Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Реактивный двигатель рабочее тело. Турбореактивный самолет (история изобретения). Турбовентиляторные реактивные двигатели

    Реактивный двигатель рабочее тело. Турбореактивный самолет (история изобретения). Турбовентиляторные реактивные двигатели

    Идеи создания теплового двигателя, к которому относится и реактивный двигатель, известны человеку с древнейших времен. Так, в трактате Герона Александрийского под названием «Пневматика» присутствует описание Эолипила – шара «Эола». Данная конструкция представляла собой не что иное, как паровую турбину, в которой пар подавался через трубки в бронзовую сферу и, вырываясь из нее, эту сферу и раскручивал. Вероятнее всего, устройство использовалось для развлечений.

    Шар «Эола» Несколько дальше продвинулись китайцы, создавшие в XIII веке некое подобие «ракет». Используемая изначально в качестве фейерверка, в скором времени новинка была взята на вооружение и применялась в боевых целях. Не обошел стороной идею и великий Леонардо, вознамерившийся при помощи горячего воздуха, подаваемого на лопасти, вращать вертел для жарки. Впервые идею газотурбинного двигателя предложил в 1791 году английский изобретатель Дж. Барбер: конструкция его ГТД была оснащена газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной. Использовал в качестве силовой установки для своего самолета, разработанного в 1878 году, тепловой двигатель и А.Ф. Можайский: два паросиловых двигателя приводили в движение пропеллеры машины. Из-за низкого КПД желаемого эффекта достичь не удалось. Другой русский инженер – П.Д. Кузьминский – в 1892 году разработал идею газотурбинного двигателя, в котором топливо сгорало при постоянном давлении. Начав реализацию проекта в 1900 году, он решил установить ГТД с многоступенчатой газовой турбиной на небольшой катер. Однако смерть конструктора помешала закончить начатое. Более интенсивно за создание реактивного двигателя принялись лишь в ХХ веке: сначала теоретически, а через несколько лет – уже и практически. В 1903 году в работе «Исследование мировых пространств реактивными приборами» К.Э. Циолковским были разработаны теоретические основы жидкостных ракетных двигателей (ЖРД) с описанием основных элементов реактивного двигателя, использующего жидкое топливо. Идея создания воздушно-реактивного двигателя (ВРД) принадлежит Р. Лорину, запатентовавшему проект в 1908 году. При попытке создания двигателя, после обнародования чертежей устройства в 1913 году, изобретатель потерпел неудачу: скорости, необходимой для функционирования ВРД, достигнуть так и не удалось. Попытки создания газотурбинных двигателей продолжались и далее. Так, в 1906 году русский инженер В.В. Караводин разработал, а через два года и построил бескомпрессорный ГТД с четырьмя камерами прерывистого сгорания и газовой турбиной. Однако мощность, развиваемая устройством, даже при 10000 об/мин не превышала 1,2 квт (1,6 л.с.). Создал газотурбинный двигатель прерывистого горения и немецкий конструктор Х. Хольварт. Построив ГТД в 1908 году, к 1933 году, после многолетних работ по его совершенствованию, он довёл КПД двигателя до 24%. Тем не менее, идея не нашла широкого применения.

    В.П. Глушко Идея же турбореактивного двигателя была озвучена в 1909 году русским инженером Н.В. Герасимовым, получившим патент на газотурбинный двигатель для создания реактивной тяги. Работы по реализации этой идеи не прекращались в России и впоследствии: в 1913 году М.Н. Никольской проектирует ГТД мощностью 120 квт (160 л.с.) с трёхступенчатой газовой турбиной; в 1923 году В.И. Базаров предлагает принципиальную схему газотурбинного двигателя, близкую по схеме современным турбовинтовым двигателям; в 1930 году В.В. Уваров совместно с Н.Р. Брилингом проектирует, а в 1936 году и реализует газотурбинный двигатель с центробежным компрессором. Огромный вклад в создание теории реактивного двигателя внесли работы русских ученых С.С. Неждановского, И.В. Мещерского, Н.Е. Жуковского. французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. На создание воздушно-реактивного двигателя повлияла и работа известного советского ученого Б.С. Стечкина, который опубликовал в 1929 году свой труд «Теория воздушно-реактивного двигателя». Не останавливались работы по созданию и жидкостного реактивного двигателя: в 1926 году американский ученый Р. Годдард осуществил запуск ракеты на жидком топливе. Работы над этой темой происходили и в Советском Союзе: в период с 1929 по 1933 год В.П. Глушко разработал и испытал в действии в Газодинамической лаборатории электротермический реактивный двигатель. Им же в этот период были созданы и первые отечественные жидкостные реактивные двигатели – ОРМ, ОРМ-1, ОРМ-2. Наибольший вклад в практическое воплощение реактивного двигателя внесли немецкие конструкторы и ученые. Имея поддержку и финансирование со стороны государства, рассчитывавшего этим путем добиться технического превосходства в грядущей войне, инженерный корпус III Рейха с максимальной отдачей и в короткие сроки подошел к созданию боевых комплексов, имевших в своей основе идеи реактивного движения. Концентрируя внимание на авиационной составляющей, можно сказать, что уже 27 августа 1939 года летчик-испытатель фирмы Heinkel флюг-капитан Э. Варзиц поднял в воздух He.178 – реактивный самолет, технологические наработки которого были впоследствии использованы при создании истребителей Heinkel He.280 и Messerschmitt Me.262 Schwalbe. Установленный на Heinkel He.178 двигатель Heinkel Strahltriebwerke HeS 3 конструкции Х.-И. фон Охайна хоть и не обладал высокой мощностью, но сумел открыть эру реактивных полетов боевой авиации. Достигнутая He.178 максимальная скорость в 700км/ч с использованием двигателя, мощность которого не превышала 500 кгс, говорила о многом. Впереди лежали безграничные возможности, которые лишали будущего поршневые моторы. Созданная в Германии целая серия реактивных двигателей, например, Jumo-004 производства фирмы Junkers, позволила ей уже в конце Второй мировой войны обладать серийными реактивными истребителями и бомбардировщиками, опередив другие страны в этом направлении на несколько лет. После поражения III Рейха именно немецкие технологии дали толчок развитию реактивного самолетостроения во многих странах мира. Единственной страной, сумевшей ответить на немецкий вызов, была Великобритания: созданный Ф. Уиттлом турбореактивный двигатель Rolls-Royce Derwent 8 был установлен на истребителе Gloster Meteоr.

    Трофейный Jumo 004 Первым в мире турбовинтовым двигателем стал венгерский двигатель Jendrassik Cs-1 конструкции Д. Ендрашика, построившего его в 1937 году на заводе Ganz в Будапеште. Несмотря на возникшие в ходе внедрения проблемы, двигатель предполагалось устанавливать на венгерский двухмоторный штурмовик Varga RMI-1 X/H, специально сконструированный для этого авиаконструктором Л. Варго. Однако довести работы до конца венгерские специалисты так и не сумели – предприятие было перенацелено на выпуск немецких моторов Daimler-Benz DB 605, выбранных для установки на венгерские Messerschmitt Me.210. Перед началом войны в СССР продолжались работы по созданию различных типов реактивных двигателей. Так, в 1939 году прошли испытания ракеты, на которых стояли прямоточные воздушно-реактивные двигатели конструкции И.А. Меркулова. В том же году на ленинградском Кировском заводе начались работы по постройке первого отечественного турбореактивного двигателя конструкции А.М. Люльки. Однако начавшаяся война прекратила опытные работы над двигателем, направив всю мощность производства на нужды фронта. Настоящая эра реактивных двигателей началась после завершения Второй мировой войны, когда за короткий промежуток времени был покорен не только звуковой барьер, но и земное притяжение, что позволило вывести человечество в космическое пространство.

    Реактивный двигатель

    Реакти́вный дви́гатель

    двигатель, тяга которого создаётся реакцией (отдачей) вытекающей из него струи рабочего тела. Под рабочим телом применительно к двигателям понимают вещество (газ, жидкость, тв ёрдое тело), с помощью которого тепловая , выделяющаяся при сгорании топлива, преобразуется в полезную механическую работу. Основа реактивного двигателя – , где сжигается (источник первичной энергии) и генерируется – раскалённые газы (продукты сгорания топлива).

    По способу генерирования рабочего тела реактивные двигатели подразделяются на воздушно-реактивные (ВРД) и ракетные двигатели (РД). В воздушно-реактивных двигателях топливо сгорает в воздушном потоке (окисляется кислородом воздуха), превращаясь в тепловую энергию раскалённых газов, которая в свою очередь переходит в кинетическую энергию движения реактивной струи. В зависимости от способа подачи воздуха в камеру сгорания различают турбокомпрессорные, прямоточные и пульсирующие воздушно-реактивные двигатели.

    В турбокомпрессорном двигателе воздух в камеру сгорания нагнетается компрессором. Такие двигатели являются основным типом авиационного двигателя. Они подразделяются на турбовинтовые, турбореактивные и пульсирующие воздушно-реактивные двигатели.

    Турбовинтовой двигатель (ТВД) – турбокомпрессорный , в котором тяга в основном создаётся воздушным винтом, приводимым во вращение газовой турбиной, и частично прямой реакцией потока газов, вытекающих из реактивного сопла.

    1 – воздух; 2 – компрессор; 3 – газовая ; 4 – сопло; 5 – горячие газы; 6 – камера сгорания; 7 – жидкое топливо; 8 – форсунки

    Турбореактивный двигатель (ТРД) – турбокомпрессорный двигатель, в котором тяга создаётся прямой реакцией потока сжатых газов, вытекающих из сопла. Пульсирующий воздушно-реактивный двигатель – реактивный двигатель, в котором периодически поступающий в камеру сгорания воздух сжимается под действием скоростного напора. Имеет небольшую тягу; использовался в основном на до-звуковых летательных аппаратах. Прямоточный воздушно-реактивный двигатель (ПВРД) – реактивный двигатель, в котором непрерывно поступающий в камеру сгорания воздух сжимается под действием скоростного напора. Имеет большую тягу при сверхзвуковых скоростях полёта; отсутствует статичная тяга, поэтому для ПВРД необходим принудительный старт.

    Энциклопедия «Техника». - М.: Росмэн . 2006 .

    Реактивный двигатель

    двигатель прямой реакции, - условное наименование большого класса двигателей для летательных аппаратов различного назначения. В отличие от силовой установки с поршневым двигателем внутреннего сгорания и воздушным винтом, где тяговое усилие создаётся в результате взаимодействия винта с внешней средой, Р. д. создаёт движущую силу, называемую реактивной силой или тягой, в результате истечения из него струи рабочего тела, обладающей кинетической энергией. Эта сила направлена противоположно истечению рабочего тела. Движителем при этом является сам Р. д. Первичная энергия, необходимая для работы Р. д., как правило, содержится в самом рабочем теле (химическая энергия сжигаемого топлива, потенциальная энергия сжатого газа).
    Р. д. делятся на две основные группы. Первую группу составляют ракетные двигатели - двигатели, создающие тяговое усилие только за счёт рабочего тела, запасённого на борту летательного аппарата. К их числу относятся жидкостные ракетные двигатели, ракетные двигатели твёрдого топлива, электрические ракетные двигатели и др. Применяются в ракетах различного назначения, в том числе и в мощных бустерах, служащих для вывода космических кораблей на орбиту.
    Ко второй группе относятся воздушно-реактивные двигатели, в которых основным компонентом рабочего тела является воздух, забираемый в двигатель из окружающей среды. В воздушно-ракетных двигателях - турбореактивных двигателях, прямоточных воздушно-реактивных двигателях, пульсирующих воздушно-реактивных двигателях - всё тяговое усилие создаётся за счёт прямой реакции. По рабочему процессу и конструктивным особенностям к воздушно-ракетным двигателям примыкают некоторые авиационные газотурбинные двигатели непрямой реакции - турбовинтовые двигатели и их разновидности (турбовинтовентиляторные двигатели и турбовальные двигатели), у которых доля тягового усилия за счёт прямой реакции незначительна или она практически отсутствует. Турбореактивные двухконтурные двигатели с различным значением степени двухконтурности занимают в этом смысле промежуточное положение между турбореактивными двигателями и турбовинтовыми двигателями. Воздушно-ракетные двигатели применяются главным образом в авиации в составе силовой установки самолётов военного и гражданского назначения. Используя в качестве окислителя окружающий воздух, воздушно-ракетные двигатели обеспечивают существенно большую топливную экономичность, чем ракетные двигатели, так как на борту самолёта необходимо иметь только горючее. В то же время возможность осуществления рабочего процесса с использованием окружающего воздуха ограничивает область использования воздушно-ракетных двигателей атмосферой.
    Основное преимущество ракетного двигателя перед воздушно-ракетным двигателем состоит в его способности работать при любых скоростях и высотах полёта (тяга ракетного двигателя не зависит от скорости полёта и возрастает с высотой). В некоторых случаях применяются комбинированные двигатели, сочетающие в себе признаки ракетных и воздушно-ракетных двигателей. В комбинированных двигателях для улучшения экономичности воздух используется на начальном этапе разгона с переходом на ракетный режим на больших высотах полёта.

    Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


    Смотреть что такое "реактивный двигатель" в других словарях:

      РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направлению движения. Чтобы создать высокоскоростной поток газов, в реактивном двигателе горючее… … Научно-технический энциклопедический словарь

      Двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела (См. Рабочее тело); в результате истечения рабочего тела из сопла двигателя образуется… … Большая советская энциклопедия

      - (двигатель прямой реакции) двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели … Большой Энциклопедический словарь

      Двигатель, преобразующий какой либо вид первичной энергии в кинетическую энергию рабочего тела (реактивной струи), которая создает реактивную тягу. В реактивном двигателе сочетаются собственно двигатель и движитель. Основной частью любого… … Морской словарь

      РЕАКТИВНЫЙ двигатель, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Современная энциклопедия

      Реактивный двигатель - РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Иллюстрированный энциклопедический словарь

      РЕАКТИВНЫЙ ДВИГАТЕЛЬ - двигатель прямой реакции, реактивная (см.) которого создаётся отдачей вытекающей из него струи рабочего тела. Различают воздушно реактивные и ракетные (см.) … Большая политехническая энциклопедия

      реактивный двигатель - — Тематики нефтегазовая промышленность EN jet engine … Справочник технического переводчика

      Испытания ракетного двигателя Спейс Шаттла … Википедия

      - (двигатель прямой реакции), двигатель, тяга которого создаётся реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели. * * * РЕАКТИВНЫЙ ДВИГАТЕЛЬ РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой… … Энциклопедический словарь

    Книги

    • Авиамодельный пульсирующий воздушно-реактивный двигатель , В. А. Бородин. В книге освещаются конструкция, эксплуатация и элементарная теория пульсирующего ВРД. Книга иллюстрирована схемами реактивных летающих моделей самолетов. Воспроизведено в оригинальной…

    Под реактивным понимают движение, при котором от тела с определенной скоростью отделяется одна из его частей. Возникающая в результате такого процесса сила действует сама по себе. Другими словами, у нее отсутствует даже малейший контакт с внешними телами.

    в природе

    Во время летнего отдыха на юге практически каждый из нас, купаясь в море, встречался с медузами. Но мало кто задумывался о том, что эти животные перемещаются так же, как реактивный двигатель. Принцип работы в природе подобного агрегата можно наблюдать при перемещении некоторых видов морских планктонов и личинок стрекоз. Причем КПД этих беспозвоночных зачастую выше, чем у технических средств.

    Кто еще может наглядно продемонстрировать, какой имеет реактивный двигатель принцип работы? Кальмар, осьминог и каракатица. Подобное движение совершают и многие другие морские моллюски. Возьмем, например, каракатицу. Она вбирает воду в свою жаберную полость и энергично выбрасывает ее через воронку, которую направляет назад или вбок. При этом моллюск способен совершать движения в нужную сторону.

    Принцип работы реактивного двигателя можно наблюдать и при перемещении сальца. Это морское животное принимает воду в широкую полость. После этого мышцы его тела сокращаются, выталкивая жидкость через отверстие, находящееся сзади. Реакция получаемой при этом струи позволяет сальце совершать движение вперед.

    Морские ракеты

    Но самого большего совершенства в реактивной навигации достигли все-таки кальмары. Даже сама форма ракеты, кажется, скопирована именно с этого морского обитателя. При перемещении с низкой скоростью кальмар периодически изгибает свой ромбовидный плавник. А вот для быстрого броска ему приходится использовать собственный "реактивный двигатель". Принцип работы всех его мышц и тела при этом стоит рассмотреть подробнее.

    У кальмаров есть своеобразная мантия. Это мышечная ткань, которая окружает его тело со всех сторон. Во время движения животное засасывает в эту мантию большой объем воды, резко выбрасывая струю через специальное узкое сопло. Такие действия позволяют кальмарам двигаться толчками назад со скоростью до семидесяти километров в час. животное собирает в пучок все свои десять щупалец, что придает телу обтекаемую форму. В сопле имеется специальный клапан. Животное поворачивает его при помощи сокращения мышц. Это позволяет морскому обитателю менять направление движения. Роль руля во время перемещений кальмара играют и его щупальца. Их он направляет влево или вправо, вниз или вверх, легко уклоняясь от столкновений с различными препятствиями.

    Существует вид кальмаров (стенотевтис), которому принадлежит звание лучшего пилота среди моллюсков. Опишите принцип работы реактивного двигателя - и вы поймете, почему, преследуя рыб, это животное порой выскакивает из воды, попадая даже на палубы судов, идущих по океану. Как же это происходит? Кальмар-пилот, находясь в водной стихии, развивает максимальную для него реактивную тягу. Это и позволяет ему пролететь над волнами на расстояние до пятидесяти метров.

    Если рассматривать реактивный двигатель, принцип работы какого животного можно упомянуть еще? Это, на первый взгляд, мешковатые осьминоги. Пловцы из них не такие быстрые, как кальмары, но в случае опасности их скорости могут позавидовать даже лучшие спринтеры. Биологи, изучавшие миграции осьминогов, установили, что перемещаются они наподобие того, какой имеет реактивный двигатель принцип работы.

    Животное с каждой струей воды, выброшенной из воронки, делает рывок на два или даже на два с половиной метра. При этом плывет осьминог своеобразно - задом наперед.

    Другие примеры реактивного движения

    Существуют свои ракеты и в мире растений. Принцип реактивного двигателя можно наблюдать тогда, когда даже при очень легком прикосновении «бешеный огурец» с высокой скоростью отскакивает от плодоножки, одновременно отторгая клейкую жидкость с семенами. При этом сам плод отлетает на значительное расстояние (до 12 м) в противоположном направлении.

    Принцип работы реактивного двигателя можно наблюдать также, находясь в лодке. Если из нее в воду в определенном направлении бросать тяжелые камни, то начнется движение в противоположную сторону. Такой же имеет и принцип работы. Только там вместо камней используются газы. Они создают реактивную силу, обеспечивающую движение и в воздухе, и в разряженном пространстве.

    Фантастические путешествия

    О полетах в космос человечество мечтало давно. Об этом свидетельствуют произведения писателей-фантастов, которые для достижения этой цели предлагали самые разнообразные средства. Например, герой рассказа французского писателя Эркюля Савиньена Сирано де Бержерака достиг Луны на железной повозке, над которой постоянно подбрасывался сильный магнит. До этой же планеты добрался и знаменитый Мюнхгаузен. Совершить путешествие ему помог гигантский стебель боба.

    Реактивное движение использовалось в Китае еще в первом тысячелетии до нашей эры. Своеобразными ракетами для забавы при этом служили бамбуковые трубки, которые начинялись порохом. Кстати, проект первого на нашей планете автомобиля, созданный Ньютоном, был также с реактивным двигателем.

    История создания РД

    Только в 19-м в. мечта человечества о космосе стала приобретать конкретные черты. Ведь именно в этом столетии русским революционером Н. И. Кибальчичем был создан первый в мире проект с реактивным двигателем. Все бумаги были составлены народовольцем в тюрьме, куда он попал после покушения на Александра. Но, к сожалению, 03.04.1881 г. Кибальчич был казнен, и его идея не нашла практического воплощения.

    В начале 20-го в. мысль об использовании ракет для полетов в космос выдвинул русский ученый К. Э. Циолковский. Впервые его работа, содержащая описание движения тела переменной массы в виде математического уравнения, была опубликована в 1903 г. В дальнейшем ученый разработал саму схему реактивного двигателя, приводящегося в движение при помощи жидкого топлива.

    Также Циолковским была изобретена многоступенчатая ракета и высказана идея о создании на околоземной орбите настоящих космических городов. Циолковский убедительно доказал, что единственным средством для космических полетов является ракета. То есть аппарат, оборудованный реактивным двигателем, заправляемый горючим и окислителем. Только такая ракета способна преодолеть силу тяжести и совершать полеты за пределами атмосферы Земли.

    Освоение космоса

    Идею Циолковского реализовали советские ученые. Возглавляемые Сергеем Павловичем Королевым, они осуществили запуск первого искусственного спутника Земли. 4 октября 1957 г. этот аппарат доставила на орбиту ракета с реактивным двигателем. Работа РД была основана на преобразовании химической энергии, которая передается топливом газовой струе, превращаясь в энергию кинетическую. При этом ракета совершает движение в обратном направлении.

    Реактивный двигатель, принцип работы которого используется уже много лет, находит свое применение не только в космонавтике, но и в авиации. Но более всего его используют для Ведь только РД способен перемещать аппарат в пространстве, в котором отсутствует любая среда.

    Жидкостный реактивный двигатель

    Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.

    Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.

    В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или Топливом в ЖРД служит керосин.

    Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.

    Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.

    Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки. Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.

    Современное использование

    Несмотря на то что работа реактивного двигателя требует большого количества топлива, ЖРД продолжают служить людям и сегодня. Их применяют в качестве основных маршевых двигателей в ракетоносителях, а также маневровых для различных космических аппаратов и орбитальных станций. В авиации же используются другие виды РД, которые имеют несколько иные рабочие характеристики и конструкцию.

    Развитие авиации

    С начала 20-го столетия, вплоть до того периода, когда разразилась Вторая мировая война, люди летали только на винтомоторных самолетах. Эти аппараты были оснащены двигателями внутреннего сгорания. Однако прогресс не стоял на месте. С его развитием появилась потребность в создании более мощных и быстрых самолетов. Однако здесь авиационные конструкторы столкнулись с, казалось бы, неразрешимой проблемой. Дело в том, что даже при незначительном увеличении значительно возрастала масса самолета. Однако выход из создавшего положения был найден англичанином Френком Уиллом. Он создал принципиально новый двигатель, названный реактивным. Это изобретение дало мощный толчок для развития авиации.

    Принцип работы реактивного двигателя самолета схож с действиями пожарного брандспойта. Его шланг имеет зауженный конец. Вытекая через узкое отверстие, вода значительно увеличивает свою скорость. Создающаяся при этом сила обратного давления настолько сильна, что пожарный с трудом удерживает в руках шланг. Таким поведением воды можно объяснить и то, каков принцип работы реактивного двигателя самолета.

    Прямоточные РД

    Этот тип реактивного двигателя является самым простым. Представить его можно в виде трубы с открытыми концами, которая установлена на движущемся самолете. В передней части ее поперечное сечение расширяется. Благодаря такой конструкции входящий воздух снижает свою скорость, а его давление увеличивается. Самое широкое место такой трубы является камерой сгорания. Здесь происходит впрыскивание топлива и его дальнейшее сгорание. Такой процесс содействует нагреванию образовавшихся газов и их сильному расширению. При этом возникает тяга реактивного двигателя. Ее производят все те же газы, когда с силой вырываются наружу из узкого конца трубы. Именно эта тяга и заставляет самолет лететь.

    Проблемы использования

    Прямоточные реактивные двигатели имеют некоторые недостатки. Они способны работать только на том самолете, который находится в движении. Летательный аппарат, находящийся в состоянии покоя, прямоточные РД привести в действие не могут. Для того чтобы поднять в воздух такой самолет нужен любой другой стартовый двигатель.

    Решение проблемы

    Принцип работы реактивного двигателя самолета турбореактивного типа, который лишен недостатков прямоточного РД, позволил авиационным конструкторам создать самый совершенный летательный аппарат. Как действует это изобретение?

    Основной элемент, находящийся в турбореактивном двигателе, - газовая турбина. С ее помощью приводится в действие воздушный компрессор, проходя через который, сжатый воздух направляется в специальную камеру. Полученные в результате сгорания топлива (обычно это керосин) продукты попадают на лопасти турбины, чем приводят ее в действие. Далее воздушно-газовый поток переходит в сопло, где разгоняется до больших скоростей и создает огромнейшую реактивную силу тяги.

    Увеличение мощности

    Реактивная сила тяги может значительно возрасти за короткий промежуток времени. Для этого используется дожигание. Оно представляет собой впрыскивание дополнительного количества топлива в поток газа, вырывающийся из турбины. Неиспользованный в турбине кислород способствует сгоранию керосина, что и увеличивает тягу двигателя. На больших скоростях прирост ее значения достигает 70%, а на малых - 25-30%.

    РЕФЕРАТ

    ПО ТЕМЕ:

    Реактивные Двигатели .

    НАПИСАЛ: Киселев А.В.

    г.КАЛИНИНГРАД

    Вступление

    Реактивный двигатель, двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

    Для создания реактивной тяги, используемой Р. д., необходимы:

    источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи;

    рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.;

    сам Р. д. - преобразователь энергии.

    Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода);

    вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата.

    В современных Р. д. в качестве первичной чаще всего используется химическая

    Огневые испытания ракетного

    двигателя Спейс Шаттла

    Турбореактивные двигатели АЛ-31Ф самолета Су-30МК . Относятся к классу воздушно-реактивных двигателей

    энергия. В этом случае рабочее тело представляет собой раскалённые газы - продукты сгорания химического топлива. При работе Р. д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

    В зависимости от того, используется или нет при работе Р. д. окружающая среда, их подразделяют на 2 основных класса - воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

    История реактивных двигателей

    Принцип реактивного движения известен очень давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели - пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели - ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33.

    В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя? была предложена русским инженером Н. Герасимовым в 1909.

    В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941-45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

    Р. д. имеют различное назначение и область их применения постоянно расширяется.

    Наиболее широко Р. д. используются на летательных аппаратах различных типов.

    Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

    РД в большинстве случаев используются на высокоскоростных летательных аппаратах.

    Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.


    Однако этот могучий ствол, принцип прямой реакции, дал жизнь огромной кроне "генеалогического дерева" семьи реактивных двигателей. Чтобы познакомиться с основными ветвями его кроны, венчающей "ствол" прямой реакции. Вскоре, как можно видеть по рисунку (см. ниже), этот ствол делится на две части, как бы расщепленный ударом молнии. Оба новых ствола одинаково украшены могучими кронами. Это деление произошло по тому, что все "химические" реактивные двигатели делятся на два класса в зависимости от того, используют они для своей работы окружающий воздух или нет.

    Один из вновь образованных стволов - это класс воздушно-реактивных двигателей (ВРД). Как показывает само название, они не могут работать вне атмосферы. Вот почему эти двигатели - основа современной авиации, как пилотируемой, так и беспилотной. ВРД используют атмосферный кислород для сгорания топлива, без него реакция сгорания в двигателе не пойдет. Но все же в настоящее время наиболее широко применяются турбореактивные двигатели

    (ТРД), устанавливаемые почти на всех без исключения современных самолётах. Как и все двигатели, использующие атмосферный воздух, ТРД нуждаются в специальном устройстве для сжатия воздуха перед его подачей в камеру сгорания. Ведь если давление в камере сгорания не будет значительно превышать атмосферное, то газы не станут вытекать из двигателя с большей скоростью - именно давление выталкивает их наружу. Но при малой скорости истечения тяга двигателя будет малой, а топлива двигатель будет расходовать много, такой двигатель не найдёт применения. В ТРД для сжатия воздуха служит компрессор, и конструкция двигателя во многом зависит от типа компрессора. Существует двигатели с осевым и центробежным компрессором, осевые компрессоры могут иметь спасибо за пользование нашей системой меньшее или большее число ступеней сжатия, быть одно-двухкаскадными и т.д. Для приведения во вращение компрессора ТРД имеет газовую турбину, которая и дала название двигателю. Из-за компрессора и турбины конструкция двигателя оказывается весьма сложной.

    Значительно проще по конструкции безкомпрессорные воздушно-реактивные двигатели, в которых необходимое повышение давления осуществляется другими способами, которые имеют названия: пульсирующие и прямоточные двигатели.

    В пульсирующем двигателе для этого служит обычно клапанная решётка, установленная на входе в двигатель, когда новая порция топливно-воздушной смеси заполняет камеру сгорания и в ней происходит вспышка, клапаны закрываются, изолируя камеру сгорания от входного отверстия двигателя. Вследствие того давление в камере повышается, и газы устремляются через реактивное сопло наружу, после чего весь процесс повторяется.

    В бескомпрессорном двигателе другого типа, прямоточном, нет даже и этой клапанной решётки и давление в камере сгорания повышается в результате скоростного напора, т.е. торможения встречного потока воздуха, поступающего в двигатель в полёте. Понятно, что такой двигатель способен работать только тогда, когда летательный аппарат уже летит с достаточно большой скоростью, на стоянке он тяги не разовьет. Но зато при весьма большой скорости, в 4-5 раз большей скорости звука, прямоточный двигатель развивает очень большую тягу и расходует меньше топлива, чем любой другой "химический" реактивный двигатель при этих условиях. Вот почему прямоточные двигатели.

    Особенность аэродинамической схемы сверхзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями (ПВРД) обусловлена наличием специальных ускорительных двигателей, обеспечивающих скорость движения, необходимую для начала устойчивой работы ПРД. Это утяжеляет хвостовую часть конструкции и для обеспечения необходимой устойчивости требует установки стабилизаторов.

    Принцип работы реактивного двигателя.

    В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя "рабочего вещества", обычно - раскалённых газов.

    Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы. К таким двигателям относятся поршневые двигатели автомобилей, тепловозов, паровые и газовые турбины электростанций и т.д.

    Рассмотрим этот процесс применительно к реактивным двигателям. Начнем с камеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке - источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на "фазах" работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение - и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения, более плотно "упакованные". Избыток энергии связи, представляющей собой химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания.

    Подобных переход осуществлялся и во всех других тепловых двигателях, но реактивные двигатели принципиально отличаются от них в отношении дальнейшей судьбы раскалённых продуктов сгорания.

    После того, как в тепловом двигателе образовались горячие газы, заключающие в себя большую тепловую энергию, эта энергия должна быть преобразована в механическую. Ведь двигатели для того и служат, чтобы совершать механическую работу, что-то "двигать", приводить в действие, все равно, будь то динамо-машина на просьба дополнить рисунками электростанции, тепловоз, автомобиль или самолёт.

    Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия.

    В случае поршневого двигателя расширяющиеся газы давят на поршень, движущийся внутри цилиндра, поршень толкает шатун, а тот уже вращает коленчатый вал двигателя. Вал связывается с ротором динамомашины, ведущими осями тепловоза или автомобиля или же воздушным винтом самолёта - двигатель совершает полезную работу. В паровой машине, или газовой турбине газы, расширяясь, заставляют вращать связанное с валом турбиной колесо - здесь отпадает нужда в передаточном кривошипно-шатунном механизме, в чем заключается одно из больших преимуществ турбины

    Расширяются газы, конечно, и в реактивном двигателе, ведь без этого они не совершают работы. Но работа расширения в том случае не затрачивается на вращение вала. Связанного с приводным механизмом, как в других тепловых двигателях. Назначение реактивного двигателя иное - создавать реактивную тягу, а для этого необходимо, чтобы из двигателя вытекала наружу с большой скоростью струя газов - продуктов сгорания: сила реакции этой струи и есть тяга двигателя. Следовательно, работа расширения газообразных продуктов сгорания топлива в двигателе должна быть затрачена на разгон самих же газов. Это значит, что тепловая энергия газов в реактивном двигателе должна быть преобразована в их кинетическую энергию - беспорядочное хаотическое тепловое движение молекул должно замениться организованным их течением в одном, общем для всех направлении.

    Для этой цели служит одна из важнейших частей двигателя, так называемое реактивное сопло. К какому бы не все в там правда типу не принадлежал тот или иной реактивный двигатель, он обязательно снабжен соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы - продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например, в ракетных или прямоточных двигателях. В других, турбореактивных, - газы сначала проходят через турбину, которой отдают часть своей тепловой энергии. Она расходует в этом случае для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя - через него текут газы, перед тем как покинуть двигатель.

    Реактивное сопло может иметь различные формы, и, тем более, разную конструкцию в зависимости от типа двигателя. Главное заключается в той скорости, с которой газы вытекают из двигателя. Если эта скорость истечения не превосходит скорости, с которой в вытекающих газах распространяются звуковые волны, то сопло представляет собой простой цилиндрический или суживающий отрезок трубы. Если же скорость истечения должна превосходить скорость звука, то соплу придается форма расширяющейся трубы или же сначала суживающейся, а за тем расширяющейся (сопло Лавля). Только в трубе такой формы, как показывает теория и опыт, можно разогнать газ до сверхзвуковых скоростей, перешагнуть через "звуковой барьер".

    Схема реактивного двигателя

    Турбовентиляторный двигатель - это наиболее широко используемый в гражданской авиации реактивный двигатель.

    Горючее, попадая в двигатель (1), перемешивается со сжатым воздухом и сгорает в камере сгорания (2). Расширяющиеся газы вращают быстроходную (3) и тихоходную) турбины, которые, в свою очередь, приводят в движение компрессор (5), проталкивающий воздух в камеру сгорания, и вентиляторы (6), прогоняющие воздух через эту камеру и направляющие его в выхлопную трубу. Вытесняя воздух, вентиляторы обеспечивают дополнительную тягу. Двигатель данного типа способен развивать тягу до 13 600кг.

    Заключение

    Реактивный двигатель обладает многими замечательными особенностями, но главная из них заключается в следующем. Ракете для движения не нужны ни земля, ни вода, ни воздух, так как она движется в результате взаимодействия с газами, образующимися при сгорании топлива. Поэтому ракета может двигаться в безвоздушном пространстве.

    К. Э. Циолковский – основоположник теории космических полётов. Научное доказательство возможности использования ракеты для полётов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы было дано впервые русским учёным и изобретателем Константином Эдуардовичем Циолковским

    Список литературы

    Энциклопедический Словарь Юного Техника.

    Тепловые Явления в технике.

    Материалы с сайта http://goldref.ru/;

    1. Реактивное движение (2)

      Реферат >> Физика

      Которое в виде реактивной струи выбрасывается из реактивного двигателя ; сам реактивный двигатель - преобразователь энергии... с которой реактивный двигатель воздействует на аппарат, оснащенный этим реактивным двигателем . Тяга реактивного двигателя зависит от...

    2. Реактивное движение в природе и технике

      Реферат >> Физика

      Сальпу вперед. Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым... т.е. аппарат с реактивным двигателем , использующим горючее и окислитель, находящиеся на самом аппарате. Реактивный двигатель – это двигатель , преобразующий...

    3. Реактивная система залпового огня БМ-13 Катюша

      Реферат >> Исторические личности

      Головной части и порохового реактивного двигателя . Головная часть по своей... взрыватель и дополнительный детонатор. Реактивный двигатель имеет камеру сгорания, в... резкому увеличению огневых возможностей реактивной

    В передней части реактивного двигателя располагается вентилятор. Он забирает воздух из внешней среды, засасывая его в турбину. В двигателях, применяемых в ракетах, воздух заменяет жидкий кислород. Вентилятор снабжен множеством титановых лопастей, имеющих специальную форму.

    Площадь вентилятора стараются сделать достаточно большой. Помимо забора воздуха эта часть системы участвует также и в охлаждении двигателя, предохраняя его камеры от разрушения. Позади вентилятора располагается компрессор. Он под большим давлением нагнетает воздух в камеру сгорания.

    Один из главных конструктивных элементов реактивного двигателя – камера сгорания. В ней топливо смешивается с воздухом и поджигается. Происходит возгорание смеси, сопровождающееся сильным разогревом деталей корпуса. Топливная смесь под действием высокой температуры расширяется. Фактически в двигателе происходит управляемый взрыв.

    Из камеры сгорания смесь топлива с воздухом поступает в турбину, которая состоит из множества лопаток. Реактивный поток с усилием давит на них и приводит турбину во вращение. Усилие передается на вал, компрессор и вентилятор. Образуется замкнутая система, для работы которой требуется лишь постоянный подвод топливной смеси.

    Последняя по счету деталь реактивного двигателя – сопло. Сюда из турбины поступает разогретый поток, формируя реактивную струю. В эту часть двигателя также подается от вентилятора холодный воздух. Он служит для охлаждения всей конструкции. Воздушный поток защищает манжету сопла от вредного воздействия реактивной струи, не позволяя деталям расплавиться.

    Как работает реактивный двигатель

    Рабочим телом двигателя является реактивная . Она с очень большой скоростью истекает из сопла. При этом образуется реактивная сила, которая толкает все устройство в противоположном направлении. Тяговое усилие создается исключительно за счет действия струи, без какой-либо опоры на другие тела. Эта особенность работы реактивного двигателя позволяет использовать его в качестве силовой установки для ракет, самолетов и космических аппаратов.

    Отчасти работа реактивного двигателя сравнима с действием струи воды, вытекающей из шланга. Под огромным давлением жидкость подается по рукаву к зауженному концу шланга. Скорость воды при выходе из брандспойта выше, чем внутри шланга. При этом образуется сила обратного давления, которая позволяет пожарному удерживать шланг лишь с большим трудом.

    Производство реактивных двигателей представляет собой особую отрасль техники. Поскольку температура рабочего тела здесь достигает нескольких тысяч градусов, детали двигателя изготовляют из высокопрочных металлов и тех материалов, которые устойчивы к плавлению. Отдельные части реактивных двигателей выполняют, к примеру, из специальных керамических составов.

    Видео по теме

    Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.

    Инструкция

    Поршневые тепловые двигатели имеют в своем составе один или несколько цилиндров, внутри которых находится поршень. В объеме цилиндра происходит расширение горячего газа. При этом поршень под воздействием газа перемещается и совершает механическую работу. Такой тепловой двигатель преобразует возвратно-поступательное движение поршневой системы во вращение вала. Для этой цели двигатель оснащается кривошипно-шатунным механизмом.

    К тепловым двигателям внешнего сгорания относятся паровые машины, в которых рабочее тело разогревается в момент сжигания топлива за пределами двигателя. Нагретый газ или пар под сильным давлением и при высокой температуре подается в цилиндр. Поршень при этом перемещается, а газ постепенно охлаждается, после чего давление в системе становится почти равным атмосферному.

    Отработавший свое газ выводится из цилиндра, в который немедленно подается очередная порция. Для возврата поршня в начальное положение применяют маховики, которые крепят на вал кривошипа. Подобные тепловые двигатели могут обеспечивать одинарное или двойное действие. В двигателях с двойным действием на один оборот вала приходится две стадии рабочего хода поршня, в установках одинарного действия поршень совершает за то же время один ход.

    Отличие двигателей внутреннего сгорания от описанных выше систем состоит в том, что горячий газ здесь получается при сжигании топливно-воздушной смеси непосредственно в цилиндре, а не вне его. Подвод очередной порции горючего и