Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Для каких целей были впервые применены перфокарты. Применение в компьютерной технике. Смотреть что такое "Перфокарта" в других словарях

    Для каких целей были впервые применены перфокарты. Применение в компьютерной технике. Смотреть что такое

    Сегодня для хранения информации мы используем HDD, SSD, SD-карты, USB-флэшки. Уже намного реже мы вставляем в ноутбуки лазерные диски. У меня лично дома ни одного устройства, поддерживающего этот носитель, нет.

    Многие из нас давно не видели аудио и видеокассет, бобин с магнитными плёнками, дискет, и тем более перфокарт и перфолент. Эти носители, некоторые из которых известны ещё с XVIII века, почти исчезли.

    Но только почти. Сегодня мы поговорим о временах, когда в ходу были «мягкие» носители данных, и о том, что все они до сих пор живы благодаря прочному укоренению в государственных и военных учреждениях и исследовательских центрах.


    Перфокарты и перфоленты

    Перфокарты, которые мы знаем как способ хранения и передачи информации для компьютеров в 1920-1950-х годах, корнями уходят в докомпьютерное время. А именно — в 1725 год, когда перфорированную бумагу начали использовать для управления ткацким станком.

    Базиль Бушон, сын сборщика оргаМЃнов, адаптировал используемую для автоматического проигрывания музыки систему («развернул» цилиндр с штырьками/калками) под нужды ткацкого дела.

    Он использовал перфорированную бумагу в рулоне, чтобы станок воспроизводил рисунок на ткани. Коллега Бушона, Жан-Баптист Фалькон, заменил бумажную ленту на скреплённые между собой перфорированные карты.

    Ткацкий станок Базиля Бушона

    Механизм усовершенствовал Жозеф Мари Жаккар. Свой ткацкий станок для крупноузорчатых тканей он создал в 1804 году. Перфорировнные карты позволяли в автоматическом режиме, практически без участия мастера, осуществлять определённое чередование подъёмов и опускания нитей основы, чтобы отобразить на ткани заданный узор.

    Перфорированные карты в ткацком станке Жаккара

    Результат работы Жаккардова станка

    В ткацком деле до сих пор используются Жаккардовы станки, улучшенные, автоматизированные. Но перфокарты работают до сих пор. Ниже вы видите пример перфокарты с сайта по домоводству для станка Brother — с мотоциклистом для детского свитера.

    Перфокарта для современной вязальной машины Brother

    Чарльз Бэббидж в 1822 году построил первую модель своей разностной машины, которая состояла из валиков и шестерней, вращаемых при помощи специального рычага. Тогда же он попросил правительство Великобритании профинансировать его дальнейшую работу. В процессе он столкнулся со множеством проблем, так что через девять лет работа встала. Хотя частично машина функционировала и производила вычисления. Позже он возвращался к работе в 1847-1849 годах. Для этого огромного калькулятора Бэббидж даже разработал принтер, который в 2000 году запустили в лондонском Музее науки.

    Основными частями аналитической машины были «склад» для хранения чисел, «мельница» для выполнения арифметических действий, устройство, управляющее операциями, и устройства ввода и вывода. Для ввода данных в память использовалиись перфокарты: один механизм с перфокартами задавал операции «мельнице», второй — управлял переносом данных между «мельницей» и «складом». Устройство вывода, то есть принтер, могли в одной или двух копиях воспроизводить результат в виде отпечатка или пробивать его на перфокартах.

    Перфокарты для аналитической машины Бэббиджа

    В те же годы, в первой половине XIX века, над механическими интеллекутальными машинами работал русский изобретатель Семён Корсаков. Он стал одним из пионеров применения перфорированных карт в информатике. В 1832 году он создал своё первое устройство, функционирующее на основе перфорированных таблиц и предназначенное для задач информационного поиска и классификации. Это был гомеоскоп с неподвижными частями.

    Каждая строка гомеоскопа соответствует определённому признаку — симптому болезни. В вертикальном столбце был набор признаков — патологических симптомов, из которых один или несколько характеризовали болезнь. В нижней строке содержалось решение задачи — лекарство, которое поможет при заболевании.

    Сам гомеоскоп представлял собой цилиндр с булавками. Оператор выбирал симптомы из первого столбца — например, кашель и насморк — и вдавливал булавки. Затем он проводил цилиндром по таблице вправо: при нахождении перфорированных в нужных местах ячеек гомеоскоп останавливался, и в нижней строке можно было прочесть информацию о лечении заболевания.

    Это была своеобразная Excel-таблица (до электронных таблиц), заточенная под нужды врача.

    Гомеоскоп с неподвижными частями

    Подсчёты переписи населения США в 1880 году заняли восемь лет, а переписи 1890 года — всего год. Такая разница объясняется введением счётной машины, работающей на перфокартах.

    В 1880-х изобретатель Герман Холлерит запатентовал оборудование для работы с перфокартами. Его статистический табулятор позволил ускорить перепись, после которой Холерит получил звание профессора в Колумбийском университете.

    Покупателями табуляционных машин TMC, Tabulating Machine Company, стали железнодорожные управления и правительственные учреждения. В 1924 году компанию переименовали в IBM — International Business Machines.

    Перфокарта Холлерита

    IBM выпускала электрические табуляторы на перфокартах вплоть до 1976 года. Последней стала модель IBM 407. Её аренда обходилась от 800 американских долларов в месяц — это около 5 000 долларов на 2016 год.

    IBM 407

    Перфокарта для языка FORTRAN

    В СССР выпускали табуляторы Т-5М, Т-5МУ, Т-5МВ и ТА80-1. Первые три работали с цифровой информацией, а четвертый - с алфавитно-цифровой. Для ввода информации использовали 80-колонные и 45-колонные перфорированные карты. Табуляторы работали с итоговыми, считывающими и репродукционными перфораторами, с электронными вычислительными и умножающими приставками на машиносчётных станциях.

    Табулятор Т-5 МВ на машиносчётной станции

    80-колонная перфокарта советского производства для табулятора IBM, 1980 год

    В 1938 году немецкий инженер Конрад Цузе построил один из первых программируемых компьютеров в мире — Z1. Машина имела устройство ввода в виде клавиатуры, сделанной из пишущей машинки, электрический привод и была способна вычислять данные в десятичной системе в виде чисел с плавающей запятой. Данные выводились с помощью панели на лампах.

    Машина выполняла умножение за 5 секунд. Тактовая частота составляла 1 Гц. Система работала за счёт двигателя пылесоса мощностью в 1 киловатт.

    Z1 была оснащена устройством чтения перфоленты, которое предоставляло код операции для каждой инструкции.

    Конрад Цузе и воссозданная после Второй мировой вычислительная машина Z1

    Перфолента для вычислительной машины Z1

    В 1940 годы американские артиллеристы использовали таблицы стрельбы, содержащие информацию о поправках прицела в соответствии с дистанциями до цели. Расчёты траекторий одним человеком для одного типа орудия и одного снаряда занимали более двух недель. Нужно было посчитать около трёх тысяч траекторий для множества комбинаций параметров — температуры воздуха, плотности почвы, скорости ветра и так далее. Учёный из Пенсильванского университета Джон Уильям Мокли задумал использовать вакуумные лампы в качестве элементной базы для электронной дифференцирующей машины. С этого начинается история ENIAC, а затем его улучшенной версии — EDVAC.

    ENIAC собрали в 1945 году. Первой задачей было математическое моделирование термоядерного взрыва супер-бомбы по гипотезе Улама-Теллера. Задача была настолько сложной, что даже при игнорировании многих физических эффектов и максимальном упрощении уравнения для ввода программы в компьютер понадобился миллион перфокарт.

    Для чтения перфокарт использовали табулятор IBM. Одной из проблем этого носителя информации была невысокая скорость работы: слишком много времени уходило на перфорацию на картах выведенных в процессе расчётов данных и их ввод в машину для дальнейших вычислений. Для решения этой проблемы изобретатели начали работать над новыми способами ввода и хранения данных — над магнитными лентами.

    Первые программисты ENIAC: на корточках — Рут Лихтерман, стоит — Мэрлин Уэскофф. 1946 год.

    Бобины чистых перфолент советского производства

    Магнитная лента

    В 1898 году датский физик и инженер Вальдемар Поульсен запатентовал способ магнитной записи за проволоку. Устройство называлось «телеграфон». С усилителя сигнал подавался на записывающую головку, вдоль которой с постоянной скоростью перемещалась проволока и намагничивалась соответственно сигналу.

    В 1927 году немецкий инженер Фриц Пфлеймер с помощью клея нанёс напыление порошка оксида железа на тонкую бумагу, и годом позже получил патент на применение магнитного порошка на бумаге или киноплёнке. Но патент отменили из-за того, что такое применение порошка было изложено в патенте Поульсена.

    Идеи Поульсена и Пфлеймера использовала компания AEG, разработавшая прибор для магнитной записи «Магнетофон-К1». Магнитную ленту для «магнетофона» изготавливал химический концерн BASF. Устройство представили на радиовыставке в Берлине в 1935 году.

    Патент США на записывающее устройство на магнитной проволоке

    Магнетофон-К1

    В 1951 году изобретатели компьютера ENIAC Джон Экерт и Джон Мокли работали над новой машиной. Ей стал первый условно коммерческий компьютер в США — UNIVAC I. Компьютер строили для нужд Военно-воздушных сил и топографической службы Армии США, а заказ был размещён от лица Бюро переписи населения. Всего были выпущены сорок шесть экземпляров UNIVAC I для установки в правительственных учреждениях, частных корпорациях и университетах. Второй экземпляр был установлен в Пентагоне. Последние экземпляры выключили в 1970 году после 13 лет службы в коммерческой страховой компании.

    Стоимость машины начиналась со 159 000 долларов. Со временем цена составила от 1 250 000 до 1 500 000 долларов. В переводе на деньги 2016 года максимальная цена UNIVAC I составляла 12 480 000 долларов.

    В качестве носителя данных в этом компьютере впервые использовали магнитную ленту. Одновременно можно было подключить до десяти ленточных накопителей UNISERVO.

    UNISERVO стал первым ленточным накопителем для коммерческого компьютера и имел успех. Ленты UNIVAC из никелированной бронзы были шириной в половину дюйма и длиной до 450 метров. Данные записывались на восьми дорожках, где шесть были собственно для данных, одна — для контроля чётности, и ещё одна — для синхронизации. Одна лента вмещала 1 440 000 шестибитных символов.

    Ленточные накопители UNISERVO для UNIVAC

    В 1960 году в IBM разработали первую пластиковую карту с магнитной полосой. Штрих-коды и перфорация не отличались надёжностью, и для банковских карт было необходимо придумать новый способ хранения данных. Выбор пал на магнитную ленту. Сегодня все банковские карты имеют магнитную ленту, хотя всё чаще начинают использовать чипы и NFC.

    Первые прототипы карт с магнитной полосой

    В персональных компьютерах 1970-1980-х годов для хранения информации часто использовались аудиокассеты. Воспроизведение и запись программ осуществляли либо с помощью специальных накопителей, либо с помощью обычных бытовых аудиомагнитофонов. Попробуйте сказать вслух «аудиомагнитофон» — как-то необычно звучит, верно?

    Sinclair ZX Spectrum+2

    Магнитофон Atari XC12 для компьютеров Atari 65XE и 130XE

    Многие уже забыли, как выглядят аудиокассеты и видеокассеты. Кто-то их никогда не видел и не держал в руках. Но для бизнеса и исследовательских центров магнитные ленты до сих пор имеют огромное значение.

    CERN для хранения результатов работы Большого адронного коллайдера использует магнитную ленту, кроме них совмещают облака с магнитными лентами НАСА и телеканал Discovery. Крупные корпорации также иногда выбирают магнитные ленты. Преимущество технологии состоит в цене — каждый гигабайт хранения стоит от двух до трёх центов. Скорость работы с файлами низкая из-за последовательного доступа — от нескольких десятков секунд до минуты. Но для данных, которые не требуют быстрого доступа, она идеально подходит. До 80% корпоративных данных можно записать на ленту, уверены в IBM.

    IBM продолжают работать над улучшением форматов. В 2015 году учёные из компании смогли записать данные на магнитную ленту с эффективностью в 123 миллиарда бит на квадратный дюйм. Так они превысили в 88 существующий с 2012 года формат LTO-6, по которому можно записать 2,5 ТБ данных на плёнку среднего класса. Ещё ранее, в 2012 году, IBM совместно с Fujifilm начали разработку опытных образцов кассет размерами 10х10х2 сантиметра, способных хранить до 35 терабайт данных.

    Флоппи-диск

    Основной недостаток магнитной ленты — последовательный доступ к данным. Эту проблему в 1960-е годы решала команда Алана Шугарта в лаборатории IBM. Один из старших инженеров Дэвид Нобль в 1967 году предложил использовать гибкий магнитный диск с защитным кожухом. В 1971 году компания представила первую 8-дюймовую дискету и дисковод для неё.

    8-дюймовая дискета IBM на 128 байт

    Оператор ЭВМ использует 8-дюймовую дискету

    Шугарт в 1971 году основал собственую компанию Shugart Technology и в 1976 году присоединился к разработке мини-флоппи дисков для персональных компьютеров. Компания выпустила дисковод для 5ј-дюймовых дискет, которые вытеснили с рынка ПК 8-дюймовые дисководы.

    В 1981 году собственный вариант дискет, на этот раз диаметром 3Ѕ дюйма, выпустила компания Sony. Их начали использовать в компьютерах HP, Macintosh, IBM, Atari, Commodore.

    Первые версии дискет имели ёмкость 720 килобайт, в поздних дискетах этот показатель довели до 1,44 мегабайта. Результат улучшила компания Toshiba, представив в 1980-х годах диск на 2,88 мегабайт. Я помню только 1,44-мегабайтные дискеты — потому что формат от Toshiba не прижился.


    Внешний дисковод с USB-интерфейсом

    Три поколения гибких магнитных дисков: 8, 5,25 и 3,5 дюйма

    Hitachi прекратила производство дискет в 2009 году. Sony прикрыла фабрики в 2010 году, после продажи общим счётом сорока семи миллионов дискет.

    Toshiba в 2014 году нашла новое применение своей фабрике по производству дискет: переоборудовала её в ферму для выращивания салата-латука, который не надо мыть.

    Овощная ферма Toshiba — переоборудованный цех по производству флоппи-дисков

    Казалось бы, эра дискет закончилась в декабре 2015 года, когда правительство Норвегии прекратило распространение списков пациентов клиник на дискетах. Но это не так. В июне 2016 года мы узнали, что в больницах Южной Австралии продолжают использовать медицинский софт на основе MS-DOS, разработанный ещё в 1980-е годы, а для хранения данных используют дискеты.

    Но тут речь идёт о 3Ѕ дискетах, относительно современном варианте. В то же время ядерным арсеналом США управляют с помощью 8-дюймовых гибких дисков! В инфраструктуре арсеналов были интегрированы IBM Series/1 в 1970-х годах, и эти системы работают до сих пор. Системы планируют заменить в 2017 году.

    3,5 гигабайта врачебной информации на двух с половиной тысячах дискет. Норвегия, 2015 год

    IBM Series/1

    Сегодня магнитные ленты, перфокарты и дискеты кажутся вчерашним днём. Но их продолжают использовать. Магнитные ленты позволяют дешевле, чем при применении SSD и HDD, хранить данные. Дискеты никак не могут уйти из-за плотной интеграции в некоторых учреждениях, например, в системе здравоохранения некоторых стран. А один из самых первых носителей, перфокарта, до сих пор используется с той же целью, для которой его создали — в ткацких и вязальных станках.

    Перфокарта

    Перфокарта, формат IBM.

    Перфорированная таблица С.Н. Корсакова, 1832 г.

    Перфокарта

    Русский (советский) вариант перфокарты IBM, 1980 г.


    Информация представлена наличием или отсутствием отверстия в определённой позиции карты из тонкого картона
    Применение

    Двоичный и текстовый режим

    Заполненная перфокарта в текстовом режиме (строка "С*10,05 ОПРЕДЕЛЕНИЕ АДРЕСА АКТИВНОЙ РЕАЛИЗАЦИИ ПАРАМЕТРА ЗАДАЧИ")

    При работе с перфокартами в двоичном режиме перфокарта рассматривается как двумерный битовый массив; допустимы любые комбинации пробивок. Например, в системах IBM 701 машинное слово состояло из 36 бит; при записи данных на перфокарты в одной строке пробивок записывалось 2 машинных слова (последние 8 колонок не использовались), всего на одну перфокарту можно было записать 24 машинных слова.

    При работе с перфокартами в текстовом режиме каждая колонка обозначает один символ; таким образом, одна перфокарта представляет строку из 80 символов. Допускаются лишь некоторые комбинации пробивок. Наиболее просто кодируются цифры - одной пробивкой в позиции, обозначенной данной цифрой. Буквы и другие символы кодируются несколькими пробивками в одной колонке. Отсутствие пробивок в колонке означает пробел (в отличие от перфоленты , где отсутствие пробивок означает пустой символ, NUL). В системе IBM/360 были определены комбинации пробивок для всех 256 значений байта (например, пустой символ NUL обозначался комбинацией 12-0-1-8-9), так что фактически в текстовом режиме можно было записывать и любые двоичные данные.

    Для удобства работы с текстовыми данными вдоль верхнего края перфокарты часто печатались те же символы в обычном человекочитаемом виде.

    Пример кода

    ________________________________________________________________ /&-0123456789ABCDEFGHIJKLMNOPQR/STUVWXYZ:#@"="[.<(+|]$*);^\,%_>? 12 / X XXXXXXXXX XXXXXX 11| X XXXXXXXXX XXXXXX 0| X XXXXXXXXX XXXXXX 1| X X X 2| X X X X X X X X 3| X X X X X X X X 4| X X X X X X X X 5| X X X X X X X X 6| X X X X X X X X 7| X X X X X X X X 8| X X X X XXXXXXXXXXXXXXXXXXXXXXXX 9| X X X X |__________________________________________________________________

    Следует заметить, что везде одинаково кодировались только цифры и латинские буквы; в кодировании остальных символов существовал большой разнобой.

    См. также

    Ссылки

    • А. И. Волков «„Каменный ГОСТ“ и „комбинационные“ перфокарты»
    • Корсаков С.Н. Начертание нового способа исследования при помощи машин, сравнивающих идеи

    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Перфокарта" в других словарях:

      Перфокарта … Орфографический словарь-справочник

      Современная энциклопедия

      - (перфорационная карта) носитель информации в виде прямоугольной карточки, обычно из тонкого эластичного картона (реже из пластмассы), на которую информация записывается пробивкой отверстий (перфораций). Одно из первых применений машина Жаккарда… … Большой Энциклопедический словарь

      ПЕРФОКАРТА, ы, жен. (спец.). Сокращение: перфорационная карта карточка стандартной формы с пробитыми на ней в определённом порядке отверстиями, несущими закодированную информацию. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

      Сущ., кол во синонимов: 1 перфокарточка (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

      перфокарта - Машинный носитель данных, выполненный в виде бумажной карты и предназначенный для записи и хранения данных в виде комбинации отверстий. [ГОСТ 25868 91] Тематики оборуд. перифер. систем обраб. информации EN punch card … Справочник технического переводчика

      Перфокарта - ПЕРФОКАРТА, прямоугольная карточка из картона или пластмассы для записи кодированной информации пробивкой отверстий (перфораций) по определенной системе; до 1960 х гг. использовалась как носитель данных в табуляторах и электронных вычислительных… … Иллюстрированный энциклопедический словарь

      Ы; ж. Спец. Перфорационная карта (прямоугольная карточка из картона или пластмассы, на которую записывается информация для ЭВМ, считывающих устройств при помощи кодового расположения отверстий). * * * перфокарта (перфорационная карта), носитель… … Энциклопедический словарь

      перфокарта - perfokorta statusas T sritis automatika atitikmenys: angl. card; punch card; punched card vok. Lochkarte, f rus. перфокарта, f; перфорационная карта, f pranc. carte perforée, f … Automatikos terminų žodynas

      перфокарта - perforacinė korta statusas T sritis automatika atitikmenys: angl. punched card vok. Lochkarte, f rus. перфокарта, f pranc. carte perforée, f … Automatikos terminų žodynas

    charta - лист из папируса; бумага ) - носитель информации , предназначенный для использования в системах автоматической обработки данных. Сделанная из тонкого картона , перфокарта представляет информацию наличием или отсутствием отверстий в определённых позициях карты.

    Энциклопедичный YouTube

      1 / 2

      ✪ Иридодиагностика. Глаз -перфокарта организма.

      ✪ Хронологічний тренажер. Перфокарта.

    Субтитры

    История

    Перфокарты впервые начали применяться в ткацких станках Жаккарда (1808) для управления узорами на тканях. В информатике перфокарты впервые были применены в «интеллектуальных машинах» коллежского советника С. Н. Корсакова (1832), механических устройствах для информационного поиска и классификации записей . Перфокарты также планировалось использовать в «аналитической машине» Бэббиджа . В конце XIX в. началось использование перфокарт для обработки результатов переписей населения в США (см. табулятор Холлерита).

    Существовало много разных форматов перфокарт; наиболее распространённым был «формат IBM», введённый в 1928 г. - 12 строк и 80 колонок, размер карты 7⅜ × 3¾ дюйма (187,325 × 82,55 мм), толщина карты 0,007 дюйма (0,178 мм). Первоначально углы были острые, а с 1964 г. - скруглённые (впрочем, в СССР и позже использовали карты с нескруглёнными углами). Примечательно, что по приблизительным подсчетам, гигабайт информации, представленной в виде перфокарт, весил бы примерно 22 тонны (не считая веса, потерянного в результате перфорации отверстий).

    Поддержка использования данного носителя информации вызвала появление индустрии по производству широкого класса специализированного оборудования - раскладочно-подборочных , расшифровочных и других машин.

    Применение в компьютерной технике

    В 2011 году в США всё еще существовала компания Cardamation, поставлявшая перфокарты и устройства для работы с перфокартами . Об использовании перфокарт в современных организациях сообщалось в 1999 и 2012 годах .

    Двоичный и текстовый режим

    При работе с перфокартами в двоичном режиме перфокарта рассматривается как двумерный битовый массив; допустимы любые комбинации пробивок. Например, в системах IBM 701 машинное слово состояло из 36 бит; при записи данных на перфокарты в одной строке пробивок записывалось 2 машинных слова (последние 8 колонок не использовались), всего на одну перфокарту можно было записать 24 машинных слова.

    При работе с перфокартами в текстовом режиме каждая колонка обозначает один символ; таким образом, одна перфокарта представляет строку из 80 символов. Допускаются лишь некоторые комбинации пробивок. Наиболее просто кодируются цифры - одной пробивкой в позиции, обозначенной данной цифрой. Буквы и другие символы кодируются несколькими пробивками в одной колонке. Отсутствие пробивок в колонке означает пробел (в отличие от перфоленты , где отсутствие пробивок означает пустой символ, NUL). В системе IBM/360 были определены комбинации пробивок для всех 256 значений байта (например, пустой символ NUL обозначался комбинацией 12-0-1-8-9), так что фактически в текстовом режиме можно было записывать и любые двоичные данные.

    Для удобства работы с текстовыми данными вдоль верхнего края перфокарты часто печатались те же символы в обычном человекочитаемом виде.

    Пример кода

    ________________________________________________________________ /&-0123456789ABCDEFGHIJKLMNOPQR/STUVWXYZ:#@"="[.<(+|]$*);^\,%_>? 12 / X XXXXXXXXX XXXXXX 11| X XXXXXXXXX XXXXXX 0| X XXXXXXXXX XXXXXX 1| X X X 2| X X X X X X X X 3| X X X X X X X X 4| X X X X X X X X 5| X X X X X X X X 6| X X X X X X X X 7| X X X X X X X X 8| X X X X XXXXXXXXXXXXXXXXXXXXXXXX 9| X X X X |__________________________________________________________________

    Следует заметить, что везде одинаково кодировались только цифры и латинские буквы; в кодировании остальных символов существовали большие различия.

    Современному человеку, имеющему возможность хранить терабайты информации на жестком диске своего домашнего компьютера, очень сложно себе представить, что когда-то людям было достаточно и трехдюймовой дискеты. За свою историю носители информации прошли грандиозный путь. Каковы же были его этапы?

    Кажется невероятным, что – первый носитель информации, имевший форму бумажной, картонной или пластиковой прямоугольной пластинки с отверстиями, – появилась на свет еще в начале 19 века. О компьютерах в то время речи, конечно же, не шло, но зато активно использовались ткацкие станки французского изобретателя Жозефа-Мари Жаккарда, в которых и нашли применение перфокарты. При помощи них можно было управлять узором на ткани. В 30-х годах девятнадцатого века технология стала использоваться в первых вычислительных машинах Чарльзя Бэббиджа и в механических устройствах для классификации записей Семена Корсакова. А в 1890 году американский изобретатель Герман Холлерит придумал устройство, использовавшее перфокарты для обработки результатов проводившихся в 1890 и 1900 годах в Америке переписей населения. Разумеется, перфокарте суждено было стать носителем информации в первых компьютерах. Наверняка, многие еще помнят эти карточки размерами 187,325 × 82,55 мм и толщиной 0,178 мм с рядами цифр и отверстиями на определенных позициях – это наиболее распространенный формат IBM, введенный в обращение в 1928 году. Перфокарты широко использовались в компьютерной технике до начала 80-х годов, однако, неудобство их использования и потребность в хранении и обработке большего количества информации вынуждали специалистов искать новые решения. Поэтому перфокарты постепенно были вытеснены дискетами.

    Кажется невероятным, что Дискета представляла собой гибкий диск, имевший ферромагнитное покрытие и спрятанный в пластиковый корпус, предназначенный для защиты от механических повреждений. В 1967 году в лаборатории компании IBM была создана первая дискета, имевшая диаметр 8 дюймов, а в 1971 году первая такая дискета объемом в 80 килобайт была представлена широкой аудитории. Курс развития гибких магнитных дисков был направлен на уменьшение физических размеров и увеличение объема памяти, в результате чего сначала дискеты уменьшились до 5¼ дюймов, а после – до 3½, а объем памяти к 1991 году достиг 2880 килобайт, хотя самым ходовым форматом оставалась 3½-дюймовая 1,44-мегабайтная дискета. К сожалению, дискеты нельзя было назвать надежным приспособлением для хранения информации в силу особенностей их устройства. Они легко размагничивались под воздействием магнитных полей различной природы, застревали в дисководе, были подвержены механическим повреждениям. В итоге, когда стали появляться более надежные носители информации, дискеты стали исчезать из обихода и в настоящий момент практически перестали использоваться.

    Следующим этапом в развитии носителей информации стали оптические диски – устройства, данные с которых считываются при помощи оптического излучения. Первое поколение таких дисков использовалось, в основном, для хранения видеофайлов и музыки. Это всем известные лазерные и компакт-диски , а также магнитооптические диски , сочетавшие в себе свойства как оптических, так и магнитных носителей информации. Первые оптические диски увидели свет в конце 70-х годов. Ко второму поколению оптических носителей можно отнести, в частности, диски формата DVD, которые появились в 1996-1997 годах. Имея такой же внешний вид, как CD-диски, они могли хранить гораздо больший объем информации. Стоит особо отметить возможность не только считывания информации, но и однократной либо многократной (в зависимости от типа диска) ее записи, существующую как у CD, так и у DVD. В настоящее время наряду с оптическими дисками второго поколения, широко используются диски третьего поколения, и здесь борьбу за лидерство долгое время вели два формата – HD DVD и Blu-ray . Однако, верх все же одержали производители второго типа дисков. В настоящий момент, Blu-ray-диски способны вмещать от 23,3 до 128 гигабайт информации, в зависимости от количества слоев. Несомненным минусом всех оптических носителей информации можно считать их подверженность различным механическим повреждениям: даже мелкая царапина на поверхности диска может нанести непоправимый ущерб. Кроме того, скорость записи информации далеко не всегда удовлетворяет пользователя, а количество циклов перезаписи сильно ограничено физическими параметрами. Именно поэтому появились на свет и получили широкое распространение компактные быстрые и способные выдержать порядка 100 тысяч циклов перезаписи устройства, использующие для хранения информации флеш-память .

    Изобретена флеш-память была в 1984 году Фудзио Масуокой, специалистом компании Toshiba. Первый флеш-чип, предназначенный для коммерческого использования, был выпущен в 1988 году компанией Intel. Сейчас флеш-карты различных типов и объемов активно используются в мобильных телефонах, фотоаппаратах, mp3-плеерах, а также весьма популярны USB-флеш-накопители или, в народе, флешки , которые можно подключить к компьютеру или ноутбуку через USB-разъем и быстро скопировать необходимую информацию. В настоящее время стандартные устройства, использующие флеш-память, вмещают десятки гигабайт информации.

    Вышеперечисленные устройства являются съемными . Отдельно же стоит рассказать о встроенных носителях информации – жестких дисках .

    Жесткий диск (НЖМД , накопитель на жестких магнитных дисках, винчестер), как и дискета, основан на принципах магнитной записи, однако, в нем запись производится на жесткие пластины, покрытые слоем ферромагнетика. Чаще всего, винчестер изначально встроен в системный блок компьютера. Первый прототип устройства, имевший объем памяти 5 мегабайт и невероятные, в сравнении с сегодняшними жесткими дисками, размеры появился в 1956 году в компании IBM. Эволюция НЖМД привела к уменьшению их физических размеров, увеличению скорости чтения/записи информации и объема памяти. Современные винчестеры хранят в себе до 3 терабайт информации и, наверняка, это еще не предел.

    Темп жизни современных людей постоянно увеличивается, как увеличивается и количество информации, которую необходимо хранить. Поэтому человечество никогда не остановится на достигнутом, и кто знает, возможно, через пятьдесят лет объемы памяти, недостижимые для современных носителей, людям будущего покажутся такими же смешными, как кажется смешным нам количество информации, которую можно было считать с перфокарты.

    Современному человеку, имеющему возможность хранить многие терабайты информации на жестком диске своего домашнего компьютера, очень сложно себе представить, что когда-то людям было достаточно и пяти-трехдюймовой дискеты. За свою историю носители информации прошли грандиозный путь.
    Каковы же были его этапы этого прогресса?


    Перфокарта!

    Это первый носитель информации, имевший форму бумажной, картонной или пластиковой прямоугольной пластинки с отверстиями, - появилась на свет еще в начале 19 века. О компьютерах в то время речи, конечно же, не шло, но зато активно использовались ткацкие станки французского изобретателя Жозефа-Мари Жаккарда, в которых и нашли применение перфокарты. При помощи них можно было управлять узором на ткани. В 30-х годах девятнадцатого века технология стала использоваться в первых вычислительных машинах Чарльзя Бэббиджа и в механических устройствах для классификации записей Семена Корсакова. А в 1890 году американский изобретатель Герман Холлерит придумал устройство, использовавшее перфокарты для обработки результатов проводившихся в 1890 и 1900 годах в Америке переписей населения. Разумеется, перфокарте суждено было стать носителем информации в первых компьютерах.
    Наверняка, многие еще помнят эти карточки размерами 187,325 ? 82,55 мм и толщиной 0,178 мм с рядами цифр и отверстиями на определенных позициях - это наиболее распространенный формат IBM, введенный в обращение в 1928 году. Перфокарты широко использовались в компьютерной технике до начала 80-х годов, однако, неудобство их использования и потребность в хранении и обработке большего количества информации вынуждали специалистов искать новые решения. Поэтому перфокарты постепенно были вытеснены дискетами.

    А потом пришла Дискета!

    Она представляла собой гибкий диск, имевший ферромагнитное покрытие и спрятанный в пластиковый корпус, предназначенный для защиты от механических повреждений. В 1967 году в лаборатории компании IBM была создана первая дискета, имевшая диаметр 8 дюймов, а в 1971 году первая такая дискета объемом в 80 килобайт была представлена широкой аудитории. Курс развития гибких магнитных дисков был направлен на уменьшение физических размеров и увеличение объема памяти, в результате чего сначала дискеты уменьшились до 5? дюймов, а после - до 3?, а объем памяти к 1991 году достиг 2880 килобайт, хотя самым ходовым форматом оставалась 3?-дюймовая 1,44-мегабайтная дискета. К сожалению, дискеты нельзя было назвать надежным приспособлением для хранения информации в силу особенностей их устройства. Они легко размагничивались под воздействием магнитных полей различной природы, застревали в дисководе, были подвержены механическим повреждениям. В итоге, когда стали появляться более надежные носители информации, дискеты стали исчезать из обихода и в настоящий момент практически перестали использоваться.

    Оптические диски!

    Это устройства, данные с которых считываются при помощи оптического излучения. Первое поколение таких дисков использовалось, в основном, для хранения видеофайлов и музыки. Это всем известные лазерные и компакт-диски, а также магнитооптические диски, сочетавшие в себе свойства как оптических, так и магнитных носителей информации. Первые оптические диски увидели свет в конце 70-х годов. Ко второму поколению оптических носителей можно отнести, в частности, диски формата DVD, которые появились в 1996-1997 годах. Имея такой же внешний вид, как CD-диски, они могли хранить гораздо больший объем информации.
    Стоит особо отметить возможность не только считывания информации, но и однократной либо многократной (в зависимости от типа диска) ее записи, существующую как у CD, так и у DVD. В настоящее время наряду с оптическими дисками второго поколения, широко используются диски третьего поколения, и здесь борьбу за лидерство долгое время вели два формата - HD DVD и Blu-ray. Однако, верх все же одержали производители второго типа дисков.
    В настоящий момент, Blu-ray-диски способны вмещать от 23,3 до 128 гигабайт информации, в зависимости от количества слоев. Несомненным минусом всех оптических носителей информации можно считать их подверженность различным механическим повреждениям: даже мелкая царапина на поверхности диска может нанести непоправимый ущерб. Кроме того, скорость записи информации далеко не всегда удовлетворяет пользователя, а количество циклов перезаписи сильно ограничено физическими параметрами. Именно поэтому появились на свет и получили широкое распространение компактные быстрые и способные выдержать порядка 100 тысяч циклов перезаписи устройства, использующие для хранения информации флеш-память.

    Флеш-память была в 1984 году Фудзио Масуокой, специалистом компании Toshiba.

    Первый флеш-чип, предназначенный для коммерческого использования, был выпущен в 1988 году компанией Intel. Сейчас флеш-карты различных типов и объемов активно используются в мобильных телефонах, фотоаппаратах, mp3-плеерах, а также весьма популярны USB-флеш-накопители или, в народе, флешки, которые можно подключить к компьютеру или ноутбуку через USB-разъем и быстро скопировать необходимую информацию. В настоящее время стандартные устройства, использующие флеш-память, вмещают десятки гигабайт информации.

    Жесткий диск.

    НЖМД, накопитель на жестких магнитных дисках, винчестер, как и дискета, основан на принципах магнитной записи, однако, в нем запись производится на жесткие пластины, покрытые слоем ферромагнетика. Чаще всего, винчестер изначально встроен в системный блок компьютера. Первый прототип устройства, имевший объем памяти 5 мегабайт и невероятные, в сравнении с сегодняшними жесткими дисками, размеры появился в 1956 году в компании IBM. Эволюция НЖМД привела к уменьшению их физических размеров, увеличению скорости чтения/записи информации и объема памяти. Современные винчестеры хранят в себе до 3 терабайт информации и, наверняка, это еще не предел...

    Темп жизни современных людей постоянно увеличивается, как увеличивается и количество информации, которую необходимо хранить. Поэтому человечество никогда не остановится на достигнутом, и кто знает, возможно, через пятьдесят лет объемы памяти, недостижимые для современных носителей, людям будущего покажутся такими же смешными, как кажется смешным нам количество информации, которую можно было считать с перфокарты.

    В переди нас ждёт еще много интересного.