Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Основы термической обработки стали. В зависимости от требуемой температуры отпуск производится. Порядок выполнения работы

    Основы термической обработки стали. В зависимости от требуемой температуры отпуск производится. Порядок выполнения работы

    Нагревательные печи. Для термической обработки применяемые печи в термических цехах подразделяются следующим образом.

    1. По технологическим признакам, универсальные для отжига, норма­лизации и высокого отпуска, специального назначения для нагрева одно­типных деталей.

    2. По принимаемой температуре: низкотемпературные (до 600°С), среднетемпературные (до 1000°С) и высокотемпературные (свыше 1000°С).

    3. По характеру загрузки и выгрузки: печи с неподвижным подом, с выдвижным подом, элеваторные, колпаковые, многокамерные.

    4. По источнику получения тепла: мазутные, газовые, электрические В последнее время получили распространение газовые и электрические пе­чи.

    5. Печи-ванны, свинцовые, соляные и другие. Нагрев деталей в свин­цовых и соляных ваннах является равномерным и быстрым, чем в печах.

    6. Нагревательные установки: для нагрева деталей ТВЧ, для электро- контактного нагрева и др.

    7. По зависимости от среды, в которой нагреваются детали, различа­ются печи с воздушной атмосферой (окислительные) и с контролируемой или защитной атмосферой (безокислительные). Контролируемые атмосферы - это газовые смеси, у которых газы во время нагрева нейтрализуют друг друга и тем самым предотвращают окисление деталей.

    Температура нагрева играет главенствующую роль и для каждого вида термообработки в зависимости от химического состава определяется по диаграмме состояния железо - цементит (рис. 6.3). Практически темпера­туры нагрева выбирают из таблиц справочников.

    Время нагрева (скорость нагревания) зависит от многих факторов: химического состава стали, величины и формы изделий, взаимного распо­ложения изделия в печи и др.

    Чем больше в стали углерода и легирующих элементов, а также чем сложнее конфигурация изделия, тем медленнее должно быть нагревание При быстром нагревании из-за большого интервала температур поверхности и сердцевины в изделии возникают большие внутренние напряжения, кото­рые могут вызвать коробление детали и трещины.

    Обычно изделия загружают в печь, разогретую до заданной темпера­туры. В этом случае время нагрева может быть определено по формуле проф. А.П. Гуляева:

    τ н = 0,1К 1 К 2 К 3 D, мин, (6.1)

    где D - минимальный размер максимального сечения в мм;

    К 1 - коэффициент формы, имеющий следующие значения: для шара -1, для ци­линдра -2, параллелепипеда - 2,5, пластины – 4;

    К 2 - коэффициент среды, который при нагреве в соли равен 1, в свинце - 0,5, в га­зовой среде - 2,

    К 3 - коэффициент равномерности нагревания (табл. 6.1)

    Рис.6.3. Температурные зоны для различных видов термообработки

    Время выдержки. При любом виде термической обработки, после достижения изделием заданной температуры, необходима выдержка, чтобы полностью произошли структурные изменения. Время выдержки зависит от размеров деталей, способа нагрева, марки стали и вида термообработки. В таблице 6.2 приведены данные по определению времени выдержки для углеродистых сталей.


    Полное время нагрева будет определяться по формуле:

    τ О = τ Н + τ В (6.2)

    где τ Н - время нагрева в мин; τ В - время выдержки в мин.

    Кроме расчетного метода часто пользуются опытными данными Так на 1 мм се­чения или толщины изделия из доэвтектоидных сталей продолжительность нагрева в электропечах принимают τ Н = 45-75 с. Продолжительность выдержки при заданной тем­пературе часто принимают τ В = (0,15+0,25)τ Н. Для инструмента из углеродистой стали (0,7-1,3 % С) рекомендуется на 1 мм наименьшего сечения τ В =50-80 с, а из легирован­ной стали τ В =70-90 с.

    Скорость охлаждения. В каждом виде термообработки конечной це­лью является получение соответствующей структуры. Это достигается ско­ростью охлаждения, которая определяется видом термообработки. В табли­це 6.3 приведены данные скорости охлаждения для различных видов термо­обработки.

    Таблица 6.1

    Значения коэффициента K 3 в зависимости от расположения изделий в нагревательной печи

    Основная масса металла, прокатываемого в горячем со­стоянии, охлаждается на холодильниках или на воздухе в штабелях. Однако некоторые средне- и высокоуглеродистые, низко- и высоколегированные стали и сплавы требу­ют после горячей прокатки регулируемого охлаждения, главным образом замедленного. Это вызвано необходимо­стью предохранить прокат от образования поверхностных и внутренних трещин, а также для того, чтобы снять оста­точные напряжения и получить необходимую структуру и механические свойства металла. В зависимости от состава, предъявляемых требований, склонности к образованию по­роков, связанных с охлаждением, сталь после прокатки охлаждают по различным режимам.

    Обычное охлаждение металла производится на воздухе, на стеллажах, на холодильниках. Основное требование при обычном охлаждении - как можно быстрее достичь охлаж­дения стали. Для этой цели прокатанные полосы уклады­вают в один ряд, часто с промежутками между ними.

    Некоторые марки стали, например рессорную, которая должна поставляться с определенной твердостью, охлажда­ют на стеллажах таким образом, что полосы, поставлен­ные на ребро и прижатые одна к другой, передвигаются по холодильнику в один ряд по высоте. При охлаждении про­ката с образованием сплошной массы обычно удается получитъ требуемую твердость. При охлаждении полос при поштучной укладке твердость получается более высокой, чем это требуется. Охлаждение сортовой стали проводят на воздухе и на холодильниках.

    Конструкция и размеры холодильников должны обеспе­чивать охлаждение прокатываемого металла до 50°С и ниже.

    Продолжительность охлаждения полос определяют по формулеМ. Я. Бровмана

    T охл = 0,537θ п С т /(F т G п). (84)

    где Т охл - время охлаждения, ч; θ п - масса одной поло­сы, кг; С т - теплопроводность металла, Дж/(кг-град); G п - постоянная лучеиспускания ; F т - теплоотводящая поверхность, м 2 .

    Заготовки и блюмы легированных сталей охлаждают в штабелях и пакетах на воздухе. В связи с уменьшением скорости охлаждения снижаются напряжения в металле, что исключает возможность появления трещин и, кроме то­го, приводит к уменьшению твердости стали. Последнее об­легчает удаление поверхностных пороков при их вырубке и устраняет опасность возникновения дефектов при огневой закалке.

    Замедленный режим охлаждения применяют для креп­ких и легированных флокеночувствительных сталей. Охлаж­дение осуществляют в проходных отапливаемых печах, отапливаемых и неотапливаемых ямах и коробах. Медлен­ное охлаждение начиная с 800-900 °С обеспечивает вы­равнивание температуры по сечению профиля и устраняет внутренние напряжения после прокатки. Для замедленно охлаждаемой стали обычно применяют изотермический ре­жим: выдержка при 600-750 °С, а затем охлаждение на воздухе.

    Ускоренный режим охлаждения используют для катан­ки и листа перед сматыванием в бунты и рулоны с целью получения определенной структуры и уменьшения окалинообразовання. Применяют также водяное охлаждение в трубках или на рольгангах. Регулируемое ускоренное охлаждение водой и на воздухе листа и ленты из различ­ных сталей до 700-500 °С перед сматыванием в рулоны осуществляют с целью получения наиболее благоприятной и равномерной структуры. Охлаждение водой высокоуглеродистых и легированных сталей (УД, У12, ШХ15 и др.) производят для превращения образования карбидной сетки.

    Быстрый (термоупрочняющий) режим охлаждения обеспечивает закалку с последующим режимом самоотпуска с прокатного нагрева. С этой целью применяют регули­руемые системы быстрого охлаждения водой.

    В результате закалки сталь получает мартенситную структуру, весьма твердую (свыше 6000 НВ) и хрупкую. Мартенсит представляет собой пересыщенный твердый раствор углерода в α-Fe. Превращение аустенита в мартенсит является бездиффузионным процессом: при быстром охлаждении (со скоростью более 150 0 С/с) кристаллическая гранецентрированная решетка аустенита превращается в решетку α-Fe. Диффузия атомов углерода при этом не успевает произойти, и они сохраняют прежние положения. В результате этого создается напряженное состояние кристаллической решетки, что приводит к высокой твердости и хрупкости закаленной стали.

    Для уменьшения хрупкости после закалки всегда проводят отпуск, в результате которого уменьшаются внутренние напряжения и сталь приобретает необходимые физико-механические свойства.

    Отпуск закаленной стали осуществляют путем нагрева до температуры ниже критических точек Ас 1 , выдержки при этой температуре и последующего медленного или быстрого охлаждения. Быстрое охлаждение в воде рекомендуется при отпуске легированных сталей во избежание отпускной хрупкости. Углеродистые стали охлаждают на воздухе.

    Условно различают низкий, средний и высокий отпуск. Низкий отпуск производится при нагреве до 200 __ 300 0 С. Получаемая при этом структура – отпущенный мартенсит, твердость свыше 5000 НВ. Низкому отпуску подвергаются режущие инструменты, калибры и т.п.

    Средний отпуск осуществляется при нагреве от 300 до 500 0 С. В результате среднего отпуска сталь приобретает структуру троостита отпуска, для которого свойственна твердость около 4 000 НВ. Отпуск на троостит применяется при обработке пружин, рессор, штампов, ударного инструмента и т.п. При промежуточном нагреве получаются структуры троосто-мартенсита или троосто-сорбита.

    Высокий отпуск производится при нагреве 550-650 0 С. Получаемая при этом структура – сорбит отпуска, твердость около 3 000 НВ. Высокому отпуску подвергаются коленчатые валы, полуоси, шатуны, шатунные болты и многие другие детали машин.

    Таким образом, по мере повышения температуры отпуска снижаются характеристики прочности, повышаются характеристики пластичности и ударная вязкость. Для различных марок стали величины этих характеристик будут разные, но общая тенденция их изменения остается одинаковой. Наилучшее сочетание свойств прочности и пластичности имеет сталь после закалки и высокого отпуска (структура сорбита).

    Порядок выполнения работы

    Работа выполняется группой в 10-12 человек. Каждые два студента производят нормализацию, закалку, низкий и высокий отпуск образца стали.

      Определить температуру закалки стали, пользуясь для этого нижней частью диаграммы железо-цементит. Для среднеуглеродистых, доэвтектоидных сталей (марок 40, 45, 50) нормальной температурой закалки является температура на 30-50 0 С выше линии GS, т.е. Ас 3 + (30-50) 0 С.

      Определить время нагрева и выдержки образцов, пользуясь данными, приведенными в табл. 5.2.

      Определить скорость охлаждения в различных средах. Для этого взять наиболее распространенные закалочные среды, охлаждающие с различной скоростью: воду (скорость охлаждения 600 0 С/с) и масло (скорость охлаждения 150 0 С/с).

      Образцы поместить в печь, нагретую до температуры закалки для стали данной марки, и выдержать в печи требуемое время. При нагревании до температуры закалки образцов из стали 40, исходная феррито-перлитная структура превратится в структуру аустенита.

      Произвести закалку образца в воде. Для этого необходимо: а) быстро перенести щипцами образец в закалочную ванну с водой во избежание охлаждения образца ниже температуры Ас 3 и получения неполной закалки; б) энергично перемещать образец в ванне с целью устранения образующейся паровой рубашки, которая замедляет процесс охлаждения.

      Образцы, охлажденные в масле, обтереть тряпкой, оба торца зачистить на шлифовальной бумаге. Определить твердость закаленных образцов по НRС.

      Определить температуру отпуска стали. Поскольку при отпуске происходит изменение структуры и свойств стали и тем в большей степени, чем выше температура отпуска, следует применить различную температуру отпуска от низкой (200 0 С) до высокой (600 0 С).

      Определить время выдержки при температуре отпуска из расчета 2-3 мин на 1 мм толщины образца и записать в соответствующую графу протокола.

      Определить условия охлаждения. Обычно охлаждение после отпуска производится на воздухе, но можно охлаждать и в воде, и в масле, так как скорость охлаждения не влияет на твердость и структуру стали. Для ускорения работы образцы после отпуска следует охлаждать в воде.

      Измерить твердость образцов после каждого вида отпуска, записывая результаты измерений в рабочий журнал и устанавливая по ним примерное значение предела прочности по зависимости

    12.В отчете привести график и все необходимые данные режима термической обработки, дать наименование полученной микроструктуры и объяснить влияние термообработки на механические свойства стали.

    ЛАБОРАТОРНАЯ РАБОТА № 5

    В отличие от воды охлаждающая способность масла мало зависит от температуры, а скорость охлаждения в масле во много раз меньше, чем в воде. Поэтому, чтобы снизить напряжения и избежать образования закалочных трещин, для закалки легированных сталей с более низкой темплопроводностью, чем у углеродистых сталей, используют минеральное масло. При отсутствии масла применяют горячую воду (80єС).

    Таблица 2.3 Скорость охлаждения стали.

    Основные способы закалки стали - закалка в одном охладителе, в двух средах, струйчатая, с самоотпуском, ступенчатая и изотермическая.

    Закалка в одном охладителе. Деталь, нагретую до температуры закалки, погружают в закалочную жидкость, где она находится до полного охлаждения. Этот способ используют при закалке несложных деталей, изготовленных из углеродистых и легированных сталей.

    Детали из углеродистых сталей охлаждают в воде, а детали из легированных сталей - в масле этот способ используют и при механизированной закалке, когда детали автоматически поступают из агрегата в закалочную жидкость.

    Высокоуглеродистые стали закаливают с подстуживанием, т.е. нагретую деталь перед охлаждением некоторое время выдерживают на воздухе. Это уменьшает внутренние напряжения в деталях и исключает образование трещин.

    Закалка в двух средах (или прерывистая закалка).

    Деталь сначала охлаждают в быстроохлаждающей среде-воде, а затем переносят её в медленно охлаждающую среду- масло; применяется при закалке инструмента, изготовленного из высокоуглеродистой стали.

    Струйчатая закалка. Детали, нагретые до температуры закалки, охлаждают струей воды. Такой способ применяют для закалки внутренних поверхностей, высадочных штампов, матриц и другого инструмента, у которого рабочая поверхность должна иметь структуру мартенсита. При струйчатой закалке не образуется паровая рубашка, что обеспечивает более глубокую прокаливаемость, чем при простой закалке в воде.

    Закалка с самоотпуском. Детали выдерживают в охлаждающей среде не до полного охлаждения, а до определенной стадии, чтобы сохранить в сердцевине детали тепло, необходимое для сомоотпуска.

    Ступенчатая закалка. При этом способе закалки нагретые детали охлаждают сначала до температуры несколько выше точки М н (в горячем масле или расплавленной соли), затем после короткой выдержки при этой температуре (до начала промежуточных превращений) охлаждают на воздухе. На второй стадии охлаждения сталь принимает закалку.

    Изотермическая закалка. Детали нагревают до заданной температуры и охлаждают в изотермической среде до 220є-350єС, что несколько превышает температуру начала мартенситного превращения. Выдержка деталей в закалочной среде должна быть достаточно для полного превращения аустенита в игольчатый троостит. После этого производится охлаждение на воздухе. При изотермической закалке выдержка значительно больше, чем при ступенчатой закалке.

    Изотермическая закалка позволяет устранить большое различие в скоростях охлаждения поверхности и сердцевины деталей, которое является основной причиной образования термических напряжений и закалочных трещин. После изотермической закалки детали приобретают высокую или среднюю твердость, высокую вязкость и хорошую сопротивляемость ударным нагрузкам. Изотермическая закалка в ряде случаев исключают операцию отпуска, что сокращает на 35-40% цикл термической обработки.

    Изотермической закалке подвергают детали и инструмент, изготовляемые из легированных сталей марок: 6ХС, 9ХС, 65Г, ХВГ и т.д.

    Светлая закалка. При этом способе закалки детали нагревают в нейтральной безокислительной атмосфере или в расплавленных нейтральных солях. При светлой закалке нагрев деталей или инструмента осуществляют в жидких солях, не вызывающих окисления металла, с последующим охлаждением их в расплавленных едких щелочах; в нагревательных печах с применением контролируемой защитной газовой амтосферы, позволяющей регулировать взаимодействие печных газов со сталью при нагреве; в вакуумных (10 -1 -10 -4 мм рт.ст.) закалочных печах. В результате выполнения любого из этих процессов можно получать детали с чистой светло-серого цвета поверхностью.

    Термическая обработка сталей — одна из самых важных операций в машиностроении, от правильного проведения которой зависит качество выпускаемой продукции. Закалка и отпуск сталей являются одними из разнообразных видов термообработки металлов.

    Тепловое воздействие на металл меняет его свойства и структуру. Это позволяет повысить механические свойства материала, долговечность и надежность изделий, а также уменьшить размеры и массу механизмов и машин. Кроме того, благодаря термообработке, для изготовления различных деталей можно применять более дешевые сплавы.

    Как закалялась сталь

    Термообработка стали заключается в тепловом воздействии на металл по определенным режимам ля изменения его структуры и свойств.

    К операциям термообработки относятся:

    • отжиг;
    • нормализация;
    • старение;
    • закалка стали и отпуск стали (и пр.).

    Термообработка стали: закалка отпуск — зависит от следующих факторов:

    • температуры нагрева;
    • времени (скорости) нагрева;
    • продолжительности выдержки при заданной температуре;
    • скорости охлаждения.

    Закалка

    Закалка стали — это процесс термообработки, суть которого заключается в нагреве стали до температуры выше критической с последующим быстрым охлаждением. В результате этой операции повышаются твердость и прочность стали, а пластичность снижается.

    При нагреве и охлаждении сталей происходит перестройка атомной решетки. Критические значения температур у разных марок сталей неодинаковы: они зависят от содержания углерода и легирующих примесей, а также от скорости нагрева и охлаждения.

    После закалки сталь становится хрупкой и твердой. Поверхностный слой изделий при нагреве в термических печах покрывается окалиной и обезуглероживается тем более, чем выше температура нагрева и время выдержки в печи. Если детали имеют малый припуск для дальнейшей обработки, то брак этот является неисправимым. Режимы закалки закалки стали зависят от ее состава и технических требований к изделию.

    Охлаждать детали при закалке следует быстро, чтобы аустенит не успел превратиться в структуры промежуточные (сорбит или троостит). Необходимая скорость охлаждения обеспечивается посредством выбора охлаждающей среды. При этом чрезмерно быстрое охлаждение приводит к появлению трещин или короблению изделия. Чтобы этого избежать, в интервале температур от 300 до 200 градусов скорость охлаждения надо замедлять, применяя для этого комбинированные методы закалки. Большое значение для уменьшения коробления изделия имеет способ погружения детали в охлаждающую среду.

    Нагрев металла

    Все способы закалки стали состоят из:

    • нагрева стали;
    • последующей выдержки для достижения сквозного прогрева изделия и завершения структурных превращений;
    • охлаждения с определенной скоростью.

    Изделия из углеродистой стали нагревают в камерных печах. Предварительный подогрев в этом случае не требуется, так как эти марки сталей не подвергаются растрескиванию или короблению.

    Сложные изделия (например, инструмент, имеющий выступающие тонкие грани или резкие переходы) предварительно подогревают:

    • в соляных ваннах путем двух-или трехкратного погружения на 2 – 4 секунды;
    • в отдельных печах до температуры 400 – 500 градусов по Цельсию.

    Нагрев всех частей изделия должен протекать равномерно. Если это невозможно обеспечить за один прием (крупные поковки), то делаются две выдержки для сквозного прогрева.

    Если в печь помещается только одна деталь, то время нагрева сокращается. Так, например, одна дисковая фреза толщиной 24 мм нагревается в течение 13 минут, а десять таких изделий – в течение 18 минут.

    Защита изделия от окалины и обезуглероживания

    Для изделий, поверхности которых после термообработки не шлифуются, выгорание углерода и образование окалины недопустимо. Защищают поверхности от подобного брака применением , подаваемых в полость электропечи. Разумеется, такой прием возможен только в специальных герметизированных печах. Источником подаваемого в зону нагрева газа служат генераторы защитного газа. Они могут работать на метане, аммиаке и других углеводородных газах.

    Если защитная атмосфера отсутствует, то изделия перед нагревом упаковывают в тару и засыпают отработанным карбюризатором, стружкой (термисту следует знать, что древесный уголь не защищает инструментальные стали от обезуглероживания). Чтобы в тару не попадал воздух, ее обмазывают глиной.

    Соляные ванны при нагреве не дают металлу окисляться, но от обезуглероживания не защищают. Поэтому на производстве их раскисляют не менее двух раз в смену бурой, кровяной солью или борной кислотой. Соляные ванны, работающие на температурах 760 – 1000 градусов Цельсия, весьма эффективно раскисляются древесным углем. Для этого стакан, имеющий множество отверстий по всей поверхности, наполняют просушенным углем древесным, закрывают крышкой (чтобы уголь не всплыл) и после подогрева опускают на дно соляной ванны. Сначала появляется значительное количество языков пламени, затем оно уменьшается. Если в течение смены таким способом трижды раскислять ванну, то нагреваемые изделия будут полностью защищены от обезуглероживания.

    Степень раскисления соляных ванн проверяется очень просто: обычное лезвие, нагретое в ванне в течение 5 – 7 минут в качественно раскисленной ванне и закаленное в воде, будет ломаться, а не гнуться.

    Охлаждающие жидкости

    Основной охлаждающей жидкостью для стали является вода. Если в воду добавить небольшое количество солей или мыла, то скорость охлаждения изменится. Поэтому ни в коем случае нельзя использовать закалочный бак для посторонних целей (например, для мытья рук). Для достижения одинаковой твердости на закаленной поверхности необходимо поддерживать температуру охлаждающей жидкости 20 – 30 градусов. Не следует часто менять воду в баке. Совершенно недопустимо охлаждать изделие в проточной воде.

    Недостатком водяной закалки является образование трещин и коробления. Поэтому таким методом закаливают изделия только несложной формы или цементированные.

    • При закалке изделий сложной конфигурации из конструкционной стали применяется пятидесятипроцентный раствор соды каустической (холодный или подогретый до 50 – 60 градусов). Детали, нагретые в соляной ванне и закаленные в этом растворе, получаются светлыми. Нельзя допускать, чтобы температура раствора превышала 60 градусов.

    Режимы

    Пары, образующиеся при закалке в растворе каустика, вредны для человека, поэтому закалочную ванну обязательно оборудуют вытяжной вентиляцией.

    • Закалку легированной стали производят в минеральных маслах. Кстати, тонкие изделия из углеродистой стали также проводят в масле. Главное преимущество масляных ванн заключается в том, что скорость охлаждения не зависит от температуры масла: при температуре 20 градусов и 150 градусов изделие будет охлаждаться с одинаковой скоростью.

    Следует остерегаться попадания воды в масляную ванну, так как это может привести к растрескиванию изделия. Что интересно: в масле, разогретом до температуры выше 100 градусов, попадание воды не приводит к появлению трещин в металле.

    Недостатком масляной ванны является:

    1. выделение вредных газов при закалке;
    2. образование налета на изделии;
    3. склонность масла к воспламеняемости;
    4. постепенное ухудшение закаливающей способности.
    • Стали с устойчивым аустенитом (например, Х12М) можно охлаждать воздухом, который подают компрессором или вентилятором. При этом важно не допускать попадания в воздухопровод воды: это может привести к образованию трещин на изделии.
    • Ступенчатая закалка выполняется в горячем масле, расплавленных щелочах, солях легкоплавких.
    • Прерывистая закалка сталей в двух охлаждающих средах применяется для обработки сложных деталей, изготовленных из углеродистых сталей. Сначала их охлаждают в воде до температуры 250 – 200 градусов, а затем в масле. Изделие выдерживается в воде не более 1 – 2 секунд на каждые 5 – 6 мм толщины. Если время выдержки в воде увеличить, то на изделии неизбежно появятся трещины. Перенос детали из воды в масло следует выполнять очень быстро.

    В зависимости от требуемой температуры отпуск производится:

    • в масляных ваннах;
    • в селитровых ваннах;
    • в печах с принудительной воздушной циркуляцией;
    • в ваннах с расплавленной щелочью.

    Температура отпуска зависит от марки стали и требуемой твердости изделия, например, инструмент, для которого необходима твердость HRC 59 – 60, следует отпускать при температуре 150 – 200 градусов. В этом случае внутренние напряжения уменьшаются, а твердость снижается незначительно.

    Быстрорежущая сталь отпускается при температуре 540 – 580 градусов. Такой отпуск называют вторичным отвердением, так как в результате твердость изделия повышается.

    Изделия можно отпускать на цвет побежалости, нагревая их на электроплитах, в печах, даже в горячем песке. Окисная пленка, которая появляется в результате нагрева, приобретает различные цвета побежалости, зависящие от температуры. Прежде чем приступать к отпуску на один из цветов побежалости, надо очистить поверхность изделия от окалины, нагара масла и т. д.

    Обычно после отпуска металл охлаждают на воздухе. Но хромоникелевые стали следует охлаждать в воде или масле, так как медленное охлаждение этих марок приводит к отпускной хрупкости.