Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Надежность сложных технических систем с восстановлением. На тему «Надежность технических систем. Безотказность- это свойство системы или элемента непрерывно сохранять работоспособное состояние в течении некоторого времени или некоторой наработки

    Надежность сложных технических систем с восстановлением. На тему «Надежность технических систем. Безотказность- это свойство системы или элемента непрерывно сохранять работоспособное состояние в течении некоторого времени или некоторой наработки
    0

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ

    ВЫСШЕГО ОБРАЗОВАНИЯ

    "Национальный исследовательский ядерный университет «МИФИ»

    Обнинский институт атомной энергетики -

    филиал федерального государственного автономного образовательного учреждения «Национальный исследовательский ядерный университет «МИФИ»

    (ИАТЭ НИЯУ МИФИ)

    Техникум ИАТЭ НИЯУ МИФИ

    Курсовое проектирование

    по дисциплине «Теоретические основы обеспечения надежности систем автоматизации и модулей мехатронных систем»

    на тему «Надежность технических систем»

    Введение. 3

    1 Общая часть. 6

    1.1 Теория надежности. 6

    1.2 Показатели для оценки безотказности. 9

    1.3 Показатели для оценки ремонтопригодности. 11

    1.4 Показатели для оценки долговечности. 11

    1.5 Показатели для оценки сохраняемости. 12

    2 Выбор и обоснование методов расчета 12

    2.1 Расчет надежности. 12

    3 Расчетная часть. 14

    3.1 Расчет надежности системы.. 14

    3.2 Дерево событий. 20

    3.3 Дерево отказов. 20

    4 Надежность системы.. 21

    4.1 Пути повышения надежности системы.. 21

    4.2 Построение схемы с повышенной надежность. 23

    5 Вывод. 24

    6 Заключение. 25

    Список использованной литературы.. 26

    Введение

    Вопросам надёжности технических систем, с каждым годом уделяется всё большее внимание. Важность проблемы надежности технических систем обусловлена их повсеместным распространением фактически во всех отраслях промышленности.

    В нашей стране теория надежности начала интенсивно развиваться с 50-х годов, и к настоящему времени сформировалась в самостоятельную дисциплину, основными задачами которой являются:

    • Установление видов показателей надежности тех. систем;
    • Выработка аналитических методов оценки надежности;
    • Упрощение оценки надежности технических систем;
    • Оптимизация надежности на стадии эксплуатации системы.

    Надежность - свойство системы сохранять во времени и в установленных пределах значения всех параметров, характеризующих способность системы выполнять требуемые функции в заданных режимах и условиях эксплуатации. Надежность - важнейший показатель качества изделий, который должен обеспечиваться на всех стадиях жизненного цикла изделия (проектирование - изготовление - эксплуатация). От надежности зависят такие основные показатели, как качество, эффективность и безопасность. Техника может работать хорошо лишь при условии, что она достаточно надежна.

    Надежность, в сущности, является характеристикой эффективности системы. Если для оценки качества автоматической системы достаточно характеризовать ее надежностью выполнения системой функций в различных состояниях, то надежность совпадает с эффективностью системы.

    Надежность технического оборудования зависит от его проектирования и производства. Чтобы создать надежную техническую систему, нужно правильно рассчитать ее надежность в момент проектирования, знать методы и программы расчета и обеспечения высокой надежности. Необходимо также доказать на практике, что показатели полученной надежности технической системы не ниже заданных показателей.

    Интуитивно надёжность объектов связывают с недопустимостью отказов в работе. Это есть понимание надёжности в «узком» смысле — свойство объекта сохранять работоспособное состояние в течение некоторого времени или некоторой наработки. Иначе говоря, надёжность объекта заключается в отсутствии непредвиденных недопустимых изменений его качества в процессе эксплуатации и хранения. Надёжность в «широком» смысле — комплексное свойство, которое в зависимости от назначения объекта и условий его эксплуатации может включать в себя свойства безотказности, долговечности, ремонтопригодности и сохраняемости, а также определённое сочетание этих свойств.

    Актуальностью данной курсовой работы является важность расчета надежности, при котором могут быть использованы различные методы и средства, и достижение необходимой надежности. В курсовой работе рассмотрены методы расчета надежности технических систем, виды отказов, методы повышения надежности, а также причины, вызывающие отказы.

    Объектом исследования в данной курсовой работе являются электрические схемы.

    Основной целью данной курсовой работы является разбор параметров заданной системы и требования, предъявляемые к ней, подбор нужных методов для расчета надежности системы, а так же обоснование этих методов.

    Для реализации поставленной цели необходимо решить ряд задач:

    • Рассмотреть заданную систему, а так же параметры, описание и требования;
    • Выбрать и обосновать методы расчетов;
    • Заняться расчетной частью: непосредственно рассчитать надежность системы, построить дерево отказов и дерево событий;
    • Найти методы повышения надежности для заданной системы.

    Данная курсовая работа будет состоять из следующих частей:

    1) Введение, в котором описывается цель и задачи работы

    2) Теоретическая часть, в которой излагаются основные понятия, требования и методы расчета надежности.

    3) Практическая часть, где происходит расчет надежности заданной системы.

    4) Заключение, в котором содержатся выводы по данной работе

    Степень значимости надежности различных технических систем в современном мире очень высока, поскольку современные технические объекты должны быть максимально надежны и безопасны.

    1 Общая часть

    1.1 Теория надежности

    Надежность - это свойство объекта сохранять во времени в установленных пределах значения параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения технического обслуживания, ремонтов, хранения и транспортирования. Надежность является сложным свойством, которое в зависимости от назначения объекта и условий его применения состоит из сочетания безопасности, ремонтопригодности.

    Для абсолютного большинства круглогодично применяемых технических устройств при оценке их надежности наиболее важными являются три свойства: безотказность, долговечность и ремонтопригодность.

    Безотказность - свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

    Долговечность - свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

    Ремонтопригодность - свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.

    Сохраняемость - свойство объекта сохранять в заданных пределах значения параметров, характеризующих способности объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования.

    Ресурс (технический) - наработка изделия до достижения им предельного состояния, согласованного в технической документации. Ресурс может выражаться в годах, часах, километрах, гектарах, числе включений. Различают ресурс: полный — за весь срок службы до конца эксплуатации; доремонтный — от начала эксплуатации до капитального ремонта восстанавливаемого изделия; использованный — от начала эксплуатации или от предыдущего капитального ремонта изделия до рассматриваемого момента времени; остаточный — от рассматриваемого момента времени до отказа невосстанавливаемого изделия или его капитального ремонта, межремонтный.

    Наработка - продолжительность функционирования изделия или объем выполняемой им работы за некоторый промежуток времени. Измеряется в циклах, единицах времени, объема, длины пробега и т.п. Различают суточную наработку, месячную наработку, наработку до первого отказа.

    Наработка на отказ - критерий надежности, являющийся статической величиной, среднее значение наработки ремонтируемого изделия между отказами. Если наработка измеряется в единицах времени, то под наработкой на отказ понимается среднее время безотказной работы.

    Перечисленные свойства надежности (безотказность, долговечность, ремонтопригодность и сохраняемость) обладают своими количественные показатели.

    Так безотказность характеризуется шестью показателями, в том числе таким важным, как вероятность безотказной работы . Этот показатель широко применяется в народном хозяйстве для оценки самых различных видов технических средств: электронной аппаратуры, летательных аппаратов, деталей, узлов и агрегатов, транспортных средств, нагревательных элементов. Расчет этих показателей проводят на основе государственных стандартов.

    Отказ - одно из основных определений надежности, состоящее в нарушении работоспособности изделия (один или несколько параметров изделия выходят за допускаемые пределы).

    Отказы классифицируются по следующим признакам:

    1) по характеру проявления:

    • Внезапные (характеризуются резким изменением одного или нескольких заданных параметров изделия);
    • Постепенные (характеризуются постепенным изменением одного или нескольких заданных параметров машины);
    • Перемежающиеся (возникают многократно и продолжаются короткое время).

    2) отказы как случайные события могут быть:

    • Независимыми (когда отказ какого-либо элемента не приводит к отказу других элементов);
    • Зависимыми (появляются в результате отказа других элементов);

    3) по наличию внешних признаков:

    • Очевидные (явные);
    • Скрытые (неявные);

    4) отказы по объёму:

    • Полные (при аварии);
    • Частичные;

    5) отказы по причинам возникновения:

    • Конструктивные (возникают из-за недостаточной надежности, неудачной конструкции узла и т.п.);
    • Технологические (возникают из-за применения некачественных материалов или нарушения технологических процессов при изготовлении);
    • Эксплуатационные (возникают из-за нарушения режимов работы, изнашивания сопряженных деталей от трения).

    Все объекты делят на ремонтируемые (восстанавливаемые) и неремонтируемые (невосстанавливаемые) в зависимости от способа устранения отказа.

    Интенсивность отказа - условная плотность вероятности возникновения отказа невосстанавливаемого объекта, определяется при условии, что до рассматриваемого момента времени отказ не возник.

    Вероятность безотказной работы - возможность того, что в пределах заданной наработки отказ объекта не возникает.

    Долговечность также характеризуется шестью показателями, представляющие различные виды ресурса и срока службы. С точки зрения безопасности наибольший интерес представляет гамма-процентный ресурс — наработка, в течение которой объект не достигнет предельного состояния с вероятностью g, выраженной в процентах

    Показателем качества объекта является его надежность. Следовательно, чем выше надежность, тем выше качество объекта. В процессе эксплуатации объект может находиться в одном из следующих технических состояний (рис.1.1):

    1) Исправное состояние - состояние объекта, в котором он соответствует всем требованиям нормативно-технической документации.

    2) Неисправное состояние - такое состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической документации.

    3) Работоспособное состояние - состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической документации.

    4) Неработоспособное состояние - состояние объекта, при котором значение хотя бы одного параметра, характеризующего способность выполнять определенные функции, не соответствует требованиям нормативно-технической документации.

    5) Предельное состояние - состояние, при котором дальнейшая эксплуатация объекта недопустима или нецелесообразна, либо восстановление работоспособного состояния невозможно или нецелесообразно.

    1.2 Показатели для оценки безотказности

    Чтобы оценить безотказность применяют такие показатели как:

    1) Вероятность безотказной работы - вероятность того, что в пределах заданной наработки не возникает отказ объекта. Вероятность безотказной работы изменяется от 0 до 1 и рассчитывается по формуле:

    где - число работоспособных объектов в начальный момент времени, а - число объектов, отказавших на момент t от начала испытаний или эксплуатации.

    2) Средняя наработка до отказа (или среднее время безотказной работы) и средняя наработка на отказ. Средняя наработка на отказ - математическое ожидание наработки объекта до первого отказа:

    где - наработка до отказа -го объекта, а - число объектов.

    3) Плотность вероятности отказа (или частота отказов) - отношение числа отказавших изделий в единицу времени к первоначальному числу, находящихся под наблюдением:

    где - число отказов в рассматриваемом интервале наработки;

    − общее число изделий, находящихся под наблюдением;

    − величина рассматриваемого интервала наработки.

    4) Интенсивность отказов - условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник:

    где - частота отказов;

    Вероятность безотказной работы;

    Число отказавших изделий за время от до;

    Расматриваемый интервал наработки;

    Среднее число безотказно работающих изделий, которое определяется по следующей формуле:

    где − число безотказно работающих изделий в начале рассматриваемого интервала наработки;

    − число безотказно работающих изделий в конце интервала наработки.

    1.3 Показатели для оценки ремонтопригодности

    Чтобы оценить ремонтопригодность применяют такие показатели как:

    1) Среднее время восстановления - математическое ожидание времени восстановления объекта, которое определяется по формуле:

    где - время восстановления -го отказа объекта;

    Число отказов за заданный срок испытаний или эксплуатации.

    2) Вероятность восстановления работоспособного состояния - вероятность того, что время восстановления работоспособного состояния объекта не превысит заданное значение. Для большего количества объектов машиностроения вероятность восстановления определяется по экспоненциальному закону распределения:

    где - интенсивность отказов (величина постоянная).

    1.4 Показатели для оценки долговечности

    Свойство долговечности может реализовываться как в течение некоторой наработки (тогда говорят о ресурсе), так и в течение календарного времени(тогда говорят о сроке службы). Некоторые основные показатели ресурса и срока службы:

    1) Средний ресурс - математическое ожидание ресурса.

    2) Гамма-процентный ресурс - суммарная наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью.

    3) Средний срок службы - математическое ожидание срока службы.

    4) Гамма-процентный срок службы - календарная продолжительность эксплуатации, в течение которой объект не достигает предельного состояния с вероятностью.

    5) Назначенный ресурс - суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена не зависимо от его технического состояния.

    6) Неназначенный срок службы - календарная продолжительность эксплуатации, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния.

    1.5 Показатели для оценки сохраняемости

    С позиции теории надежности естественно предположить, что объект ставится на хранение или начинает транспортироваться в исправном состоянии.

    Свойство сохраняемости также реализуется в течение некоторого времени, которое называется сроком сохраняемости.

    1) Срок сохраняемости — календарная продолжительность хранения и/или транспортирования объекта, в течение которой сохраняются в заданных пределах значения параметров, характеризующих способность объекта выполнять заданные функции.

    2) Средний срок сохраняемости - математическое ожидание срока сохраняемости объекта.

    3) Гамма-процентный срок сохраняемости - календарная продолжительность хранения и/или транспортирования объекта, в продолжении которой показатели безотказности, ремонтопригодности и долговечности объекта не выйдут за установленные пределы с вероятностью.

    1. Выбор и обоснование методов расчета

    2.1 Расчет надежности.

    Изучение надежности технических систем совершается на основе методов с данными об отказах и восстановлениях, полученных в результате использования систем и их элементов. В ходе работы обычно используются аналитические методы расчета надежности. Чаще всего, это логико - вероятностные методы, а так же методы, основанные на теории случайных процессов.

    Время восстановления элементов систем обычно намного меньше времени между отказами. Этот факт позволяет использовать для расчета надежности асимптотические методы. Но исследование надежности с помощью этих методов является сложной задачей, так как формулы для описания надежности удается получить не всегда, и они сложны для практического использования.

    Тем не менее, для анализа и расчета надежности систем применяются и другие методы. Это логико - вероятностные, графовые, эвристические, аналитико - статические и машинного моделирования.

    В основе логико - вероятностных методов лежит непосредственное применение теорем и теорий вероятностей для анализа и расчета надежности технических систем.

    Графовый метод является более общим для описания технической системы. Он учитывает влияние любых факторов, воздействующих на систему. Но недостатком этого метода является сложность ввода данных и определение характеристик надежности.

    Суть эвристического метода оценки и расчета надежности заключается в объединении групп элементов системы в один общий элемент. Таким образом, происходит уменьшение числа элементов в системе. Этот метод применяется лишь для высоконадежных элементов без погрешности вычислений.

    Методы машинного моделирования являются универсальными и допускают рассмотрение систем с большим количеством элементов. Но использование этого метода в качестве исследования надежности целесообразно лишь тогда, когда невозможно получить аналитическое решение.
    При анализе систем с высокой надежностью возникают проблемы, связанные с большими затратами машинного времени. Для увеличения скорости расчетов применяют аналитико - статический метод. Но такой метод не позволяет в полном объеме определять надежность системы, если учесть большое количество факторов, влияющих на её правильное функционирование.

    В основе расчета заданной системы лежит метод экспоненциального распределения.

    Выбран именно метод экспоненциального распределения, потому что он определяется одним параметром λ. Эта особенность экспоненциального распределения указывает на его преимущество по сравнению с распределениями, зависящими от большего числа параметров. Обычно параметры неизвестны и приходится находить приближенные значения. Проще оценить один параметр, чем два или три и т. д.

    3 Расчетная часть

    3.1 Расчет надежности системы

    1. Задача 1:

    Структурная схема задачи 1:

    Рис. 1 - Структурная схема задачи 1

    Интенсивность отказов:

    Средняя наработка до отказа:

    Вероятность безотказной работы:

    ВБР системы при последовательном соединении элементов:

    1. Задача 2:

    Структурная схема задачи 2:

    Рис. 2 - Структурная схема задачи

    Таблица 1 - Интенсивность отказов и средняя наработка до отказа:

    λ i , x10 -6 1/ч

    λ i , x10 -6 1/ч

    Формула для расчета вероятности безотказной работы отдельного элемента:

    Вероятность безотказной работы каждого элемента цепи:

    Расчет надежности электрической цепи:

    3.2 Дерево событий

    Рис. 3 - Дерево событий

    3.3 Дерево отказов

    Рис. 4 - Дерево отказов

    4 Надежность системы

    4.1 Пути повышения надежности системы

    Среди методов повышения надежности оборудования можно выделить основные:
    . уменьшение интенсивности отказов элементов системы;
    . резервирование;
    . сокращение времени непрерывной работы;
    . уменьшение времени восстановления;
    . выбор рациональной периодичности и объема контроля систем.
    Указанные методы используются при проектировании, изготовлении и в процессе эксплуатации оборудования.
    Как уже было сказано, надежность систем закладывается при проектировании, конструировании и изготовлении. Именно от работы проектировщика и конструктора зависит, как будет работать оборудование в тех или иных условиях эксплуатации. Организация процесса эксплуатации также влияет на надежность объекта. При эксплуатации обслуживающий персонал может существенным образом изменить надежность систем как в сторону понижения, так и в сторону повышения.
    К конструктивным способам повышения надежности относятся:
    - применение высоконадежных элементов и оптимизация режимов их работы;
    - обеспечение ремонтопригодности;
    - создание оптимальных условий для работы обслуживающего персонала и т. п.;
    - рациональный выбор совокупности контролируемых параметров;
    - рациональный выбор допусков на изменение основных параметров элементов и систем;
    - защита элементов от вибраций и ударов;
    - унификация элементов и систем;
    - разработка эксплуатационной документации с учетом опыта применения подобного оборудования;
    - обеспечение эксплуатационной технологичности конструкции;
    - применение встроенных контрольных устройств, автоматизация контроля и индикация неисправностей;
    - удобство подходов для обслуживания и ремонта.
    При производстве оборудования используют такие способы повышения надежности, как:
    - совершенствование технологии и организации производства, его автоматизация;
    - применение инструментальных методов контроля качества продукции при статистически обоснованных выборках;
    - тренировка элементов и систем.
    Названные способы повышения надежности должны применяться с учетом влияния каждого из них на работоспособность системы.
    Для повышения надежности систем в процессе их эксплуатации используются методы, основанные на изучении опыта эксплуатации. Большое значение для повышения надежности также имеет квалификация обслуживающего персонала.

    Состояние системы определяется состоянием её элементов и зависит от её структуры. Для повышения надежности систем и элементов применяют резервирование: Резервирование - способ обеспечения надежности объекта за счет использования дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функций. Резерв - совокупность дополнительных средств и (или) возможностей, используемых для резервирования.

    Существуют три способа включения резерва:

    • постоянное - при котором элементы функционируют наравне с основными;
    • резервирование замещением - при котором резервный элемент вводиться в состав системы после отказа основного, такое резервирование называется активным и оно требует использования коммутирующих устройств;
    • скользящее резервирование - резервирование замещением, при котором группа основных элементов системы резервируется одним или несколькими резервными элементами, каждый их которых может заменить любой отказавший основной элемент в данной группе.

    4.2 Построение схемы с повышенной надежность

    Структурная схема, которая нам дана:

    Рис. 5 - Структурная схема

    Элементы 1 и 18 являются наиболее не надежными, поскольку при выходе из строя одного из них произойдет отказ всей системы.

    Структурная схема повышенной надежности с применением резервирования замещением:

    Рис. 6 - Структурная схема с повышенной надежностью

    5 Вывод

    Резервирование замещением является более удобным видом повышения надёжности системы.

    Его преимущества:

    1. Значительное увеличение вероятности безотказной работы системы
    2. Малое количество резервных элементов
    3. Повышение ремонтопригодности (т.к. точно известно какой элемент отказал).

    Недостатки этого вида резервирования заключаются в том, что:

    1. В случае обнаружения ошибки необходимо прервать работу основного программного обеспечения для обнаружения неисправного элемента и исключения его из работы
    2. Усложняется программное обеспечение, в связи с тем что требуется специальная программа обнаружения неисправных элементов
    3. Система не может обнаружить ошибку при отказе одновременно основного и резервного элементов.

    6 Заключение

    В данной курсовой работе был проведен расчет вероятности безотказной работы сложной системы. На основе структурной схемы был построены дерево отказов и дерево событий. Также были рассмотрены методы повышения надежности и на основе резервирования была построена структурная схема с повышенной надежностью, проведен анализ достоинств и недостатков выбранного метода повышения надежности.

    Список использованной литературы

    1. Половко, А.М. Основы теории надежности / А.М. Половко, С.В. Гуров - СПб.: БХВ - Петербург, 2006.-С.
    2. Надежность технических систем: справочник/Ю.К. Биляев; В.А. Богатырев
    3. Надежность технических систем [Электронный ресурс]: электронное учебное пособие. - Режим доступа: http://www.kmtt43.ru/pages/technical/files/pedsostav/krs/Nadejnost"%20tehnicheskih%20sistem.pdf
    4. ГОСТ 27.301 - 95 Надежность в технике. Расчет надежности. Основные положения
    5. Основные понятия теории надежности [Электронный ресурс]: электронное учебное пособие. - Режим доступа: http:// www . obzh . ru / nad /4-1. html (Дата обращения 13.02.2017г.)
    6. ГОСТ Р 27.002-2009 Надежность в технике. Термины и определения.

    Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.

    Надежность - способность технических систем (устройств) безотказно (исправно) работать в течение определенного периода времени в заданных условиях эксплуатации.

    Основное понятие в теории надежности - отказ, означающий полную или частичную потерю работоспособности системы (устройства). Виды отказов:

    • внезапный отказ - повреждение (например, поломка) какого-либо элемента устройства;
    • постепенный отказ возникает в результате непрерывного изменения характеристик системы, например износа в кинематических звеньях и возрастания зазоров, приводящих к поломке.

    Основные параметры надежности

    Надежность является комплексным показателем, который включает несколько параметров.

    1. Интенсивность (или плотность) потока отказов - среднее число отказов в единицу времени:

    Х(0 = 1 і т

    Рщ ("? АО

    где Р т Ц, ДО - вероятность отказа за период Д/.

    Приближенно можно принять Р от и, ДО = - , где т - число отка-

    завших элементов за период Дг; п - общее число элементов устройст-т

    ва;--относительная частота отказов.

    Тогда интенсивность потока отказов, ч -1:

    Значения А,(0 для различных типов систем определяются опытным путем (по специальным методикам испытаний) и заносятся в справочные таблицы. Примерное распределение отказов по видам: 48 % - электронное и электрическое оборудование; 37 % - механические узлы; 15 % - гидро- и пневмоприводы.

    Нормальные значения X: для отдельных элементов А.(0 = 10 4 ... ...10 6 ч -1 ; для систем А,(0 = 10 2 ... 10 4 ч _1 (по данным японских фирм,

    X для ГПС среднего уровня - не более одного отказа в год при односменной работе, т. е. Х(0 = 1/2000 = 0,0005 ч -1). Для большинства отечественных систем удовлетворительным считается значение Х(0 = 0,0025 ч, что означает безотказную работу системы в течение одного месяца в трехсменном режиме, т. е. в течение 400 ч (20 ч х х 20 дней = 400 ч).

    • 2. Средняя наработка на отказ (или математическое ожидание отказа), ч:

    Этот параметр, как и X, характеризует запас надежности системы (в старом ГОСТе / от назывался коэффициентом надежности). Поэтому можно использовать любую из этих двух величин для характеристики надежности элемента, устройства или системы. В соответствии с указанными X нормальные значения / от для систем равны:

    / от = 300...10 4 ч.

    3. Коэффициент готовности системы характеризует ее ремонтопригодность, т. е. быстроту и удобство восстановления системы:

    к г =

    где / в = V -- среднее время восстановления системы;

    т, - время восстановления /-го элемента; т - число отказавших элементов за время / от.

    4. Долговечность технической системы - свойство сохранять работоспособность в течение всего срока службы системы:

    где Г р - время работы системы за весь период эксплуатации в часах; т п/ - время простоя системы по причине отказа /-го элемента;

    х П 1 - суммарное время простоев за весь период эксплуатации

    Для инженеров-разработчиков сложных автоматизированных систем большой интерес представляют две задачи, связанные с расчетом характеристик надежности.

    Расчет вероятностей числа отказов к при п испытаниях системы

    Для расчета вероятностей числа отказов к используется формула Бернулли, в основе которой лежит теорема умножения вероятностей независимых событий, т. е. вероятности их совместного появления

    где р - вероятность отказа в каждом испытании (или вероятность отказа /-го элемента при п элементов системы); q - вероятность неотказа;

    п - число испытаний (или число элементов системы); к - число отказов;

    С„ = - : --биномиальный коэффициент (так как (р + ц) п -

    к(п - к)

    бином Ньютона).

    Распределение вероятностей, определяемое формулой Бернулли, называется биномиальным распределением дискретной случайной величины (в нашем случае отказов), которое при п -> °° приближается к нормальному распределению вероятностей (рис. 2.2).

    При больших значениях п вычисление вероятностей по формуле Бернулли затруднено, поэтому используется приближенная формула Пуассона, как предельный случай формулы Бернулли

    Рп(к)і

    ч-1-І-1- Т?

    • 0ф27 о,006 0.001
    • -Т т -

    Рис. 2.2. График биномиального распределения дискретной случайной величины

    при п = 10,/? = 0,2

    Рассмотрим пример. Пусть техническая система состоит из п - 500 элементов при р = 0,002.

    Требуется найти следующее распределение вероятностей:

    • а) откажет ровно к - 3 элемента;
    • б) менее 3;
    • в) более 3;
    • г) хотя бы 1 элемент.

    Решение. Условия задачи удовлетворяют распределению Пуассона. Определим интенсивность потока отказов: X = 500 0,002 = 1.

    • 1. /> 500 (3) = 1 3 /3! е~" = 0,36788/6 = 0,0613.
    • 2. Сумма вероятностей, кроме к - 3:

    ^оо«3> = /V0) + / 5 оо + /* 5 оо(2) = е“ 1 + е~" + г“ "/2 = 0,9197.

    3. Противоположное событие - отказало не более 3 элементов (это сумма вероятностей, включая к = 3):

    /> 500 (>3) = 1 - (? = 1 - (0,9197 + 0,0613) = 0,019 (см. п. 1 и 2).

    4. Противоположное событие - не отказал ни один элемент (к = 0):

    Р= 1 - />500(0) = 1 - 0,36788 = 0,632.

    Если в п испытаниях вероятности р 1 появления события (отказа) не равны, то используют производящую функцию типа

    Ф„(г) = (Р1 + )(р 2 1 + Ь) - (Рп* + %)’

    где г - некоторая переменная.

    Вероятность Р„(к) равна коэффициенту при ^ в разложении производящей функции по степеням Например, для п = 2 имеем:

    ф 2 (г) = (р { 1 + 4|){р 2 1 + ? 2) =РР2 ? + (Р Ь +Р2 д)1 + дЬ’ где Р 2 (2) =р х р 2 р 2 () = (р 1 д 2 +р 2 Я) Р 2 (®) = д Ь-

    Рассмотрим пример. Устройство состоит из трех независимо работающих элементов, вероятности безотказной работы которых за период / равны: р х - 0,7; р 2 - 0,8; р ъ - 0.9.

    Найти следующее распределение вероятностей отказов за период V.

    • а) все 3 элемента будут работать безотказно = 0);
    • б) только 2 элемента = 1);
    • в) только 1 элемент (к - 2);
    • г) ни один из элементов (к - 3).

    Решение. Сначала найдем вероятности отказов:

    Составим производящую функцию для п - 3:

    Фз(*) = + 4){р& + Я 2)(Р& + Яъ ) =

    = (0,7* + 0,3)(0,8* + 0,2)(0,9* + 0,1) =

    0,504г 3 + 0,398* 2 + 0,092* + 0,006.

    Таким образом, имеем:

    • а) Я 3 (0) = 0,504 - не отказал ни один элемент;
    • б) /*3(1) = 0,398 - отказал один элемент;
    • в) Р 3 (2) = 0,092 - отказали 2 элемента;
    • г) Я 3 (3) = 0,006 - отказали 3 элемента.

    Для проверки решения используем контрольную функцию

    • ? р 1 = 0,504 + 0,398 + 0,092 + 0,006 = 1.

    Расчет вероятностей числа отказов на заданном интервале времени t

    Для вычисления функции Р г (к) используют разновидность формулы Пуассона

    Р (к) = 09- е~ х ".

    Вероятность того, что за время t не произойдет ни одного отказа

    (к = 0):

    P t (0) = P(t) = e~ Xt .

    В теории надежности эта формула известна как функция надежности. Она показывает экспоненциальное распределение времени между отказами (рис. 2.3, а). Противоположная функция позволяет вычислять вероятность отказа (рис. 2.3, б):

    РотО ) = 1 - е +

    Вероятность безотказной работы системы для малых промежутков времени At можно рассчитывать по приближенной формуле :

    P(t) = 1 -Xt y



    Рис. 2.3. Графики экспоненциального распределение времени между отказами Р(1)

    для различных X (а) и вероятности отказа Р от 0) (б)

    которая получается разложением показательной функции в степенной ряд

    е~ ь = - Xt +

    м 3

    В этом разложении членами выше первого порядка пренебрегаем.

    Приближенная формула справедлива для малых значений

    Расчет вероятностных характеристик с помощью функции надежности возможен при условии X = const. Известно, что по мере расходования резерва надежности значение X(t) в течение эксплуатации системы изменяется (рис. 2.4).

    В начальный период повышенное значение X(t) - Х объясняется наличием скрытых дефектов в элементах системы, которые проявляются в процессе приработки узлов. В самый длительный период нормальной эксплуатации системы интенсивность потока отказов X(t) = - Х 2 снижается и остается приблизительно постоянным (Х 2 - const). Именно для этого периода справедлива функция надежности. Третий период характеризуется резким повышением X(t) = Х 3 , которое объяс-

    Рис. 2.4.

    • 1 - начальный период приработки узлов; 2 - период нормальной эксплуатации;
    • 3 - период катастрофического износа узлов

    няется появлением недопустимо больших зазоров в кинематических парах системы в результате прогрессирующего износа деталей.

    Рассмотрим пример использования функции надежности.

    Испытывают два независимо работающих элемента с характеристиками:

    ^ = 0,02; Х 2 = 0,05.

    Найти вероятность того, что за период / = 6 ч: а) оба элемента откажут; б) оба не откажут; в) только один элемент откажет; г) хотя бы один элемент откажет.

    Решение

    1. Вероятность отказа одного элемента:

    р от1 = 1 - е -°" 02 6 = 1 - 0,887 = 0,113,

    где р х - 0,887 - вероятность безотказной работы; р от2 = 1 _ е -°" 05 6 = 1 - 0,741 = 0,259, где р 2 = 0,741.

    Вероятность отказа обоих событий рассчитаем по формуле умножения вероятностей независимых событий

    Рот (2 эл) -р от -р от2 = 0,113 0,259 = 0,03.

    2. Вероятность безотказной работы обоих элементов находим аналогично:

    Р(Г) =р г р 2 = 0,887 0,741 = 0,66.

    3. Вероятность отказа только одного элемента находим как сумму произведений р {

    Р2" Ц + Р " #2 = 0,113 0,741 + 0,259 0,887 = 0,31,

    где д 2 =Рот2-

    4. Вероятность отказа хотя бы одного элемента находим как событие, противоположное событию по п. 2:

    /^(1 эл) = 1 -р х? р 2 - 1 - 0,66 - 0,34.

    Пути повышения надежности технических систем

    Статистика показывает, что затраты на восстановительные работы и производство запасных частей составляют более половины стоимости новой техники.

    Основные пути повышения надежности:

    • 1) снижение интенсивности потока отказов X (повышение Г от) за счет применения новых материалов с высокими эксплуатационными свойствами (повышение износостойкости деталей кинематических пар);
    • 2) входной контроль исходных материалов, деталей и комплектующих. Сохранение технологических и эксплуатационных норм в производстве и рабочем периоде;
    • 3) сокращение числа деталей в узле (и числа узлов в системе) на стадии конструирования машин и механизмов. Следует помнить, что вероятность безотказной работы машины равна произведению вероятностей />,(г) безотказной работы ее элементов:

    т=р, о.

    Эта формула соответствует последовательному соединению элементов в узле (рис. 2.5, а );

    4) применение принципа резервирования потенциально ненадежных элементов в особо ответственных узлах:

    Р (0 = 1 - П Рои О-/ = 1

    Эта формула соответствует параллельному соединению элементов, когда перемножаются вероятности отказов элементов р от!

    Рис. 2.5. Последовательное (а) и параллельное (б) соединение элементов в узле

    (рис. 2.5, б). При тройном резервировании элемента с p{t) - 0,9 (вероятность отказа каждого из трех элементов p m {t) = 1 - 0,9 = 0,1) вероятность безотказной работы элемента с резервированием равна:

    /> р (0= 1 - (0,1) 3 = 0,999;

    5) обеспечение фирменного обслуживания и ремонта технических систем. Повышение надежности ведет к росту коэффициента использования оборудования.

  • 7. Структурно-логический анализ технических систем. Структурно - логические схемы надежности технических систем.
  • 8. Структурно-логический анализ технических систем. Анализ структурной надежности технических систем. Последовательность операций.
  • 9. Расчеты структурной надежности систем. Общая характеристика.
  • 10. Расчеты структурной надежности систем. Системы с последовательным соединением элементов.
  • 11. Расчеты структурной надежности систем. Системы с параллельным соединением элементов.
  • 13. Почти тоже что в 12
  • 14. Расчеты структурной надежности систем. Мостиковые системы. Метод прямого перебора.
  • 15. Расчеты структурной надежности систем. Мостиковые системы. Метод минимальных сечений.
  • 16. Расчеты структурной надежности систем. Мостиковые системы. Метод минимальных путей.
  • 17. Расчеты структурной надежности систем. Мостиковые системы. Метод разложения относительно особого элемента.
  • 18. Расчеты структурной надежности систем. Комбинированные системы.
  • 19. Повышение надежности технических систем. Методы повышения надежности
  • 23. Повышение надежности технических систем. Расчет надежности систем с облегченным и скользящим резервированием.
  • 26 Основные свойства объекта технического диагностирования. Ремонтопригодность.
  • 27 Основные свойства объекта технического диагностирования. Безотказность. Показатели безотказности.
  • 28.Основные свойства объекта технического диагностирования. Долговечность.
  • 29.Основные свойства объекта технического диагностирования. Сохраняемость.
  • 32. Методы прогнозирования отказов элементов (статистический и аппаратурный).
  • 33.Методы повышения надежности.Разработка.Изготовление.Эксплуатация.
  • 44. Cовременное состояние вопроса диагностики процессов механообработки и мехатронных станочных систем.
  • 45. Диагностика и распознавание образов. Основные понятия распознавания образов.
  • 46. Цель и основные задачи технической диагностики. Прикладные вопросы технической диагностики.
  • 39 Диагностирование цифровых устройств. Метод таблиц истинности.
  • 47.Основные задачи, возникающие при разработке систем
  • 48. Предварительная обработка образов и выбор признаков.
  • 52. Краткий обзор зарубежных и отечественных
  • 53. Станочные системы как объект диагностирования.
  • 55. Автоматизированный контроль и диагностика инструмента в процессе механообработки. Задачи автоматизированного контроля и диагностики инструмента.
  • 1. Надежность автоматизированных технических систем. Понятие надежности. Основные проблемы надежности.

    Надежностью называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки. Расширение условий эксплуатации, повышение ответственности выполняемых радиоэлектронными средствами (РЭС) функций, их усложнение приводит к повышению требований к надежности изделий.

    Надежность является сложным свойством, и формируется такими составляющими, как безотказность, долговечность, восстанавливаемость и сохраняемость. Основным здесь является свойство безотказности - способность изделия непрерывно сохранять работоспособное состояние в течение времени. Потому наиболее важным в обеспечении надежности РЭС является повышение их безотказности.

    Особенностью проблемы надежности является ее связь со всеми этапами “жизненного цикла” РЭС от зарождения идеи создания до списания: при расчете и проектировании изделия его надежность закладывается в проект при изготовлении надежность обеспечивается, при эксплуатации - реализуется. Поэтому проблема надежности - комплексная проблема и решать ее необходимо на всех этапах и разными средствами. На этапе проектирования изделия определяется его структура, производится выбор или разработка элементной базы, поэтому здесь имеются наибольшие возможности обеспечения требуемого уровня надежности РЭС. Основным методом решения этой задачи являются расчеты надежности (в первую очередь - безотказности), в зависимости от структуры объекта и характеристик его составляющих частей, с последующей необходимой коррекцией проекта.

    2 .Количественные характеристики безотказности. Наработка на отказ.

    Безотказность (и другие составляющие свойства надежности) РЭС проявляется через случайные величины, наработку до очередного отказа и количество отказов за заданное время. количественными характеристиками свойства здесь выступают вероятностные переменные.

    Наработка есть продолжительность или объем работы объекта. для РЭС естественно исчисление наработки в единицах времени, тогда как для других технических средств могут быть удобнее иные средства измерения (например, наработка автомобиля - в километрах пробега). Для невосстанавливаемых и восстанавливаемых изделий понятие наработки различается, в первом случае подразумевается наработка до первого отказа (он же является и последним отказом), во втором – между двумя соседними во времени отказами (после каждого отказа производится восстановление работоспособного состояния). Математическое ожидание случайной наработки Т

    (1.1)является характеристикой безотказности и называется средней наработкой на отказ (между отказами). В (1.1) через t обозначено текущее значение наработки, а f(t ) плотность вероятности ее распределения.

    Вероятность безотказной работы t отказ объекта не возникает:

    . (1.2)

    вероятностью отказа q (t )=Вер(T £ t ) =1 – p (t ) = F (t ). (1.3)

    В (1.2) и (1.3) F(t t частотой отказов:

    .(1.4)Из (1.4) очевидно, что она характеризует скорость уменьшения вероятности безотказной работы во времени.

    Интенсивностью отказов называют условную плотность вероятности возникновения отказа изделия при условии, что к моменту t отказ не возник:
    . (1.5)

    Функции f(t ) и l (t ) измеряются в ч -1 .


    . (1.6)

    t

    (1.7)

    Поток отказов при l (t )=const называется простейшим

    t

    T 0 =1/l , (1.8)т.е. при простейшем потоке отказов средняя наработка Т 0 t = Т 0 , вероятность безотказной работы изделия составляет 1/е. Часто используют характеристику, называемую g - процентной наработкой

    . (1.9)

    3.Вероятность безотказной работы - вероятность того, что в пределах заданной наработкиt отказ объекта не возникает:

    . (1.2)

    Вероятность противоположного события называется вероятностью отказа и до- полняет вероятность безотказной работы до единицы:

    q (t )=Вер(T £ t ) =1 – p (t ) = F (t ). (1.3)

    В (1.2) и (1.3) F(t ) есть интегральная функция распределение случайной наработки t. Плотность вероятности f(t ) также является показателем надежности, называемым частотой отказов:

    Из (1.4) очевидно, что она характеризует скорость уменьшения вероятности безотказной работы во времени.

    4. Интенсивностью отказов называют условную плотность вероятности возникновения отказа изделия при условии, что к моменту t отказ не возник:

    . (1.5)

    Функции f(t ) и l (t ) измеряются в ч -1 .

    Интегрируя (1.5), легко получить:

    . (1.6)

    Это выражение, называемое основным законом надежности, позволяет установить временное изменение вероятности безотказной работы при любом характере изменения интенсивности отказов во времени. В частном случае постоянства интенсивности отказов l (t ) =l = const (1.6) переходит в известное в теории вероятностей экспоненциальное распределение:

    (1.7)

    Поток отказов при l (t )=const называется простейшим и именно он реализуется для большинства РЭС в течении периода нормальной эксплуатации от окончания приработки до начала старения и износа.

    Подставив выражение плотности вероятности f(t ) экспоненциального распределения (1.7) в (1.1), получим:

    T 0 =1/l , (1.8)

    т.е. при простейшем потоке отказов средняя наработка Т 0 обратна интенсивности отказов l. С помощью (1.7) можно показать, что за время средней наработки, t = Т 0 , вероятность безотказной работы изделия составляет 1/е.

    5. Часто используют характеристику, называемую g - процентной наработкой - время, в течении которого отказ не наступит с вероятностью g (%):

    . (1.9)

    Выбор параметра для количественной оценки надежности определяется назначением, режимами работы изделия, удобством применения в расчетах на стадии проектирования.

    "

    Термины надежность, безопасность, опасность и риск часто смешивают, при этом их значения перекрываются. Часто термины анализ безопасности или анализ опасности используются как равнозначные понятия. Наряду с термином анализ надежности они относятся к исследованию как работоспособности, отказов оборудования, потери работоспособности, так и процесса их возникновения.

    Обеспечение надежности систем охватывает самые различные аспекты человеческой деятельности. Надежность является одной из важнейших характеристик, учитываемых на этапах разработки, проектирования и эксплуатации самых различных технических систем.

    С развитием и усложнением техники углубилась и развивалась проблема ее надежности. Изучение причин, вызывающих отказы объектов, определение закономерностей, которым они подчиняются, разработка метода проверки надежности изделий и способов контроля надежности, методов расчетов и испытаний, изыскание путей и средств повышения надежности - являются предметом исследований надежности.

    Если в результате анализа требуется определить параметры, характеризующие безопасность, необходимо в дополнение к отказам оборудования и нарушениям работоспособности системы рассмотреть возможность повреждений самого оборудования или вызываемых ими других повреждений. Если на этой стадии анализа безопасности предполагается возможность отказов в системе, то проводится анализ риска для того, чтобы определить последствия отказов в смысле ущерба, наносимого оборудованию, и последствий для людей, находящихся вблизи него.

    Наука о надежности является комплексной наукой и развивается в тесном взаимодействии с другими науками, такими как физика, химия, математика и др., что особенно наглядно проявляется при определении надежности систем большого масштаба и сложности.

    При изучении вопросов надежности рассматривают самые разнообразные объекты: изделия, сооружения, системы с их подсистемами. Надежность изделия зависит от надежности его элементов, и чем выше их надежность, тем выше надежность всего изделия.

    Теория надежности опирается на совокупность различных понятий, определений, терминов и показателей, которые строго регламентируются в государственных стандартах (ГОСТ).

    Система - это технический объект, предназначенный для выполнения определенных функций.

    Отдельные части системы (конструктивно обособленные, как правило) называются элементами .

    Однако необходимо заметить, что один и тот же объект в зависимости от той задачи, которую хочет решить конструктор (исследователь, проектировщик, разработчик), может рассматриваться как система или как элемент. Например, радиостанция обычно рассматривается как система. Однако она может стать элементом более крупного объекта - радиорелейной линии, рассматриваемой, как система. Следовательно, можно дать еще одно более полное определение элемента.


    Элемент - это объект, представляющий собой простейшую часть системы, отдельные части которой не представляют самостоятельного интереса в рамках конкретного рассмотрения.

    С точки зрения теории надежности любой технической объект (система, устройство, элемент) можно охарактеризовать его свойствами, техническим состоянием и приспособленностью к восстановлению после потери работоспособности (рис. 1).

    Надежность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Недостаточная надежность объекта приводит к огромным затратам на его ремонт, простою машин, прекращению снабжения населения электроэнергией, водой, газом, транспортными средствами, невыполнению ответственных задач, иногда к авариям, связанным с большими экономическими потерями, разрушением крупных объектов и с человеческими жертвами. Чем меньше надежность машин, тем большие партии их приходится изготовлять, что приводит к перерасходу металла, росту производственных мощностей, завышению расходов на ремонт и эксплуатацию.

    Рисунок 1 - Основные характеристики ТС

    Надежность объекта является комплексным свойством, ее оценивают по четырем показателям — безотказности, долговечности, ремонтопригодности и сохраняемости или по сочетанию этих свойств.

    Безотказность — свойство объекта сохранять работоспособность непрерывно в течение некоторого времени или некоторой наработки. Это свойство особенно важно для машин, отказ в работе которых связан с опасностью для жизни людей. Безотказность свойственна объекту в любом из возможных режимов его существования, в том числе, при хранении и транспортировке.

    Долговечность — свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

    В отличие от безотказности долговечность характеризуется продолжительностью работы объекта по суммарной наработке, прерываемой периодами для восстановления его работоспособности в плановых и неплановых ремонтах и при техническом обслуживании.

    Предельное состояние — состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно.

    Ремонтопригодность — свойство объекта, заключающееся в его приспособленности к поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонта. Важность ремонтопригодности технических систем определяется огромными затратами на ремонт машин.

    Сохраняемость — свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования. Практическая роль этого свойства велика для деталей, узлов и механизмов, находящихся на хранении в комплекте запасных принадлежностей.

    Объекты подразделяют на невосстанавливаемые, которые не могут быть восстановлены потребителем и подлежат замене (например, электрические лампочки, подшипники, резисторы и т.д.), и восстанавливаемые, которые могут быть восстановлены потребителем (например, телевизор, автомобиль, трактор, станок и т.д.).

    Надежность объекта характеризуется следующими состояниями: исправное, неисправное, работоспособное, неработоспособное.

    Исправное состояние — такое состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации.

    Исправное изделие обязательно работоспособно .

    Неисправное состояние — такое состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации. Различают неисправности, не приводящие к отказам, и неисправности, приводящие к отказам. Например, повреждение окраски автомобиля означает его неисправное состояние, но такой автомобиль работоспособен.

    Работоспособным состоянием называют такое состояние объекта, при котором он способен выполнять заданные функции, соответствующие требованиям нормативно-технической и (или) конструкторской (проектной) документации.

    Неработоспособное изделие является одновременно неисправным .

    Понятие исправности шире понятия работоспособности. Неисправная ТС может быть работоспособной и неработоспособной - все зависит от того, какому требованию НТД не удовлетворяет данная ТС. Так, например, если погнут кожух или шасси, нарушено их лакокрасочное покрытие, повреждена изоляция проводников, однако параметры аппаратуры находятся в пределах нормы, то ТС считается неисправной, но в то же время работоспособной.

    Рисунок 2 - Классификация объектов ТС

    Ученый Дунин-Барковский дал такое определение термина «технологическая надежность»: «…свойство технологического оборудования и производственно-технических систем, таких, как станок, система литейного, кузнечно-прессового или другого производственно-технического оборудования или автоматических линий, сохранить на за-данном уровне выходные параметры качества производимого изделия в течение требуемого времени». Затем А. С. Проников ввел понятие «надежность технологических процессов». Он пишет, что «больший процент отказов различных машин связан с недостаточной надежностью технологического процесса», что...«технологический процесс должен быть надежным, т. с. не допускать таких показателей, которые могут влиять на качество выпускаемых изделий». Вопросы оценки надежности технологических процессов и безотказности рассматриваются также в работах П. И. Бобрика, А. Л. Меерова и др., причем только с точки зрения способности технологических систем, процессов и операций обеспечивать (в течение заданного времени) изготовление продукции с показателями качества в соответствии с установленными требованиями.

    Но очевидно, что изменение во времени характеристик технологических систем может приводить к изменению не только качества изготовления продукции, но и производительности. Отказы технологических систем в большинстве случаев приводят не к появлению бракованных изделий, а к задержке в выполнении задания, что сказывается на производительности оборудования. Поэтому, характеризуя свойство надежности технологических систем, целесообразно его рассматривать с точки зрения выполнения заданий как по показателям качества, так и по объему изготовляемой продукции.

    Таким образом, в технической литературе широкое освещение получили вопросы применения методов теории надежности к анализу свойств технологических систем обеспечивать изготовление продукции в соответствии с требованиями технической документации и в установленном объеме.

    Технологическая система - это совокупность средств технологического оснащения, объектов производства и, в общем случае, исполнителей, необходимая и достаточная для выполнения определенных технологических процессов и операций и находящаяся в состоянии готовности к функционированию или в состоянии функционирования в соответствии с требованиями технической документации. Таким образом, можно рассматривать технологическую систему для выполнения одной операции и технологическую систему для выполнения некоторого процесса, состоящего из отдельных операций

    В технологическую систему входят элементы, для которых обязательно наличие функциональных связей, обеспечивающих протекание технологических процессов изготовления продукции. Частным случаем таких связей являются кинематические связи между отдельными элементами (например, в системе станок - приспособление - инструмент - деталь).

    Надежностью технологической системы будем называть свойство технологической системы выполнять заданные функции, сохраняя показатели качества и ритм выпуска годной продукции в течение требуемых промежутков времени эксплуатации или требуемой наработки. Ритм выпуска - это количество изделий определенного наименования, типоразмера и исполнения, выпускаемых в единицу времени.

    Под понятием «надежность технологического процесса» и «надежность технологической операции» понимается надежность технологической системы, обеспечивающей функционирование рассматриваемого процесса или операции в соответствии с требованиями технической документации.

    Из определений следует, что технологическую систему можно считать надежной в том случае, если она обеспечивает выполнение задания по показателям качества изготовляемой или изготовленной продукции и по параметрам производительности.

    Параметры и свойства технологической системы и ее элементов изменяются в процессе функционирования, т. е. при протекании технологического процесса или операции. Поэтому технологическая система в определенный момент может находиться в работоспособном или неработоспособном состоянии.

    При проведении исследований можно оценивать работоспособность системы как отдельно - по ее способности обеспечивать требуемый уровень качества изготовленной продукции и по параметрам производительности, так и по обоим свойствам одновременно с учетом зависимости между ними.

    Технологическая система работоспособна по параметрам качества, если обеспечивает изготовление продукции с показателями качества, соответствующими требованиям технической документации, и работоспособна по параметрам производительности, если обеспечивает установленный ритм выпуска.

    Отдельные нарушения в технологической системе будем относить к категории повреждений, если они переводят систему из исправного состояния в неисправное, и к отказам, если они переводят систему из работоспособного состояния в неработоспособное.

    Таким образом, отказ технологической системы - это событие, заключающееся в потере работоспособности.

    Отказы в технологических системах могут быть внезапными и постепенными. К постепенным относятся отказы, вызванные неправильным или дискретным характером изменений в состоянии технологической системы и приводящие к постепенной потере работоспособности (износ направляющих станка, инструмента, приспособлений, температурные деформации, старение материала базовых деталей оборудования и т. п.). Внезапными являются отказы, обусловленные отдельными нарушениями, момент наступления которых практически невозможно прогнозировать (поломка инструмента, ошибка наладчика в настройке оборудования, дефекты в материале или заготовках и т. д.).

    В дальнейшем такие постепенные и внезапные отказы будут относиться к категории отказов, обусловленных состоянием системы, т. е. к внутренним отказам. Но технологические системы отдельных операций или процессов могут находиться в состоянии неработоспособности также из-за внешних факторов (нарушение электроснабжения, повреждения помещений, отсутствие материала, заготовок и т. д.). Очевидно, что внешние факторы приводят к снижению надежности по параметрам производительности. К внешним отказам следует относить также простои технологических систем по организационным причинам.

    Для того, чтобы решить проблему повышения надежности машин и механизмов, необходимо не просто констатировать факт отказа, но рассматривать каждый случай преждевременного отказа как событие и устанавливать истинную причину нарушения работоспособности. Анализ должен начинаться с установления места отказа. Каждый вид повреждения или отказа имеет различные формы проявления. Все причины отказов могут быть отнесены к одной из следующих трех основных групп:

    Ошибки проектирования и изготовления;

    Ошибки эксплуатации;

    Внешние причины, т.е. причины, непосредственно не зависящие от рассматриваемого изделия или узла.

    Типичными дефектами конструирования являются: недостаточная защищенность узлов трения, наличие концентраторов напряжения, неправильный расчет несущей способности, неправильный выбор материалов и др. К наиболее типичным дефектам технологии следует отнести: дефекты из-за неправильного состава материала, дефекты при плавке и изготовлении заготовок, ошибки при механической обработке и др. Основными эксплуатационными причинами отказов и повреждений являются: нарушение условий применения; неправильное техническое обслуживание; наличие перегрузок и непредвиденных нагрузок, обусловленных нарушениями в энергоснабжении, влиянием связанных отказов (вторичные повреждения), влиянием явлений природы, попаданием в механизм посторонних предметов и т.д.

    Подобная классификация позволяет только отнести зафиксированный отказ к одной из названных выше причин. Задача заключается в том, чтобы, зная физическую причину разрушения, обеспечить конструирование изделий с установленной долговечностью. Поэтому важно по внешнему виду разрушенной детали сделать правильный предварительный вывод о причинах разрушения.

    При решении любой задачи по оценке надежности технологических систем исходят из следующих предпосылок:

    1) Надежность технологических систем должна оцениваться только по тем параметрам и показателям качества изготовленной продукции, уровень которых зависит от рассматриваемой операции. Например, при шлифовании вала обработке подлежит только одна поверхность, а остальные не изменяются. По этому оценка надежности такой операции шлифования зависит от условий обеспечения необходимого размера и шероховатости только обрабатываемой поверхности.

    Многие показатели эргономичности и технической эстетики однозначно определяются конструкцией изделия и не зависят от надежности технологических операций (например, расположение и число точек смазки в изготавливаемом изделии, обзорность и т. д.). Поэтому при расчете надежности технологических операций такие показатели качества готового изделия не должны учитываться.

    2) При расчете надежности технологических систем следует исходить из того, что в конструкторской документации однозначно заданы номинальные значения и показатели качества готового изделия. При оценке же надежности технологических операций (как в процессе технологической подготовки производства, так и в серийном изготовлении) следует только учитывать, насколько процесс изготовления обеспечивает соблюдение установленных требований, и не рассматривать при этом соответствия современному уровню показателей, заложенному в конструкторской документации. Это значит, что технологический процесс может обладать высокой надежностью, хотя полученная при его реализации продукция может относиться ко второй категории качества.

    3) При оценке надежности технологических систем в условиях серийного производства следует исходить из заданных в технологической документации технологических маршрутов, режимов и средств технологического оснащения.

    4) Отработка технологических операции и процессов по показателям надежности на этапе подготовки производства должна проводиться путем отыскания лучшего технологического решения по экономическим критериям и вероятности выполнения задания по показателям качества изготовленной продукции и параметрам производительности.

    Оценка надежности технологических систем сводится к дифференцированной оценке показателей безотказности, долговечности и ремонтопригодности или к вычислению, при необходимости, комплексных показателей, характеризующих одновременно все составные свойства надежности.

    Оценка безотказности сводится к определению:

    Вероятности того, что рассматриваемый технологический процесс (или операция) обеспечит изготовление продукции в соответствии с требуемыми технической документацией показателями качества в течение заданного интервала времени без вынужденных перерывов при одновременном обеспечении заданного объема производства в единицу времени (ритма запуска);

    Средней наработки до отказа;

    Параметра потока отказов.

    При оценке показателей безотказности не учитываются вынужденные простои оборудования, обусловленные организационными причинами.

    Для непрерывных технологических операций за наработку принимается продолжительность работы (ч); для дискретных технологических операций (обработка резанием, штамповка и т. д.) - число обработанных деталей или число обработанных прутков (при изготовлении деталей из пруткового материала).

    При оценке безотказности автоматических линий, а также технологических операций, за единицу наработки принимается количество изготовленных деталей после финишной операции.

    Операция контроля должна рассматриваться как неотъемлемая часть соответствующих технологических операций.

    Отказом технологической системы по показателям качества не следует считать произошедшее после операции обработки отклонение от требований технической документации по одному из показателей качества, выявленное при контрольной операции, в результате чего дефектная деталь или изолирована или направлена на доработку (переработку). При оценке безотказности по параметрам производительности время изготовления дефектной продукции должно учитываться как время, затраченное на устранение отказа.

    Для дорогостоящих и трудоемких в изготовлении изделий безотказность должна оцениваться для операции обработки и отдельно для контрольной операции.

    Оценка долговечности сводится к определению:

    Календарной продолжительности функционирования технологической системы до отказа, капитального ремонта, между ремонтами, до полной замены;

    Наработок системы до тех же периодов.

    Оценка ремонтопригодности технологической системы сводится:

    К определению показателей, характеризующих продолжительность и стоимость выявления и устранения отказов;

    К установлению времени, потребного для приведения системы в рабочее состояние;

    К устранению показателей, характеризующих трудоемкость и стоимость операций технического обслуживания технологических систем, подналадок, смены инструмента.

    Оценка надежности технологических систем проводится путем вычисления показателей надежности па этапах технологической подготовки производства, серийного изготовления, а также после капитального ремонта или модернизации важнейших элементов технологических систем.

    Основная цель оценок надежности технологических систем - приведение технологических процессов в такое состояние, при котором обеспечивается изготовление продукции в соответствии с установленными в технической документации параметрами и показателями качества при одновременном обеспечении максимальной производительности и минимуме потерь от брака. В зависимости от этапа проведения оценок могут решаться частные задачи:

    При планировании - установление объемов производства отдельных участков и цехов, определение экономически обоснованных норм точности;

    При технологической подготовке производства - выбор оптимальных технологических процессов (выбор режимов обработки, установление мест контрольных операций в технологическом процессе и планов контроля);

    При серийном производстве - определение соответствия параметров технологической системы установленным требованиям, выявление отрицательных факторов и разработка мероприятий по повышению надежности или точности и стабильности технологических процессов;

    После проведения ремонтов технологических систем - оценка качества ремонта.

    Эти же методы могут быть использованы для организации приемо-сдаточных испытаний после ремонта основных элементов технологических систем или после их модернизации.

    В основу современного развития работ по теории надежности могут быть положены следующие предпосылки:

    Большинство отказов, которые появляются при эксплуатации изделий, можно было предвидеть заранее, поэтому их нельзя считать случайными;

    Большинство внезапных отказов объясняются недоработкой и ошибками конструирования, изготовления и сборки, поэтому необходимо не просто констатировать факты появления внезапных отказов, а разрабатывать способы, исключающие их возможность;

    Большинство методов промышленного контроля в действительности не позволяет обнаружить дефекты; нужны новые методы контроля, дающие возможность прогнозировать моменты появления отказов с целью своевременного принятия необходимых мер, исключающих внезапный характер отказов;

    Надежность технических систем должна оцениваться еще на стадии проектирования;

    Управление надежностью должно носить комплексный характер и обеспечиваться на этапах проектирования, изготовления, эксплуатации и ремонта.