Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Основные разделы биотехнологии и их характеристика. Методы выделения и очистки клеточных макромолекул для получения целевого биотехнологического продукта

     Основные разделы биотехнологии и их характеристика. Методы выделения и очистки клеточных макромолекул для получения целевого биотехнологического продукта

    Биотехнология - это уникальная наука, которая использует живые организмы и биологические процессы в практических интересах человека.

    Биотехнология позволяет улучшить качество, питательную ценность и безопасность как сельскохозяйственных культур, так и продуктов животного происхождения, составляющих основу используемого пищевой промышленностью сырья.

    Кроме того, биотехнология предоставляет массу возможностей усовершенствования методов переработки сырья в конечные продукты: натуральные ароматизаторы и красители; новые технологические добавки, в том числе ферменты и эмульгаторы; заквасочные культуры; новые средства для утилизации отходов; экологически чистые производственные процессы; новые средства для обеспечения сохранения безопасности продуктов в процессе изготовления; и даже биоразрушаемую пластиковую упаковку, уничтожающую бактерии.

    Возделывание трансгенных культур первого поколения уже принесло фермерам неплохие доходы. Польза, которую при этом получил потребитель, не так очевидна, но не учитывать ее нельзя. Например, исследования показали, что кукуруза устойчивых к насекомым сортов (содержащих ген Bt-токсина) практически не повреждается насекомыми и, соответственно, менее подвержена грибковым заболеваниям, чем кукуруза обычных сортов. Таким образом, содержание синтезируемых этими возбудителями микотоксинов, некоторые из которых могут вызывать гибель скота и хроническое отравление людей, в растениях Bt-сортов гораздо ниже.

    Полезные свойства следующего поколения генетически модифицированных культур гораздо более очевидны для потребителя. Кроме улучшения качества и безопасности пищи в целом, в будущем должны появиться специализированные продукты, отличающиеся повышенной питательностью и способствующие сохранению и укреплению здоровья.

    На современном рынке представлено большое количество полезных для здоровья растительных масел, получаемых с помощью биотехнологии. Биотехнология позволила ученым снизить содержание насыщенных жирных кислот в некоторых растительных маслах. Им также удалось осуществить трансформацию омега-6 полиненасыщенной линолевой жирной кислоты в омега-3 полиненасыщенную линоленовую, встречающуюся в основном в рыбе и способствующую снижению уровня холестерина в крови.

    Другим вопросом, касающимся питательных свойств растительных масел, является отрицательное влияние на состояние здоровья транс-изомеров жирных кислот, образующихся при гидрогенизации жиров. Этот процесс применяется для повышения жаростойкости (для жарки) или изменения консистенции (для изготовления маргарина) растительных масел. Процесс гидрогенизации приводит к образованию вредных транс-изомеров жирных кислот.

    Специалисты биотехнологических компаний разработали метод придания соевому маслу необходимых качеств не за счет гидрогенизации, а за счет повышения содержания в нем стеариновой кислоты.

    Биотехнологи, работающие с животными, тоже занимаются поисками путей повышения качества продуктов питания. Уже создана говядина с пониженным содержанием жира и свинина с повышенным соотношением мясо/сало.

    Повышение питательной ценности продуктов имеет особенно большое значение для развивающихся стран. Исследователи университета Неру (Нью-Дели) использовали ген южноафриканского растения амаранта для повышения содержания белка в клубнях картофеля. Трансгенный картофель также содержит большое количество незаменимых аминокислот, не входящих в состав клубней обычного картофеля. В качестве примеров можно также упомянуть «золотой рис» и масло канолы, обогащенные витамином А. Дальнейшее усовершенствование «золотого риса» привело к повышению содержания в зернах легкоусваиваемых форм железа.

    Биотехнология подает большие надежды и в улучшении показателей продуктов функционального питания. Программы разработки и внедрения на рынок нутрицевтиков - продуктов-лекарств, систематическое употребление которых оказывает регулирующее действие на определенные системы и органы организма, улучшая здоровье человека, приняты во многих странах. Такие продукты содержат повышенное по сравнению с обычными количество незаменимых аминокислот, витаминов, минералов и других биологически активных веществ. Знакомые всем нутрицевтики - чеснок и лук, содержащие вещества, снижающие уровень холестерина и усиливающие иммунитет; богатый антиоксидантами зеленый чай; брокколи и кочанная капуста, в состав которой входят глюкозинолаты, стимулирующие активность противоопухолевых ферментов.

    Биотехнология используется для повышения содержания этих и других полезных соединений в продуктах функционального питания. Например, исследователи университета Пердью (г. Лафейетт, штат Индиана) и Министерства сельского хозяйства США (USDA) создали сорт томатов, содержащий в три раза более высокий по сравнению с обычными сортами уровень антиоксиданта ликопена. Употребление ликопена снижает риск возникновения рака простаты и молочной железы, а также снижает содержание в крови «плохого» холестерина. Другая группа специалистов USDA работает над увеличением содержания в клубнике эллаговой кислоты, обладающей противоопухолевыми свойствами.

    Биотехнологи занимаются улучшением качества растительного сырья также с точки зрения его привлекательности для покупателя и легкости приготовления. Ученые удлиняют срок хранения фруктов и овощей; делают морковь, паприку и сельдерей более хрустящими; создают не содержащие семян сорта дынь и винограда; продлевают длительность сезонно-географической доступности томатов, клубники и малины; улучшают вкусовые качества томатов, салата-латука, перца, зеленого горошка и картофеля; создают не содержащие кофеина сорта кофе и чая.

    Японские ученые идентифицировали фермент, заставляющий нас плакать во время резки лука, и таким образом уже сделали первый шаг на пути к созданию лука, от которого не плачут.

    Большая часть работы по улучшению способности продуктов переносить тепловую обработку заключается в изменении соотношения содержания в них воды и крахмала. Например, богатый крахмалом картофель полезней, так как во время жарки он впитывает меньше жира. Другим полезным свойством крахмалистой картошки является то, что для ее приготовления требуется меньше энергии и, соответственно, меньше финансовых затрат. Большинство изготовителей томатных паст и кетчупов в настоящее время используют в качестве сырья созданные с помощью метода клеточных культур сорта томатов. Мякоть таких помидоров содержит на 30% меньше воды, и их переработка экономит пищевой промышленности США 35 миллионов долларов ежегодно.

    Другой областью пищевой промышленности, экономически выигрывающей от повышения качества сырья, является производство молочных продуктов. Биотехнологические методы позволили новозеландским ученым добиться повышения содержания в молоке белка казеина - важного компонента процесса сыроварения - на 13%.

    Биотехнология также обеспечивает возможность получения продуктов, производство которые при традиционном подходе оказывается экономически невыгодным. Например, промышленное изготовление используемых в качестве подсластителей полимеров фруктозы давно перестало быть прерогативой обычных методов пищевого процессинга. Полимеры фруктозы представляют собой короткие цепочки, состоящие из молекул фруктозы, по вкусу напоминающие сахар, но не содержащие калорий. Исследователи обнаружили ген, превращающий 90% сахара сахарной свеклы в полимеры фруктозы. Они составляют 40% веса такой трансгенной свеклы, что делает ее весьма привлекательным сырьем для изготовления подсластителей.

    Наиболее значимой проблемой безопасности сырья для производителей продуктов питания является микробное заражение, которое может возникнуть на любом этапе движения продукта от фермы до стола потребителя. Любой биотехнологический продукт, снижающий количество микроорганизмов на продуктах животного и растительного происхождения, существенно повышает безопасность сырья пищевой промышленности. Повышение безопасности продуктов за счет снижения микробной контаминации начинается с фермы. Устойчивые к вредителям и заболеваниям трансгенные сорта растений в значительно меньшей степени подвержены бактериальному заражению. Новые биотехнологические методы диагностики позволяют выявлять характер бактериальных заболеваний на ранних этапах и с высокой степенью точности, что позволяет изымать и уничтожать заболевших животных или инфицированные растения до того, как болезнь распространилась.

    Биотехнология способствует повышению качества сырья еще и за счет выявления и удаления аллергенных белков, содержащихся в таких продуктах, как арахис, соя и молоко. Хотя 95% аллергенов могут быть отнесены к одной из восьми пищевых групп, в большинстве случаев мы не знаем, какой из тысяч пищевых белков послужил причиной запуска аллергической реакции. Использование биотехнологических методик привело к значительному прогрессу в этой области. Кроме того, биотехнологи разработали методы блокирования или удаления генов аллергенности из геномов арахиса, сои и креветок.

    И, наконец, биотехнология помогает в повышении качества сельскохозяйственного сырья путем снижения содержания натуральных растительных токсинов, обнаруженных в некоторых культурах, в том числе в картофеле и маниоке.

    Биологические методы включают:

    микробиологический синтез

    генетическую инженерию

    клеточную и белковую инженерию

    инженерную энзимологию

    культивирование клеток растений, животных и бактерий

    методы слияния клеток

    Биотехнология как наука возникла на стыке слияния биологических, химических и технических наук.

    Основные разделы биотехнологии.

    Микробная биотехнология - основная часть биотехнологии.

    Связана с поисками новых природных продуцентов. Это генетика и селекция известных микроорганизмов и получение штаммов с высокой продуктивностью.

    Методы - индуцированный мутагенез или ступенчатый отбор лучших форм или генная инженерия.

    Связана с производством различных пищевых продуктов: вино, хлеб, молочные продукты и прочее.

    1) Инженерная инзимология

    Цель - создание технологических процессов с использованием ферментов.

    Решает конкретные задачи:

    Создание нового продукта или улучшение его качества;

    Использование нетрадиционных видов сырья;

    Разработка безотходных технологий.

    Очень перспективно исследование иммобилизированных ферментов и клеток на носителе.

    Этот метод применяется в медицине для лечения и диагностики различных заболеваний. Иммобилизированные клетки применяют при биологической очистке сточных вод.

    Тканевые ферменты животных и растений способствуют формированию химических предшественников вкуса и аромата, консистенции за счет специфической деструкции биополимерных систем пищевого сырья, т.е. осуществляют созревание.

    3) Генная инженерия.

    Цель - направленное создание организмов с заданными свойствами на основе изменения (рекомбинации) их генотипа.

    Генная инженерия позволяет изолировать или изменять отдельные гены, модифицируя молекулу ДНК и перенося ее из одного организма в другой.

    Амплификация нужных генов.

    4) Клеточная инженерия.

    Объект - культуры клеток высших животных или растительных организмов.

    Получают культивированием на различных средах отдельно выделенных из организмов клеток.

    Задача - конструирование новых клеток и клеточных систем.

    Многообразие форм живой материи и новые знания в области физики и химии живых систем позволяют конструировать биологические системы различной степени сложности и организации, продуцирующие широчайший спектр макромолекул. Фундаментальные знания о молекулярной организации и закономерностях функционирования биосинтетических путей являются основой для метаболической инженерии биосистем суперпродукции макромолекул с заданными свойствами.

    На смену ставших рутинными биотехнологическим продуктам (белку одноклеточных, биоудобрениям и биогазу, органическим кислотам, аминокислотам) приходят новые продукты и препараты, среди которых - средства диагностики и лечения на основе технологий генетической инженерии и клонирования, вакцины, сыворотки, моноклональные антитела, экологически чистые материалы, а также биоинженерная аппаратура нового поколения для реализации биотехнологических процессов.

    Ведущие фирмы (табл. 1.3) в области биотехнологии в течение небольшого периода (с 1978 до 1982 гг. - период взрыва мирового рынка генно-инженерных продуктов) увеличили свои активы более чем в 30 раз; при этом их годовой доход возрос при этом с 5 до 67 млн дол.

    Таблица 1.3. Динамика мирового рынка продукции биотехнологии, млрд дол.


    Десятки новых препаратов ежегодно проходят различные стадии законодательного утверждения. Среди них - диагностикумы вируса В, СПИДа и др., моноклональные антитела, конъюгированные с растительными токсинами, эффективные противоопухолевые препараты, генные диагностикумы и пр.

    К 2000 г. на мировом рынке биотехнологических продуктов доля медицинских препаратов, полученных только в США методами клеточной и генетической инженерии, достигла свыше 30 млрд дол., что составило около 60 % всех затрат.

    Перечень медицинских препаратов, прошедших все стадии исследований и допущенных на рынок за период с конца 80-х гг. до 2004 г., существенно расширился. Ежегодно в США FDA (Администрация по продуктам питания и препаратам) выдает порядка 30-40 разрешений на серийное производство и применение биотехнологических препаратов и вакцин.

    Помимо полученных и выпущенных на рынок в 1981 г. рекомбинантных инсулина, гормона роста, иммунно-глобулинов и эритропоэтина, появились следующие препараты: липосомальная форма противогрибкового препарата, активатор тканевого плазминогена; рекомбинантные факторы свертывания крови; человеческий альбумин; заменитель человеческой кожи, состоящий из коллагена, фибробластов и кератиноцитов; культивированные аутологичные хондроциты; липосомальная форма химиотерапевтического агента даунорубицина; вакцины против гепатита В и для лечения хронического гепатита С; рекомбинантный фолликулостимулирующий гормон для лечения бесплодия; биоинженерный коллагеновый матрикс для реконструкции мышечной ткани; препараты для диагностики и лечения ВИЧ-инфекции; костный трансплантат, содержащий рекомбинантный костный морфогенетический протеин (rhBMP-2); гранулоцитарно-макрофагальный колониестимулирующий фактор при проведении аутологичных трансплантаций костного мозга; ботулинический токсин типа В и др.

    Японский рынок биотехнологических диагностикумов и препаратов в 2000 г. составил свыше 30 млрд дол.; среди них - препараты для лечения первичных и приобретенных иммунодефицитов, аутоиммунных состояний, вирусных и микробных инфекций, злокачественных новообразований, иммуноспецифических синдромов при шоке, лучевой и ожоговых болезнях.

    Серьезный прорыв был достигнут в области получения трансгенных сортов культурных растений, это генно-инженерный сорт сладкой («золотой») кукурузы; гибридные сорта кукурузы, рапса, пшеницы и сои с генами устойчивости к насекомым и гербицидам; трансгенные сорта хлопка, устойчивые к вилту, вредителям и гербицидам; трансгенные сорта папайи с красной и желтой мякотью, устойчивые к вирусу кольцевой пятнистости; а также генетически модифицированные фрукты и овощи с удлиненным сроком хранения (сорта томатов и клубники, не портящиеся при длительном хранении за счет снижения синтеза этилена, ускоряющего процесс физиологического дозревания плодов).

    В области рыбоводства были получены модифицированные быстрорастущие морепродукты (лосось, камбала), достигающие товарной массы в течение одного-полутора лет, по сравнению с двумя-тремя годами, требующимися для лососей традиционных пород и др.

    Объем рынка биотехнологий в мире к 2005 г. оценивался примерно в 200 млрд дол. США. Ежегодный рост в настоящее время составляет около 7-9 %. Для рынка биотехнологий в мире 2005 г. можно охарактеризовать как один из самых успешных за всю историю развития этой отрасли. В этот период правительства стран Европы и Азии продолжали демонстрировать энтузиазм по отношению к индустрии биотехнологий и инвестировать миллиарды долларов в эту отрасль, считая ее одним из приоритетов экономического развития своих государств.

    В настоящее время компании, связанные с биотехнологией и медициной, начинают выдвигаться на ведущие позиции в рейтингах по различным приоритетам. Так, журнал Fortune опубликовал ежегодный рейтинг 100 лучших компаний-работодателей. Лучшим местом работы в США признана компания Google. На втором месте - биотехнологическая компания Genetech. В рейтинге, проводимом компанией «Делойт», по показателям наиболее быстрого роста названы фирмы Anistoma и Biotage, занимающиеся разработкой биотехнологических препаратов для лечения онкологических заболеваний, генетическим анализом и медико-техническими исследованиями, заняли среди стран Европы 3-е и 4-е места, показав рост за 2005 г. на 20 и 13 % соответственно.

    Рынок биотехнологий в разных странах имеет свои особенности, обусловленные уровнем развития экономики стран и доходами населения. Наиболее активно в настоящее время ведется разработка лекарственных средств с использованием современной биотехнологии. В США, Японии и отдельных странах Западной Европы на эти цели расходуется в среднем средств, выделяемых на НИОКР в области биотехнологии. Практически во всех этих государствах существуют правительственные программы поддержки биотехнологических компаний.

    В США, являющихся лидером в области современной биотехнологии, для проведения фундаментальных и прикладных исследований было образовано много специализированных биотехнологических фирм, которые, привлекая частный и государственный капитал и лучшие научные кадры, в считанные годы разработали и запатентовали способы получения многих белковых продуктов медицинского назначения. К таким фирмам относятся в первую очередь Genentech, Biogen, Amgen, Genetic Institute, Cetus, Immunex и ряд других.

    Примерно в это же время к финансированию НИОКР в области современной биотехнологии подключились и крупные транснациональные компании, приобретая акции или лицензии на готовые продукты, а впоследствии создавая собственные исследовательские подразделения. Эти фирмы сыграли решающую роль в промышленном внедрении первых генно-инженерных медицинских препаратов, таких как инсулин, гормон роста человека, интерферон, эритропоэтин, тканевой активатор плазминогена, вакцина против гепатита В и др.

    Например, фирма Genentech имеет различные лицензионные соглашения и соглашения о сотрудничестве с Elly Lilly (США), Hoffmann-La Roshe (Швейцария), Takeda, Daiichy Seiyaky, Toray и Fujisawa (Япония), Boeringer Ingelheim, Gruenenthal (Германия), Kabi Vitrum (Швеция).

    По данным исследовательской компании Abercade, основными сегментами рынка биотехнологических продуктов в РФ являются фармацевтика (66 %), препараты для сельского хозяйства (18 %), дрожжи (9 %) (рис. 1.1) при весьма низких (порядка 1 %) уровнях остальных продуктов.



    Рис. 1.1. Долевой анализ рынка биотехнологии РФ (по данным исследовательской компании Abercade, источник - https://www.abercade.ru/)


    Однако нельзя не отметить, что основную долю самого развитого рынка фармацевтических препаратов в РФ (порядка 450 млн дол. США) в настоящее время занимает импортная продукция - это преимущественно инсулины, вакцины, сыворотки. Доля отечественной фармацевтической продукции в совокупном объеме составляет только 60,6 млн дол. США.

    Более перспективным выглядит рынок отечественной промышленной биотехнологии, в основном это производство ферментов и средств защиты растений. Объемы продаж ферментных препаратов отечественного производства составляет порядка 12,3 млн дол. США, это 38 % от общего объема этого сегмента рынка.

    Преимущественно это ферменты и ферментные препараты для спиртовой промышленности и для животноводства.

    Среди биотехнологических препаратов сельскохозяйственного назначения - средства защиты и стимуляторы роста растений, пробиотики, вакцины ветеринарные, кормовые антибиотики, аминокислоты и кормовой белок, витамины, кормовые добавки.

    На рынке биотехнологических препаратов для защиты окружающей среды доминирует отечественное производство продукции в размере 8 млн дол. США, а доля импортной продукции (бактериальные препараты для ликвидации нефтяных загрязнений, биосорбенты для очистки воды и донных отложений от нефтепродуктов) составляет только 800 тыс. дол. США. Объемы отечественного производства дрожжей составляют 58 млн дол. США, импорт этого вида биотехнологического продукта - в 3,5 раза меньше.

    Направления более наукоемких новейших биотехнологий, базирующихся на достижениях генетической инженерии, в России, к сожалению, только вступают в фазу своего развития. Так, на рынке генетически модифицированных культур, которые занимают в мире площадь 8,1 млн га и их продажи ежегодно растут на 20 %, Россия пока не представлена.

    Н.А. Воинов, Т.Г. Волова

    Cтраница 1


    Биотехнологические производства прямо или косвенно нацелены на обеспечение здоровья людей.  

    Современные технологические линии и биотехнологические производства, характеризующиеся сложной многоуровневой структурой взаимосвязей эффектов физической, химической и биологической природы, наличием прямых и обратных потоков между технологическими аппаратами, могут рассматриваться как сложные кибернетические системы, при изучении которых используется стратегия системного анализа.  

    Борьба с микробами-контаминантами в биотехнологических производствах Защита биотехнологических процессов от микробов-контаминантов эффективно осуществляется с помощью различных фильтров В последнее десятилетие широкое распространение приобрела мембранная фильтрация в целях получения стерильных воздуха и различных жидкостей (разновидность холодной стерилизации) Более того, мембраны нашли применение в рДНК - биотехнологиии, в дисперсионном и других анализах биомолекул.  

    Бактерии брожения используются в биотехнологических производствах. Бактерии применяют в генетической инженерии, например, для биотехнологического получения инсулина, интерферона и других ценных лекарственных препаратов.  

    В частности, БВК паприн - продукт крупнотоннажного биотехнологического производства - представляет собой биомассу дрожжей, выращенных на н-алканах; основную его часть составляют белки, липиды, полисахариды, нуклеиновые кислоты. К информации такого рода, безусловно, следует относиться с большой долей осторожности.  

    Из биомассы ряда базидиальных грибов в Японии получают полисахариды кориолан, лентипан, пахиман, шизофиллан, которые используют для лечения некоторых онкологических заболеваний. В России разработано биотехнологическое производство экзополисахаридов аубазидан и поллулан, являющихся продуцентами гриба Aureobasidium pullulans. Аубазидан используется как вспомогательное средство для создания лекарственных форм, а поллулан нашел применение в пищевой промышленности.  

    Кроме того, для химического и биотехнологического производства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев при оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Решение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря, чему она оказалась пригодной для изучения объектов самой различной природы - от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хро-матографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций по различным вопросам теории и применения метода, общее же их число в несколько раз больше.  

    Кроме того, для химического и биотехнологического производства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев при оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Решение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы - от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хро-матографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций по различным вопросам теории и применения метода, общее же их число в несколько раз больше.  

    Для стерилизации жидкостей используют фильтры из коллодия, диаметр пор которых меньше размеров вирусов. Этот метод применяют в биотехнологическом производстве при изготовлении вакцин, иммунных сывороток, растворов антибиотиков, бактериофагов и других материалов, не пригодных для тепловых или других методов стерилизации.  

    Увеличилось производство и снизилась стоимость конкурирующих кормовых добавок для животных, таких как соевые бобы, рыбная мука и клейковина из кукурузы. Последняя является побочным продуктом при биотехнологическом производстве топлива.  

    В условиях интенсивно развивающегося животноводства крайне важна задача создания сбалансированных кормов. Одним из альтернативных путей ее достижения является биотехнологическое производство клеточных белков, полноценных по набору незаменимых аминокислот. Производство кормового белка [ синонимы: БВК, кормовые дрожжи, в зарубежной литературе - белок одноклеточных (SCP) ] основано на культивировании четырех категорий микроорганизмов: бактерий, грибов, дрожжей и микроводорослей, использующих в качестве субстрата источников питания углеводы отходов сельскохозяйственной продукции, целлюлозно-бумажного производства, углеводороды нефти, простейшие спирты, газы (С02, метан) и др. В настоящее время производство кормовых дрожжей только в СССР превысило 1 млн. т / год и характеризуется тенденцией неуклонного роста в предстоящее десятилетие.  


    От качества плотных и жидких отходов, образующихся в биотехнологических производствах, зависит выбор путей использования их на практике. Так, в производстве пива из ячменя отходами являются дрожжевые клетки, солодовая дробина и некоторые другие вещества. Из таблицы видно, что по питательной ценности и усвояемости все компоненты плотных отходов могли бы быть рекомендованы к употреблению на животноводческих фермах.  

    Ультразвук вызывает гибель микроорганизмов в суспензиях: в микробной клетке образуются кавитационные полости с резкими перепадами разрежения и избыточного давления, что приводит к разрушению клетки. Этот метод используют для очистки (деконтаминации) медицинских инструментов, обеззараживания некоторых жидких препаратов, питьевой воды, молока, соков, а также для получения компонентов микробной клетки для исследований или в ходе биотехнологического производства.  

    С позиций системного анализа решаются задачи математического моделирования на ЭВМ, при этом полная математическая модель биотехнологической системы может быть представлена в виде иерархической структурной модели, где на каждом уровне имеется описание своего класса явлений. Применение такого подхода к изучению сложных БТС позволяет целенаправленно использовать и систематизировать исследования, получаемые в лабораторных, опытных и промышленных условиях для разработки модели БТС в целом. Полученная таким образом математическая модель используется затем для оптимизации биотехнологического производства при его функционировании, а также на стадии проектирования биохимических производств.  

    \Обзор состояния российского рынка биотехнологической продукции

    Бурное развитие биологии в конце 20 века, возникновение генной и кле­точной инженерии, а затем геномики и протеомики, привело к созданию новых биотехнологий, способных обеспечить полноценным питанием все население Земли, покончить с инфекционными заболеваниями, создать новую медицину, направленную на предотвращение развития болезней. Сегодня изменяется от­ношение к фундаментальной биологии. С одной стороны ее достижения мгно­венно используются для создания новых лекарственных препаратов, средств ди­агностики, в различных сферах хозяйственной деятельности, с другой все новые биотехнологии являются настолько наукоемкими, что фирмы, активно разви­вающие их, являются по существу научно-производственными комплексами, ве­дущими собственные не только прикладные, но и фундаментальные исследова­ния.

    Сегодня биоиндустрия является одной из наиболее наукоемких отраслей про­мышленности в мире. Ее специфика - тесная связь фундаментальных иссле­дований и сопутствующих им прикладных разработок. Зачастую между ними нет временного разрыва: к промышленному освоению нового биотехнологи­ческого процесса и производству готовой продукции биоиндустрии присту­пают практически одновременно.

    Биоиндустрию нельзя в настоящее время рассматривать как единую от­расль: ее процессы и продукты рассредоточены практически одновременно в химических, пищевых, энергетических и других производствах, и рынок продуктов биотехнологии весьма обширен. Это является причиной значи­тельных расхождений в оценках рынков биотехнологической продукции.

    Общий объем, потребляемой в России, биотехнологической продукции составил в 2001 году около 45 млрд. руб. На отечественное производство приходится примерно 25-30 %. (чуть более 12 млрд. руб.). Основная масса рынка России удовлетворяется за счет импортных поставок. Объем таких поставок достигает примерно 33 млрд. руб. Емкость российского рынка мож­но предварительно оценить в 90-100 млрд. руб., то есть потребности рынка биотехнологической продукции удовлетворяются в настоящее время на 40-45 %, в том числе за счет отечественных производителей примерно 12-13%. В частности, степень удовлетворения потребностей рынка в фармацевтической биотехнологии составляет 51,3%, в пищевых и кормовых добавках – от 22 до 40%, в остальных отраслях – и того меньше.

    Биотехнологические процессы используются в различных отраслях про­мышленности, в сельском хозяйстве , при производстве широкого спектра това­ров и услуг, поэтому биотехнологическая промышленность сильно диверсифи­цирована .

    Наиболее бурно развивающейся отраслью биотехнологии является меди­цинская биотехнология. Мировой рынок фармацевтической биотехнологической продукции представлен классическими биотехнологическими продуктами - ан­тибиотиками, витаминами , вакцинами , ферментами и аминокислотами; а также т. н. «новейшими биотехнологиями» - генноинженерными лекарственными пре­паратами и вакцинами и диагностическими средствами нового поколения.

    Номенклатура фармацевтических препаратов, получаемых с помощью биотехнологий, в России значительно уже мировой, и представлена нижесле­дующими препаратами.

    Антибиотики.

    В СССР производство антибиотиков базировалось на штаммах отечест­венной селекции, объемы производства составляли свыше 3000 т/год и обеспе­чивали антибиотиками все республики бывшего Союза и страны соцлагеря. К настоящему времени выпуск субстанций антибиотиков сократился в 4 раза, а го­товых форм для инъекций - в 2,2 раза. Общий объем производства отечествен­ных антибиотиков в 2000 году составил чуть более 1 тысячи тонн.

    Иммунобиологические препараты.

    На предприятиях Российской Федерации выпускается около 500 медицин­ских иммунобиологических препаратов. Отечественные препараты вакцин, ана­токсинов, иммуноглобулинов и альбуминов , бактериофагов, аллергены , интер-фероны, разновидности иммунодиагностиков и тест-систем, препараты нормоф-лоры часто не уступают по качеству зарубежной продукции. На сегодня, около 40 предприятий разных ведомств имеют лицензию на право производства МИБП. Производственных мощностей этих предприятий достаточно для обес­печения учреждений здравоохранения и санитарно-эпидемиологической службы основной номенклатурой МИБП.

    Наиболее высококачественную и конкурентоспособную на внешнем рын­ке продукцию производят организации, представляющие собой единый ком­плекс научно-исследовательского института и мощной производственной базы, как, например, ВНИИ защиты животных (п. Юрьевец), ветеринарный институт (г. Казань), а также Институт полиомиелита и вирусных энцефалитов им. . Стимулирование создания и развития, подобных научно-производственных центров должно стать одним из приоритетных направлений государственной политики, первым шагом в этом направлении могло бы быть уточнение правового статуса этих учреждений.

    Генно-инженерные лечебно-профилактические препараты.

    Исследования по генной инженерии, проводимые ранее широким фрон­том, позволили сконструировать продуценты десятков белков, продвинуться в технике ведения культур клеток и разработать технологию получения ряда пре­паратов.

    В настоящее время предприятиями, созданными на базе ведущих науч­ных учреждений, налажен выпуск 4 генно-инженерных лекарственных препара­тов и 1 генно-инженерной вакцины.

    Для организации промышленного производства этих препаратов не нуж­но больших производственных площадей, но требуется высокая технологическая культура.

    Разработка технологии производства отечественного инсулина (потреб­ность страны, в котором составляет 200 кг субстанции в год и пока полностью покрывается за счет импорта) находится на стадии клинических испытаний (РАО «Биопрепарат»).

    Диагностические средства in vitro.

    В настоящее время в основном используются два вида иммунодиагности – иммуноферментный анализ и ДНК-диагностика. Иммунодиагностические тесты более распространены, чем ДНК-диагностика. Однако в последние 2-3 го­да рынок ДНК-диагностики активно растет, возникает новый вид биотехнологи­ческих компаний - геномные компании, появляются новые виды ДНК-диагностики - макро - и микроматрицы (биологические микрочипы). Рынок ДНК-диагностики развивается более динамично и в ближайшие годы превысит рынок иммунодиагностики

    В России рынок ДНК-диагностики ориентирован, в основном, на платный сектор медицины. Объем рынка полностью покрывается отечественными произ­водителями. Отечественные системы ДНК-диагностики (ПЦР-диагностика) не уступают зарубежным аналогам по качеству, но в раз дешевле. Некоторые отечественные производители ферментов для ДНК-диагностики поставляют свою продукцию ведущим западным фирмам.

    Постоянное совершенствование и расширение возможностей ДНК-диагностики уже сегодня позволяет использовать ее для решения проблем прак­тического здравоохранения, не решаемых с помощью имеющихся методов (на­пример, экспресс-диагностика новых форм туберкулеза). Развитие методов ДНК-диагностики и расширение спектра их использования в здравоохранении и ветеринарии должно занять достойное место в государственной политике под­держки биотехнологии.

    Таким образом, общий объем выпуска фармацевтической биотехнологи­ческой продукции в 2000 г. составил приблизительно. 6,0 млрд. руб. В него не включена продукция, выпускаемая вновь созданными негосударственными предприятиями (в основном малыми), так как существующий порядок сбора ста­тистической отчетности не предусматривает представления ими данных об объ­емах и номенклатуре своего производства.

    В последние годы в мире быстро растет производство лекарств и космети­ческих средств на основе натурального растительного сырья. Этот рынок актив­но развивается и в России. Так Государственный реестр лекарственных препара­тов из растительного сырья постоянно пополняется новыми препаратами, сейчас в него внесено более 600 наименований. По мнению экспертов, данный сектор имеет хорошие перспективы развития. Отмечается высокая конкурентоспособ­ность отечественной продукции, основанной на местном сырье и на традициях народной медицины . Однако насыщенность рынка этими препаратами составля­ет 25-30%. Возможно вследствие того, что многие подобные препараты регист­рируются как пищевые добавки.

    Среди участников ежегодных выставок «Инновации в биотехнологии», примерно половина участников - фирмы-производители косметических средств и витаминных пищевых добавок из растительного сырья. Так как эти предпри­ятия являются частными или акционерными обществами , точные статистические данные об объемах их производств отсутствуют.

    Определяя в целом сегодняшнее состояние биотехнологических про­изводств и используемых ими технологий, следует отметить, что при общем спаде объемов производства, номенклатура и разнообразие продуктов с исполь­зованием биотехнологий на российском рынке резко возросли. Необычайно воз­росший спрос на продукцию новых категорий создает основу для развития оте­чественных средних и малых биотехнологических предприятий, ориентирован­ных на выпуск продукции широкой номенклатуры.

    Реальный возврат вложенных средств и получение прибыли на данном этапе возможен только от высокорентабельных предприятий, ориентированных на медицинскую, фармацевтическую, пищевую промышленности , сельское хо­зяйство и природоохранные мероприятия. Следует, однако, учитывать, что ранее существовавшие требования к качеству продукции, морально устарели. В со­временных условиях качество должно отвечать мировым стандартам и обеспечивать конкурентоспособность с импортными продуктами Последнее возможно при совершенствовании технологий с использованием оборудования нового по­коления. Только это может облегчить выход российской биотехнологической продукции на мировой рынок.

    Сравним в данном разделе, какие типологии биотехнологий предлагают организации, занятые в данной сфере (госпрограммы, технологические платформы и бизнес) а также российские эксперты, исследующие биотехнологические рынки.

    В первую очередь обратимся к «Комплексной программе развития биотехнологий в Российской Федерации на период до 2020 года» ()основному документу, утвержденному Правительством России, в котором отражены желаемые качественные и количественные характеристики развития биотехнологий в стране. В соответствии с Программой можно выделить девять следующих отраслей биотехнологий:

    1. Биофармацевтика , включающая жизненно важные лекарственные препараты, вакцины нового поколения, антибиотики и бактериофаги;
    2. Биомедицина , подразделяющаяся на следующие подотрасли: диагностикумы ин витро, персонализированная медицина, клеточные биомедицинские технологии, биосовместимые материалы, системная медицина и биоинформатика, развитие банков биологических образцов;
    3. Промышленная биотехнология , включающая большое количество подотраслей, среди которых производство ферментов, аминокислот и полисахаридов; организация производства глюкозно-фруктозных сиропов; производство субстанций антибиотиков; производство биодеградируемых полимеров; создание биологических комплексов по глубокой переработке древесной биомассы, зерновых и других сельскохозяйственных культур; применение биогеотехнологии в горнодобывающей промышленности; развитие принципов биорефайнинга на основе производства целлюлозы и т.д.;
    4. Биоэнергетика , предполагающая производство электрической энергии и тепла из биомассы; утилизацию эмиссии парниковых газов и предотвращение и ликвидация последствий вредного антропогенного воздействия на окружающую среду энергетической отраслью методами биоконверсии;
    5. Сельскохозяйственная биотехнология подразделяется на биотехнологии для растениеводства (биологическая защита растений, создание сортов растений биотехнологическими методами, биотехнология почв и биоудобрения), биотехнологии для животноводства (технологии молекулярной селекции животных и птицы, трансгенные и клонированные животные, биопрепараты для животноводства, кормовой белок, биологические компоненты кормов и премиксов), а также включающая переработку сельскохозяйственных отходов;
    6. Пищевая биотехнология , включает производство пищевого белка, ферментных препаратов, пребиотиков, пробиотиков, синбиотиков, функциональных пищевых продуктов (лечебных, профилактических и детских), а также производство пищевых ингредиентов и глубокую переработку пищевого сырья;
    7. Лесная биотехнология делится на четыре направления: управление лесонасаждениями, сохранение и воспроизводство лесных генетических ресурсов, создание биотехнологических форм деревьев с заданными признаками и биологические средства защиты леса;
    8. Природоохранная (экологическая) биотехнология предполагает биоремедиацию, экологически чистое жиль, создание биологических коллекций и биоресурсных центров;
    9. Морская биотехнология фокусируется на создании сети аквабиоцентров, глубокой переработке гидробионтов и продукции аквакультур, производстве специализированного корма для аквакультур.

    Данная классификация включает в себя наиболее подробный перечень отраслей, но упомянуты лишь основные подотрасли, стратегически важные. В третьем разделе настоящей работы расширим перечень подотрослей, существующих в российской экономике.

    Дальнейшее добавление цветов привело к тому, что самая широкая типология биотехнологий, представленная в большом количестве англоязычных научных работ , содержит десять отраслей, где среди традиционных отраслей появляются следующие: черная (или темная, dark) биотехнология, связанная с военными целями и терроризмом; фиолетовая биотехнология, связанная с патентованием биотехнологических открытий и разработок, а именно со всеми вопросами интеллектуальной собственности; золотая биотехнология, посвященная вопросам биоинформатики и нанобиотехнологиям; коричневая биотехнология, связанная с биотехнологическим решением проблем пустынных и аридных территорий (пространственная и геомикробиология).

    Примером описанной выше расширенной типология биотехнологий является типология, опубликованная в одной из статей журнала Electronic Journal of Biotechnology (), (см. Рисунок 4). Стоит обратить особое внимание на серую и белую биотехнологии. Здесь, как и в некоторых других источниках, серая и белая биотехнологии не просто означают экологическую и промышленную биотехнологии соответственно, а делается акцент на том, что белая биотехнология — это все, что основано на исследованиях генов, а серая – это все биотехнологии, связанные с ферментами и классическими биопроцессами. В этом есть определенная логика, так как многие промышленные биотехнологии дают значительный положительный экологический эффект. Такой подход мог быть обусловлен желанием выделить «чистые» биотехнологические отрасли, а именно более или менее однозначно отнести ту или иную технологию к одному «цвету».


    Рисунок 4. Типология Electronic Journal of Biotechnology
    Источник: http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/1114/1496

    Может показаться, что биоэнергетика здесь не представлена, однако следует обратить внимание на зеленую биотехнологию: она содержит на самом деле экологическую биотехнологию в классическом смысле (то, что в российской литературе принято считать «серой» биотехнологией), а также биоэнергетику (которая не имеет цвета в российских источниках и часто «теряется» во многих типологиях).

    2. Предлагаемая типология биотехнологий, развивающихся в России

    На наш взгляд, типология биотехнологий – достаточно сложная вещь, так как биотехнологическую продукцию можно разделить по принципу «в какой отрасли осуществляется производство» и по принципу «какая отрасль нуждается, использует». Но и здесь не все однозначно, поэтому постараемся в предлагаемой типологии учесть сразу и процесс производства, и процесс использования. Это позволит более выпукло отразить связи между отраслями биотехнологий (играющие важную роль для их взаимного развития) в противоположность приведенным выше типологиям, которые представляют отрасли биотехнологий изолированно, стараются классифицировать их на основе различающихся признаков, не учитывая родство отраслей. Также постараемся раскрыть содержание биотехнологических отраслей более подробно и указать наиболее полный перечень их подотраслей, применительно к ситуации в России.

    Построим предлагаемую типологию, основываясь на концепции межотраслевого баланса, а именно представим ее в виде таблицы, где строки содержат биотехнологические отрасли по принципу «где производится», а в столбцах указаны отрасли «где используется» (см. Таблицу 1).
    Включим в типологию актуальные и более или менее развитые в России отрасли биотехнологий. Не будем включать черную, коричневую, золотую и фиолетовую отрасли: российские биотехнологии развиты только по 6 из 10 отраслей биоэкономики. Присвоим биоэнергетике зеленый цвет, выделим лесную биотехнологию и также присвоим ей зеленый цвет, а экологическую биотехнологию объединим с биотехнологией по переработке отходов и будем считать ее серой биотехнологией.

    В ряде русскоязычных источников () к биоэнергетике относится получение энергии только с использованием возобновляемых биологических ресурсов и биологических процессов, тогда как в соответствии с «Комплексной программой развития биотехнологий в Российской Федерации на период до 2020 года» в данную отрасль входят также меры, снижающие антропогенное воздействие традиционной энергетики на окружающую среду. По нашему мнению, второй подход (более широкий) предпочтительнее, так как в ближайшей перспективе только биологические источники энергии не смогут полностью заменить традиционные.

    Среди отраслей, «производящих» биотехнологии, выделим отдельную отрасль «наука». Многие аспекты биотехнологий сейчас еще имеют только теоретическое значение, но это неотъемлемая и очень важная часть наукоемкого производства. К подобным биотехнологиям, несомненно, относится постоянное пополнение базы прочитанных геномов различных живых организмов, живущих на Земле в настоящее время или обитавших в ранние эпохи, а также создание банка биологических образцов и биологических коллекций.

    Таким образом, еще раз отметим, что в практических целях технологические платформы и компании создают классификацию биотехнологий, отвечающую целям работы. Такие классификации не отличаются полнотой и подробностью, что в данном случае является не «минусом», а обоснованной необходимостью. Наиболее широкая и классически принятая классификация биотехнологий – это разделение отраслей по цветам. В данной работе также предложена типология биотехнологий, развивающихся в России, целью которой было отразить связи между отраслями.

    Таблица 1. Предлагаемая типология биотехнологий в России

    ___________________

    Доклад Надежды Орловой «Рынок биотехнологий в мире и в России. Перспективы развития» в цикле семинаров «Биотехнологии будущего»: http://www.youtube.com/watch?v=72VsxIYfsAw;
    Лекция Надежды Орловой на Экономическом факультете МГУ имени М.В.Ломоносова в рамках межфакультетского курса «Биоэкономика и наукоемкий бизнес»:
    http://www.youtube.com/watch?v=aYh8oE-FDzg;
    Исследовательская компания Abercade:
    http://www.abercade.ru/research/analysis/themeid_20.html.

    Более подробная информация о некоторых добавках к кормам «Биотехнологии в сельском хозяйстве»: http://www.youtube.com/watch?v=bgIzT3vkJ-s