаж всех соединительных коробов.

    Внутрибарабанный циклон
    1 - крышка; 2 - подводящий патрубок; 3 - цилиндрический корпус; 4 - направляющие лопатки; 5 - донышко

    Конструкция, размеры и составные элементы внутрибарабанных циклонов выбираются в соответствии с требованиями. Ширина патрубка выбирается на основании результатов гидравлического расчета каждого контура, включающего внутрибарабанные циклоны, исходя из условий обеспечения их сопротивления в пределах по надежности циркуляции (а).

    При ступенчатом испарении пар последней ступени, как правило, осушается в выносных циклонах (рис.). Для разделения пароводяной смеси на воду и пар в них устанавливается внутренняя направляющая лопасть, которая вместе с приваренными к ней донышками образует с внутренней поверхностью криволинейный канал, ширину которого рекомендуется принимать 15-25 мм. Высота щели определяется конструктивно. При расстоянии между штуцерами, подводящими пароводяную смесь, 290 мм высоту щели рекомендуется принимать равной 420 мм.

    Выносной циклон
    1 - штуцер для трубопровода, подводящего котловую воду; 2 - штуцер для трубопровода непрерывной продувки; 3 - штуцер для воздушника; 4 - штуцер для пароотводящего трубопровода; 5 - пароприемный дырчатый щит; 6 - корпус; 7 - штуцера для трубопровода пароводяной снеси; 8 - крестовина; 9 - штуцер для водоопускной трубы; 10 - вставка для образования улитки

    Выравнивание поля скоростей пара по сечению циклона достигается за счет дырчатого листа, располагаемого в верхней части циклона. Суммарная площадь отверстий дырчатого листа принимается равной 10-20 % площади поперечного сечения циклона. Диаметр отверстий 6-10 мм. Высота активного сепарационного объема от верхнего штуцера ввода пароводяной смеси до дырчатого листа принимается не менее 1200 мм. Высота водяного объема в циклоне при номинальной нагрузке и минимальном уровне не менее 1800 мм. В нижней части водяного объема устанавливается крестовина, препятствующая воронкообразованию и захвату пара в опускные трубы. Подвод пароводяной смеси к циклонам осуществляется выше уровня воды в барабане на 200-500 мм, считая от нижнего штуцера. Циклоны изготовляются в одиночном исполнении и в виде блока, состоящего из двух, в отдельных случаях из трех циклонов. Конструкция и основные параметры их стандартизованы (ОСТ 108.030.03-85).

    Суммарная производительность и количество выносных циклонов выбираются, исходя из расчета схемы ступенчатого испарения с учетом допустимых нагрузок на циклон.

    Регулирование температуры перегретого пара

    В барабанных котлах регулирование температуры перегретого пара осуществляют поверхностными пароохладителями и впрыском собственного конденсата, получаемого за счет конденсации насыщенного пара.

    В прямоточных котлах поддержание температуры перегрева в тракте высокого давления достигается соблюдением постоянства между количеством переданной пару теплоты и его расходом. Средством подрегулировки является впрыск питательной воды.

    Температура промежуточного перегрева поддерживается постоянной с помощью ППТО - паропаровых (твердое топливо), ввода рециркуляции газов, через горелки (газ, мазут) или в верхнюю часть топки (газ, мазут, твёрдые топлива), а также перераспределения количества газов, проходящих через газоходы, где расположены промежуточный пароперегреватель и экономайзер (схема «расщепленный хвост»).

    Ступенчатое испарение и промывка пара

    Советский ученый Э. И. Ромм предложил оригинальный способ получения пара высокого качества в парогенераторах барабанного типа при экономически приемлемой величине продувки, который получил название ступенчатое испарение. Сущность этого способа состоит в получении пара из зон с различной концентрацией солей в котловой воде. В обычных условиях питательная вода с малым солесодержанием и низкой щелочностью, поступая в барабан, смешивается с концентрированной котловой водой, и выделение пара происходит из воды, имеющей значительно более высокую концентрацию солей и щелочей, чем питательная вода. При этом концентрации котловой и продувочной воды одинаковы, и тем самым качество насыщенного пара в значительной мере определяется концентрацией примесей в котловой воде, с которой генерируемый пар находится в контакте перед выходом его в паровой объем парогенератора. Между тем, если поддерживать пониженные концентрации веществ в котловой воде, из которой генерируется пар, и более высокую концентрацию их в продувочной воде, то качество пара будет определяться низкой концентрацией веществ в котловой воде парогенератора.

    При наличии внутри водяного объема парогенератора зон с различной концентрацией солей в котловой воде благодаря искусственно созданной неравномерности солесодержания, т. е. некоторому организованному «химическому перекосу», качество котловой воды отличается от качества продувочной воды, и последняя не определяет чистоты пара.

    Рис. 5.4. Схема двухступенчатого испарения с двусторонним

    расположением солевых отсеков в барабане парогенератора:

    1 – продувка; 2 – питательная вода; 3 – пар

    Парогенератор со ступенчатым испарением представляет собой обычный парогенератор с естественной циркуляцией, который установленными в барабане и коллекторах перегородками разделен на несколько самостоятельных контуров циркуляции. Водяные объемы этих контуров сообщаются только через отверстие, сделанное в разделительной внутрибарабанной перегородке. Теоретически парогенератор может быть разделен на любое число ступеней, но в практических условиях обычно ограничиваются двумя или тремя ступенями испарения.

    При двухступенчатом испарении часть парогенератора, в которую подается питательная вода, называют «чистым» отсеком (первая ступень испарения), а остальную часть – «солевым» отсеком (вторая ступень испарения). В парогенераторах, оснащенных устройствами трехступенчатого испарения, имеются соответственно чистый отсек и солевые отсеки второй и третьей ступеней испарения.

    Для второй ступени испарения отделяется часть объема с одного или двух торцов барабана (рис. 5.4) либо устанавливаются выносные циклоны, подключенные к боковым экранным поверхностям парогенератора (рис. 5.5).

    Рис. 4.5. Схема двухступенчатого испарения с выносными циклонами

    1 – барабан парогенератора; 2 – циклон; 3 – боковой экран;
    4 – подвод питательной воды

    Благодаря тангенциальному подводу пароводяной смеси в вертикальный цилиндрический корпус циклона в нем гасится кинетическая энергия пароводяной смеси, а быстрое вращение ее в зоне зеркала испарения способствует интенсивному разрушению пены. Питательная вода подается в чистый отсек барабана, из которого осуществляется питание солевых отсеков в барабане либо выносных циклонов.

    В результате такой организации питания отдельных циркуляционных контуров парогенератора солесодержание, щелочность и кремнесодержание котловой воды растут от первой ступени к последней, относительная продувка каждой ступени испарения получается весьма значительной, а продувка парогенератора в целом – очень небольшой. При этом, несмотря на повышенное кремнесодержание котловой воды в солевых отсеках, избирательный вынос кремниевой кислоты из них уменьшается благодаря более высокой гидратной щелочности котловой воды в этих отсеках.

    Организация водного режима парогенератора со ступенчатым испарением имеет то преимущество перед парогенератором без ступенчатого испарения, что большая часть пара в нем вырабатывается в чистом отсеке с концентрациями котловой воды, существенно меньшими по сравнению с концентрацией продувочной воды, выводимой из меньших по паропроизводительности солевых отсеков.

    Составим уравнения баланса солей для первой и второй ступеней испарения парогенератора с двухступенчатым испарением, пренебрегая уносом солей с паром:

    (5.24)
    (5.25)

    где – концентрации примесей (солесодержание, кремнесодержание, содержание истинно растворенных окислов железа, щелочность) в котловых водах чистого и солевых отсеков, г/т; – количество пара, вырабатываемое второй ступенью испарения в парогенераторе, т/ч.

    Остальные обозначения те же, что и при расчете продувки.

    Разделив каждое уравнение на D п и введя обозначения D пр /D п = φ и D"/D п = n 2 , где φ - степень продувки в долях D п и n 2 – паропроизводительность второй ступени испарения (солевого отсека) в долях, получим:

    Концентрации примесей в паре, вырабатываемом каждой ступенью испарения, будут:

    где n 1 =1– n 2 – паропроизводительность первой ступени испарения в долях D п.

    Значения коэффициентов распределения по отсекам парогенератора различаются, в особенности для кремниевой кислоты, для которой, как известно, значение . Однако для упрощения приняв и сделав элементарные преобразования, получим значение а п в граммах на тонну:

    (5.31)

    По этой формуле можно определить концентрацию примесей (солесодержание, кремнесодержание и щелочности) в паре при любых возможных значениях коэффициента распределения К р,степени продувки φ, относительных производительностях чистого n 1 и солевого n 2 отсеков и концентрации указанных примесей в питательной воде а п.в.

    Опыт эксплуатации показывает, что в парогенератоpax, оснащенных устройствами ступенчатого испарения, качество пара (солесодержание, кремнесодержание) заметно улучшается по сравнению с парогенератором без этих устройств при сохранении той же величины продувки и того же качества питательной воды. При этом увеличивается вывод из парогенератора примесей с продувочной водой и соответственно уменьшается унос их с насыщенным паром (рис. 5.6).

    Рис. 5.6. Количество кремниевой кислоты, удаляемой из парегенератора с продувочной водой, в зависимости от величины продувки парогенератора (в расчетах принято = 0,8 %; =0,3 %; n 2 = 30 %):

    1 – парогенератор без ступенчатого испарения; 2 – парогенератор со ступенчатым испарением

    Отношение концентраций котловых вод второй ступени испарения и чистого отсека называют кратностью концентраций k, величина которой характеризует эффективность ступенчатого испарения. Чем выше величина k,тем экономичнее схема. На практике величина kограничивается в пределах 3–10, так как при
    k > 10 могут создаться высокие концентрации фосфатов и окислов железа в котловой воде, опасные с точки зрения образования отложений на поверхностях нагрева солевых отсеков.

    Существенное влияние на ухудшение качества котловой воды в чистом отсеке оказывает обратный переток котловой воды из солевых отсеков в чистый через водо-перепускную трубу, по которой происходит продувка из чистого отсека в cолевой либо переброс котловой воды из солевого отсека в чистый при ее вспенивании и набухании. Подобные обратные перетоки и перебросы котловой воды могут привести к заметному снижению кратности солевых концентраций между ступенями, т.е. к уменьшению эффективности ступенчатого испарения. Чтобы избежать этого, предусматриваются специальные устройства для улавливания переброса и предотвращения обратных перетоков котловой воды.

    Организация водного режима парогенератора с применением схемы ступенчатого испарения дает возможность значительно повысить концентрации примесей в продувочной воде без ухудшения качества пара. Тем самым представляется возможным уменьшить потребную продувку парогенератора до экономически приемлемой величины, а также снизить требования к соле- и кремнесодержанию питательной воды. В тех случаях, когда при заданных условиях (высокоминерализованная исходная вода, большая величина добавки питательной воды, высокое рабочее давление пара, лимитированная величина продувки и т. п.) оптимальные схемы ступенчатого испарения не в состоянии обеспечить требуемую чистоту пара, могут быть с успехом применены более эффективные схемы организации водного режима парогенераторов барабанного типа, а именно промывка предварительно осушенного насыщенного пара питательной водой либо сочетание промывки пара со ступенчатым испарением.

    Сущность способа промывки пара состоит в том, что в процессе промывки вещества, унесенные в капельках котловой воды, а также истинно растворенные в паре, частично переходят в промывочную воду, а влажный промытый пар повторно осушается с помощью сепарационного устройства, расположенного в барабане парогенератора, после чего пар поступает в пароперегреватель.

    Переход кремниевой кислоты и других растворенных в насыщенном паре веществ в промывочную воду происходит вследствие того, что равновесная концентрация кремниевой кислоты в паре при контакте его с промывочной водой меньше, чем при контакте его с котловой водой, из которой образовался пар. Этот переход начинается при прохождении пара через слой промывочной воды и продолжается в паровом пространстве над слоем промывочной воды, но уже в каплях воды, образующихся при разрыве пузырей при выходе их в паровой объем барабана.

    Обеспечение с помощью промывки требуемого качества пара базируется на той закономерности, что чистота промытого пара определяется чистотой промывочной воды, с которой он контактируется. Степень промывки пара зависит от величины коэффициента распределения неорганических соединений между жидкой и паровой фазами, ибо промывочная вода не может поглощать вещество из пара больше определенной равновесной концентрации. Так как кремниевая кислота и другие неорганические соединения растворяются в воде больше, чем в паре, то при промывке пара эти вещества будут унесены с паром в количестве, пропорциональном содержанию их в промывочной, а не в котловой воде.

    Чистоту промытого пара можно приближенно оценить, пользуясь формулой

    (5.32)

    где W – влажность промытого пара в долях единицы; К р – коэффициент распределения в долях единицы; а пр.в – концентрация примесей в промывочной воде.

    Величина коэффициента распределения для кремниевой кислоты составляет для парогенераторов сверхвысокого давления 15 % при гидратной щелочности менее 0,1 ммоль/дм 3 и 5–10 % при гидратной щелочности 0,2–0,3 ммоль/дм 3 .

    Для осуществления процесса промывки пара питательная вода подается в специальные устройства, расположенные в паровом объема барабана, парогенератора и отделенные от доступа котловой воды. Промывочная питательная вода, после того как она контактировала с насыщенным паром, поступает в котловую воду и смешивается с ней.

    Известны следующие способы промывки пара: барботаж пара через слой питательной воды, пропуск его через сепараторы, смачиваемые питательной водой и, наконец, распыливание питательной воды в потоке пара. В современных парогенераторах барабанного типа широко применяется барботажная промывка пара, которая обеспечивает наиболее полный контакт пара с промывочной водой. Промывочное барботажное устройство представляет собой затопленный плоский дырчатый щит (рис. 5.7) с закраинами, отвечающими требующейся высоте промывочного слоя (приблизительно 40–50 мм).На конденсационных электростанциях и чисто отопительных ТЭЦ на барботажное промывочное устройство подается вся питательная вода, а на промышленных ТЭЦ, использующих в качестве добавки химически обработанную воду, на паропромывочное устройство подается от 50 до 100 % питательной воды.

    Общий эффект от применения промывки пара определяется КПД как самого паропромывочного устройства, так и сепарирующих устройств, осушающих пар до и после промывки его. Коэффициент полезного действия, собственно промывки пара представляет собой отношение количества удаленного вещества к теоретически возможному количеству, т. е. он указывает, насколько промывка приближается к пределу очистки. Если бы содержание вещества в паре достигло концентрации, отвечающей коэффициенту распределения, то эффективность промывки была бы равна 100 %, т. е. отвечала бы максимально возможной (теоретической) очистке пара. При ограниченной высоте промывочного слоя, которая имеет место в случае размещения паропромывочного устройства в паровом объеме барабана, величина КПД собственно барботажной промывки составляет примерно 80 %.

    Рис. 5.7. Барботажное промывочное устройство с затопленным дырчатым листом:

    1 – промывочное устройство; 2 – жалюзийный сепаратор; 3 – питательное корыто;
    4 – дырчатый лист; 5 – непрерывная продувка; 6 – питательная труба; 7 – ввод фосфатов

    Для любой схемы внутрикотловых устройств важной характеристикой является доля уловленных ими в парогенераторе неорганических примесей от общей концентрации их в питательной воде. Применительно к парогенераторам с паропромывочными устройствами этот показатель зависит: а) от разности концентраций солей и кремниевой кислоты в паре, поступающем на промывочное устройство, и соответственно в промывочной воде; б) гидратной щелочности промывочной воды; в) отношения расхода промывочной воды к расходу пара; г) величины поверхности и продолжительности контактирования пара с промывочной водой; д) значений коэффициентов массообмена, характеризующих интенсивность перехода того или иного вещества, растворенного в воде, в промывочную воду.

    Рис. 5.8. Схема трехступенчатого испарения с выносными циклонами
    и барботажной промывкой пара:

    1 – пароводяная система чистого отсека; 2 – вторая ступень испарения; 3 – третья ступень испарения; 4 – питательная вода; 5 – продувка; 6 – в пароперегреватель

    Экспериментальные и эксплуатационные данные свидетельствуют о том, что паропромывочные устройства снижают кремнесодержание пара в среднем в 2–3 раза.

    На промышленных ТЭЦ высокого давления (100 кгс/см 2)при значительной добавке химически обработанной воды обычно применяется комбинированная схема внутрикотловых устройств, которая предусматривает сочетание трехступенчатого испарения с барботажной промывкой питательной водой всего пара либо только пара из солевых отсеков (рис. 5.8). Иногда пар промывается котловой водой чистого отсека; с этой целью пар из солевых отсеков подается под уровень воды в чистом отсеке. На конденсационных электростанциях и чисто отопительных ТЭЦ, где парогенераторы барабанного типа сверхвысокого давления
    13,8 МПа (140 кгс/см 2)питаются с добавкой химически обессоленной воды либо дистиллята испарителей, часто применяется схема двухступенчатого испарения с выносной второй ступенью, имеющей паропроизводительность 3–6 % D п, которая сочетается с барботажной промывкой пара. Из этих парогенераторов с паром уносится от 2 до 8 % кремниевой кислоты, внесенной питательной водой.

    5.1.4. Влияние водно-химического режима на состав
    и структуру отложений

    Выполнение регламентируемых показателей по качеству питательной и котловой воды не может полностью исключить образование отложений в экранных трубах котлов. На скорость образования отложений оказывают влияние различные факторы, и прежде всего тепловое напряжение, качество питательной и котловой воды и рабочие параметры среды.

    Оценку состояния водно-химического режима ведут по результатам оперативного контроля показателей качества питательной и котловой воды. Объем и периодичность оперативного контроля определяют для каждой электростанции исходя из местных условий эксплуатации. Итоговую оценку состояния водно-химического режима за конкретный период получают по изменению температуры металла труб и загрязненности внутренней поверхности труб, определенной методом выборочной вырезки контрольных образцов.

    Для контроля за изменением температуры экранных труб в них вваривают специальные температурные вставки с встроенными термопарами. Показания термопар выводят на регистрирующий прибор. Температурные вставки обычно устанавливают в зоне повышенных тепловых напряжений, т. е. в наиболее благоприятных условиях для образования отложений.

    При отсутствии температурного контроля металла производят выборочную вырезку контрольных образцов. Зоны экранной поверхности, из которых должны производиться вырезки контрольных образцов, уточняют для каждого типа котлов в соответствии с особенностями топочного режима, расположением горелочных устройств, схемы циркуляции и вида сжигаемого топлива. Периодичность вырезок зависит от вида сжигаемого топлива и составляет для котлов, работающих на жидком топливе, 10 000–15 000 ч и на твердом топливе 18 000–21 000 ч.

    Ориентировочный объем вырезок включает следующие поверхности: экономайзер – первая ступень (вход и выход), вторая ступень (выход); экранная поверхность – чистый отсек (фронтовой, задний и боковой экраны), солевой отсек (боковой экран слева и оправа); пароперегреватель – первая и вторая ступень (участки труб в районе гиба). Учет вырезок контрольных образцов целесообразно осуществлять по развернутым формулярам котлов. Вырезку образцов выполняют автогенной горелкой, а дальнейшее разделение каждого образца – на фрезерном или продольно-строгальном станке. Каждый образец разрезают вдоль по линии раздела огневой и тыловой сторон, затем поперек на отдельные участки для определения загрязненности и химического анализа отложений.

    Перед снятием отложений на химический анализ осматривают внутреннюю поверхность трубы для оценки толщины, плотности и равномерности отложений. Для химического анализа снимают отложения только с огневой стороны послойно – вначале мягкие, затем твердые.

    Загрязненность определяют методом катодного травления отдельно участков с огневой и тыловой сторон образца. После катодного травления осматривают состояние металла образцов, отмечая коррозионные разрушения. При наличии коррозионных язвин определяют их количество, размеры, глубину, а также характер разрушения металла в целом.

    Четкое выполнение определенной системы контроля за состоянием поверхностей нагрева котлов позволяет по состоянию металла, структуре отложений, а также их составу оценить надежность водно-химического режима за конкретный период.

    В табл. 5.1. приведен химический состав отложений котлов различных типов и рабочих параметров электростанций. Качество питательной воды этих котлов по всем составляющим соответствует нормативным значениям ПТЭ. Коррекционную обработку котловой воды осуществляют различными реагентами, тринатрийфосфатом и трилоном Б. Данные табл. 5.1 могут характеризовать некоторые особенности коррекционной обработки котловой воды топочного режима, а также водно-химического режима в целом. Так, фосфатная обработка котловой воды всех приведенных в табл. 5.1 котлов, кроме ПК-14, выполняется в оптимальном режиме. В составе отложений содержание Р 2 О 5 эквивалентно сумме СаО + MgO гидроксилаппатита или фосфорита кальция. Образование феррофосфата в этих условиях маловероятно.

    В отложениях котла ПК-14 содержание Р 2 О 5 значительно превышает сумму CaO + MgO из-за поддержания в котловой воде повышенного избытка фосфатов, и здесь возможно образование феррофосфата. В рассматриваемом случае дозу тринатрийфосфата целесообразно снизить, а выполнение нормативного значения рН котловой воды можно обеспечить подщелачиванием раствора тринатрийфосфата едким натром.

    В отложениях котла TП-200 повышено содержание кремниевых соединений. Отложения очень плотные и трудноудаляемые в процессе химической очистки. Образование таких отложений обычно происходит при относительно низкой щелочности котловой воды. Здесь будет полезным внедрение подщелачивания котловой воды для перевода кремниевых соединений в хорошо растворимый силикат натрия.

    О присутствии в отложениях котлов БКЗ-320 продуктов высокотемпературного термолиза органических соединений свидетельствует показатель п. п. п. (потери при прокаливании).

    Отложения, содержащие в своем составе такие вещества, имеют относительно плотную структуру и почти не растворяются в минеральных кислотах. В связи с низкой теплопроводностью таких отложений наличие их даже при относительно невысоких тепловых нагрузках приводит к перегреву металла с последующим разрушением. Сопоставление данных по составу отложений труб заднего и бокового экранов чистого отсека всех котлов свидетельствует о повышенном тепловом напряжении в зоне заднего экрана, так как в отложениях этой поверхности высокое содержание меди.

    Повышенное содержание кремнекислых соединений в отложениях котла
    БК3-75, работающего в комплексонном водном режиме, является следствием низкой щелочности котловой воды. Для комплексонной обработки целесообразно использовать щелочной раствор трилона Б. В составе отложений на экранных поверхностях этого котла невысоко содержание катионов кальция и магния. Это обстоятельство свидетельствует об эффективности процесса комплексообразования трилоном Б этих катионов. Образовавшиеся при этом ЭДТАцетаты кальция и магния в условиях параметров котловой воды не подвержены термическому разложению и удаляются из котла продувкой. Высокое содержание меди в отложениях труб заднего экрана, поверхности с повышенными тепловыми потоками следует объяснить протеканием процесса термолиза ЭДТАцетата меди, в результате которого происходит образование медистых отложений. ЭДТАцетат меди имеет наименьшую термическую устойчивость в сравнении с ЭДТАцетатами железа, кальция и магния. Так, при 300–320 °С отмечается практически полное разложение его.

    5.2. Водно-химические режимы блоков СКД

    Процесс в котлах СКД характерен значительными изменениями теплофизических свойств рабочего тела – плотности и температуры. Эти параметры пара определяют растворимость в нем различных соединений, поэтому и надежность работы блоков в большей степени зависит от внутрикотловых процессов, в том числе от водных режимов.

    С ростом параметров и единичной мощности энергоблоков усиливается влияние водного режима на надежность и экономичность работы электростанций. Увеличение единичной мощности котлов ведет к росту тепловых напряжений поверхностей нагрева. В этих условиях даже незначительные отложения на внутренней поверхности труб вызывают перегрев и разрушение металла.

    Повышение параметров пара увеличивает его растворяющую способность в отношении примесей, содержащихся в питательной воде. В результате возрастает интенсивность заноса проточной части турбин, последнее приводит к снижению экономичности энергоблоков и ограничению их мощности.

    Существующие методы водоподготовки обеспечивают достаточно полную очистку добавочной воды как барабанных, так и прямоточных котлов от солевых загрязнений. Вывод загрязнений из пароводяного цикла прямоточных котлов осуществляется конденсатоочисткой. В этих условиях основными примесями питательной воды становятся не соли, а продукты коррозии конструкционных материалов, в основном оксиды железа и меди. Даже при сравнительно малых содержаниях оксидов железа в питательной воде прямоточных котлов СКД (10–12 мкг/дм 3) происходит постепенное накопление их на поверхностях нагрева, особенно в нижней радиационной части (НРЧ) котла, которая несет наибольшие тепловые нагрузки.

    Опыт промышленной эксплуатации показал, что одной из основных причин аварийных остановов блоков 300 МВт, работающих на газомазутном топливе, является повреждаемость НРЧ, обусловленная главным образом образованием железооксидных отложений на внутренних поверхностях нагрева.

    Осмотр контрольных образцов труб выходных и предвыходных экранов НРЧ котлов ТГМП-114 свидетельствует о наличии отложений на внутренней поверхности нагрева труб. Отложения имели вид черного сажистого порошка, по химическому составу состояли на 90–95 % из оксидов железа и в незначительном количестве содержали медь, цинк, марганец и никель. Плотность и количество отложений на огневой стороне были в 3–4 раза больше, чем на тыловой.

    Метод ступенчатого испарения, сущность которого сводится к созданию в парогенераторе контуров парообразования с различной концентрацией примесей при их последовательном питании водой, был предложен в 1936 г. Э.И.Роммом. Для этого контур циркуляции искусственно разделяют на две или три части, называемые отсеками или ступенями испарения.

    Более трех ступеней испарения не применяют, т. к. это существенно усложняет конструкцию парогенератора, а получаемый выигрыш в чистоте пара по мере возрастания числа ступеней падает. Для энергетических котлов число ступеней испарения, как правило, два.

    В первый отсек выделяется основная группа контуров циркуляции, которая присоединяется к части или ко всему барабану. Во второй отсек выделяется небольшая группа контуров циркуляции, которая присоединяется либо к части барабана, либо к выносным циклонам. Парообразующие поверхности отдельных отсеков между собой не сообщаются. Питательная вода поступает в первый (чистый) отсек. Питание второго (солевого) отсека происходит котловой водой первого отсека. Продувка парогенератора всегда организуется из последнего отсека. Поступление воды из одного отсека в другой происходит по специальным водоперепускным трубам. Такой режим называют режимом с внутренней продувкой. Переток воды по водоперепускным трубам в нужном направлении обеспечивается разностью уровней воды по обеим сторонам перегородки в барабане.

    Общая паропроизводительность парогенератора со ступенчатым испарением складывается из паропроизводительности всех отсеков.

    На рисунке ниже приведена схема двухступенчатого испарения без выносных циклонов.

    Водяной объем барабана разделен на два отсека несколько выступающей над уровнем воды перегородкой. В нижней части перегородки находится короткая водоперепускная труба. Контуры циркуляции, подсоединенные к чистому и солевому отсекам разделены между собой глухой перегородкой в нижнем коллекторе.

    Производительность солевого отсека зависит от конструктивных особенностей котла и в еще большей степени от качества питательной воды. Для барабанных котлов среднего давления подпиточная вода готовится по схемам умягчения и чистый отсек включает порядка 65 % объема барабана и все боковые экраны. Если же подпитка пароводяного контура производится обессоленной водой и питательная вода имеет очень низкое солесодержание, производительность солевого отсека не превышает 3-5%.

    В связи с повышенной концентрацией солей в котловой воде солевых отсеков в контур циркуляции этих отсеков выделяются экранные поверхности с относительно низким тепловым напряжением (как правило, это трубы боковых экранов).

    Кратность концентрации солей между отсеками (величина характеризующая эффективность ступенчатого испарения) должна быть не более 10. При более высоких значениях кратности создаются условия для накипеобразования в экранных трубах солевого отсека.

    Сопротивление перепускной трубы из чистого отсека в солевой должно быть небольшим, чтобы уровни в них мало отличались. Но малое сопротивление этой трубы способствует периодическим толчкам воды в обратном направлении. Этот так называемый переброс воды из солевого отсека в чистый повышает солесодержание воды чистого отсека, что в свою очередь ведет к ухудшению качества пара, со всеми вытекающими отсюда негативными последствиями.

    Для котлов высоких и сверхвысоких давлений подпиточная вода готовится по схемам обессоливания, что позволило повысить качество котловой воды и перейти на организацию солевых отсеков в выносных циклонах.

    Современные системы отопления и горячего водоснабжения для предприятий требуют немалых инвестиций. Поэтому в наше время нужно выбирать поставщика оборудования, у которого цены на котельные будут ниже, чем у других.

    Когда последняя ступень испарения выполняется с выносными циклонами, переброс ликвидируется практически полностью. Возможность иметь большую разность уровней в барабане и циклоне позволяет делать водоперепускную трубу с большим сопротивлением.


    Применение схемы (б) позволяет получить пар более высокого качества за счет промывки пара солевого отсека водой чистого отсека.

    Идея ступенчатого испарения, сыгравшая положительную роль для барабанных котлов среднего давления, исчерпала себя еще в 60-ые годы прошлого века в период освоения котлов высокого, а затем сверхвысокого давления.

    Дело в том, что вначале оно применялось лишь в тех случаях, когда не удавалось обеспечить солесодержание котловой воды ниже критического за счет разумной величины продувки. Ступенчатое испарение рассматривалось при этом как способ сокращения продувки (внутренняя продувка). Однако вскоре оно стало выполнять свою основную функцию – повышение качества пара, но это было эффективным лишь для котлов среднего и повышенного давления.