Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Принцип работы электронно лучевой трубки кратко. Принцип работы электронно-лучевой трубки и ее применение. Существует ли опасность взрыва

    Принцип работы электронно лучевой трубки кратко. Принцип работы электронно-лучевой трубки и ее применение. Существует ли опасность взрыва

    На экран электронно-лучевой трубки люминофоры наносятся в виде крошечных точек, причем эти точки собираются по три; в каждой тройке, или триаде, имеются одна красная, одна синяя и одна зеленая точки. На рисунке я вам показал несколько таких триад. Всего на экране трубки имеется около 500 тысяч триад. Картина, которую вы видите в телевизоре, вся состоит из светящихся точек. Там, где детали изображения более светлые, на точки попадает больше электронов, и они светятся ярче. На темные места изображения электронов попадает, соответственно, меньше. Если в цветном изображении имеется белая деталь, то повсюду в пределах этой детали все три точки в каждой триаде светятся с одинаковой яркостью. Наоборот, если в цветном изображении имеется деталь красного цвета, то повсюду в пределах этой детали светятся только красные точки каждой триады, а зеленые и синие не светятся совсем.

    Вы поняли, что значит создать цветное изображение на экране телевизора? Это, во-первых, заставить электроны попадать в нужные места, то есть на те люминофорные точки, которые должны светиться, и не попадать в другие места, то есть на те точки, которые светиться не должны. Во-вторых, электроны должны попадать в нужные места в нужное время. Ведь изображение на экране постоянно меняется, и там, где в какой-то момент, например, было ярко-оранжевое пятно, через мгновение должно появиться, скажем, темно-фиолетовое. Наконец, в-третьих, в нужное место и в нужное время должно попадать нужное количество электронов. Больше - туда, где свечение должно быть ярче, и меньше - туда, где свечение темнее.

    Поскольку на экране размещается почти полтора миллиона люминофорных точек, задача на первый взгляд представляется исключительно сложной. На самом деле - ничего сложного. Прежде всего в электронно-лучевой трубке имеется не один, а три отдельных нагретых катода. Точно таких, как в обычной электронной лампе. Каждый катод испускает электроны, и вокруг него создается электронное облачко. Около каждого катода находятся сетка и анод. Количество электронов, прошедших сквозь сетку к аноду, зависит от напряжения на сетке. Пока все происходит, как в обычной трехэлектродной лампе - триоде.

    Какое отличие? Анод здесь не сплошной, а с отверстием в самом центре. Поэтому большинство электронов, движущихся от катода к аноду, не задерживается на аноде - они вылетают через отверстие наружу в виде круглого пучка. Конструкция, состоящая из катода, сетки и анода, так и называется: электронная пушка. Пушка как бы выстреливает пучком электронов, а количество электронов в пучке зависит от напряжения на сетке.

    Нацелены электронные пушки так, чтобы пучок, вылетающий из первой пушки, всегда попадал только в красные точки триад, пучок из второй пушки - только в зеленые точки, а пучок из третьей пушки - только в синие точки. Таким образом решается одна из трех задач по образованию цветного изображения. Подавая нужные напряжения на сетки каждой из трех пушек, устанавливают нужные интенсивности красного, зеленого и синего свечения, а значит, обеспечивают нужную окраску каждой детали изображения.

    § 137. Электронно-лучевая трубка. Осциллограф

    Для наблюдения, записи, измерений и контроля различных изменяющихся процессов в устройствах автоматики, телемеханики и других областях техники применяют осциллографы (рис. 198). Основной частью осциллографа является электронно-лучевая трубка - электровакуумный прибор, в наиболее простом виде предназначенный для преобразования электрических сигналов в световые.

    Рассмотрим, как отклоняется электрон и электронный луч в электрическом поле электронно-лучевой трубки осциллографа.
    Если электрон поместить между двумя параллельными пластинами (рис. 199, а), имеющими разноименные электрические заряды, то под действием электрического поля, возникающего между пластинами, электрон отклонится, так как он заряжен отрицательно. Он отталкивается от пластины А , имеющей отрицательный заряд, и притягивается к пластине Б , имеющей положительный электрический заряд. Движение электрона будет направлено вдоль линий поля.


    Когда в поле между пластинами попадает движущийся со скоростью V электрон (рис. 199, б), то на него действуют не только силы поля F , но и сила F 1 , направленная по его движению. В результате действия этих сил электрон отклонится от своего прямолинейного пути и будет перемещаться по линии ОК . - по диагонали.
    Если между пластинами пропустить узкий пучок движущихся электронов - электронный луч (рис. 199, в), он под действием электрического поля отклонится. Угол отклонения электронного луча зависит от скорости движения электронов, из которых состоит луч, и величины напряжения, создающего электрическое поле между пластинами.
    Каждая электронно-лучевая трубка (рис. 200) представляет собой баллон, из которого выкачан воздух. Коническая часть внутренней поверхности баллона покрыта графитом и называется аквадагом . Внутри баллона 3 помещается электронный прожектор 8 - электронная пушка, отклоняющие пластины 4 и 6 , и экран 5 . Электронный прожектор трубки состоит из подогревного катода, который излучает электроны, и системы электродов, образующих электронный луч. Этот луч, испускаемый катодом трубки, перемещается с большой скоростью к экрану и по существу является электрическим током, направленным в сторону, обратную движению электронов.


    Катод представляет собой никелевый цилиндр, торец которого покрыт слоем оксида. Цилиндр надет на тонкостенную керамиковую трубку, а внутри нее для подогрева катода помещается нить из вольфрама, выполненная в виде спирали.
    Катод расположен внутри управляющего электрода 7 , имеющего форму стаканчика. В дне стаканчика сделано небольшое отверстие, через которое проходят электроны, вылетающие из катода; это отверстие называется диафрагмой . На управляющий электрод подается небольшое отрицательное напряжение (порядка нескольких десятков вольт) по отношению к катоду. Оно создает электрическое поле, действующее на электроны, вылетающие с катода так, что они собираются в узкий луч, направленный в сторону экрана трубки. Точка пересечения траекторий полета электронов называется первым фокусом трубки . Увеличивая отрицательное напряжение на управляющем электроде, можно часть электронов отклонить настолько, что они не пройдут через отверстие и таким образом количестно электронов, попадающих на экран, уменьшится. Изменяя напряжение управляющего электрода, можно регулировать количество электронов в нем. Это позволяет изменять яркость светящегося пятна на экране электроннолучевой трубки, который покрыт специальным составом, обладающим способностью светиться под воздействием электронного луча, попадающего на него.
    В состав электронной пушки также входят создающие ускоряющее поле два анода: первый - фокусирующий 1 и второй - управляющий 2 . Каждый из анодов представляет собой цилиндр с диафрагмой, которая служит для ограничения поперечного сечения электронного луча.
    Аноды располагаются вдоль оси трубки на некотором расстоянии один от другого. На первый анод подается положительное напряжение порядка нескольких сотен вольт, а второй анод, соединенный с аквадагом трубки, имеет положительный потенциал, в несколько раз больший потенциала первого анода.
    Электроны, вылетающие из отверстия управляющего электрода, попадая в электрическое поле первого анода, приобретают большую скорость. Пролетая внутри первого анода, пучок электронов под действием сил электрического поля сжимается и образует тонкий электронный луч. Далее электроны пролетают через второй анод, приобретают еще большую скорость (несколько тысяч километров в секунду), летят через диафрагму к экрану. На последнем под действием ударов электронов образуется светящееся пятно диаметром менее одного миллиметра. В этом пятне расположен второй фокус электронно-лучевой трубки.
    Для отклонения электронного луча в двух плоскостях электронно-лучевая трубка снабжена двумя парами пластин 6 и 4 , расположенных в разных плоскостях перпендикулярно одна другой.
    Первая пара пластин 6 , которая находится ближе в электронной пушке, служит для отклонения луча в вертикальном направлении; эти пластины называются вертикально отклоняющими . Вторая пара пластин 4 , расположенная ближе к экрану трубки, служит для отклонения луча в горизонтальном направлении; эти пластины называются горизонтально отклоняющими .
    Рассмотрим принцип действия отклоняющих пластин (рис. 201).


    Отклоняющие пластины В 2 и Г 2 подключены к движкам потенциометров П в и П г. К концам потенциометров подается постоянное напряжение. Отклоняющие пластины В 1 и Г 1 как и средние точки потенциометров, заземлены, и их потенциалы равны нулю.
    Когда движки потенциометров стоят в среднем положении, потенциал на всех пластинах равен нулю, и электронный луч создает светящееся пятно в центре экрана - точку О . При перемещении движка потенциометра П г влево на пластину Г 2 подается отрицательное напряжение и поэтому электронный луч, отталкиваясь от этой пластины, отклонится и светящаяся точка на экране сместится в направлении точки А .
    При перемещении движка потенциометра П г вправо потенциал пластины Г 2 будет увеличиваться и электронный луч, а следовательно, и светящаяся точка на экране сместятся по горизонтали к точке Б . Таким образом, при непрерывном изменении потенциала на пластине Г 2 электронный луч прочертит на экране горизонтальную линию АБ .
    Аналогично при изменении потенциометром П в напряжения на вертикально отклоняющих пластинах луч будет отклоняться по вертикали и прочертит на экране вертикальную линию ВГ . При одновременном изменении напряжения на обеих парах отклоняющих пластин можно переместить электронный луч в любом направлении.
    Экран электронно-лучевой трубки покрыт специальным составом - люминофором, способным светиться под действием ударов быстро летящих электронов. Таким образом, когда сфокусированный луч попадает в ту или иную точку экрана, то она начинает светиться.
    Для покрытия экранов электронно-лучевых трубок используют люминофоры в виде окиси цинка, бериллиевого цинка, смеси сернокислого цинка с сернокислым кадмием и др. Эти материалы обладают свойством продолжать некоторое время свое свечение после прекращения ударов электронов. Это значит, что они обладают послесвечением .
    Известно, что глаз человека, получив зрительное впечатление, может удержать его примерно 1/16 секунды. В электронно-лучевой трубке луч по экрану может перемещаться настолько быстро, что ряд последовательных светящихся точек на экране воспринимаются глазом в виде сплошной светящейся линии.
    Напряжение, подлежащее изучению (рассмотрению) с помощью осциллографа, подается на вертикально отклоняющие пластины трубки. На горизонтально отклоняющие пластины подают пилообразное напряжение, график которого приведен на рис. 202, а.

    Это напряжение дает электронный генератор пилообразных импульсов, который смонтирован внутри осциллографа. Под действием пилообразного напряжения электронный луч перемещается горизонтально по экрану. За время t 1 - t 8 луч перемещается по экрану слева направо, а за время t 9 - t 10 быстро возвращается в исходное положение, затем вновь движется слева направо и т. д.
    Выясним, как можно увидеть на экране электронно-лучевой трубки осциллографа форму кривой мгновенных значений напряжения, подаваемого на вертикально отклоняющие пластины. Допустим, что к горизонтально отклоняющим трубкам подано пилообразное напряжение с амплитудой 60 в и с периодом изменения в 1/50 сек .
    На рис. 202, б показан один период синусоидального напряжения, форму кривой которого мы хотим увидеть, а в круге (рис. 202, в) показано результирующее перемещение электронного луча на экране трубки осциллографа.
    Напряжения в одни и те же мгновения имеют на верхних двух графиках одинаковые обозначения.
    В момент времени t 1 пилообразное напряжение (U г), отклоняющее электронный луч по горизонтали, равно 60 в , а напряжение на вертикальных пластинах U в равно нулю и на экране светится точка O 1 . В момент времени t 2 напряжение U г = - 50 в , а напряжение U в = 45 в . За время, равное t 2 - t 1 , электронный луч переместится в положение O 2 по линии O 1 - O 2 . В момент времени t 3 напряжение U г = 35 в , а напряжение U в = 84,6 в . За время t 3 - t 2 луч переместится в точку O 3 по линии O 2 - O 3 и т. д.
    Процесс воздействия электрических полей, создаваемых обеими парами отклоняющих пластин, на электронный луч будет продолжаться, и луч будет отклоняться далее по линии O 3 - O 4 - o 6 и т. д.
    За время t 10 - t 9 электронный луч быстро отклонится влево (произойдет обратный ход луча), а затем процесс будет повторяться: Исследуемое напряжение изменяется периодически, поэтому электронный луч будет многократно перемещаться по одному и тому же пути, в результате чего будет видна довольно яркая линия, по форме совпадающая с формой кривой напряжения, поданного на вертикально отклоняющие пластины трубки.
    Так как период (и частота) напряжений пилообразных импульсов развертки и исследуемого напряжения равны, то синусоида на экране будет неподвижна. Если частота этих напряжений разная и не кратная друг другу, то изображение будет перемещаться вдоль экрана трубки.
    При подключении к обеим парам отклоняющих пластин двух синусоидальных напряжений одинаковых амплитуд и частот, но сдвинутых по фазе на 90°, на экране трубки будет видна окружность. Таким образом, с помощью осциллографа можно наблюдать и исследовать различные процессы, происходящие в электрических цепях. Кроме генератора пилообразных импульсов, осциллограф имеет усилители для усиления напряжения, подаваемого на пластины вертикального отклонения луча, и пилообразного напряжения, подаваемого на пластины горизонтального отклонения.

    Студент должен знать : структурную схему осциллографа; назначение основных блоков осциллографа; устройство и принцип действия электронно-лучевой трубки; принцип действия генератора развертки (пилообразного напряжения), сложение взаимно перпендикулярных колебаний.

    Студент должен уметь : определять опытным путем цену деления по горизонтали и по вертикали, измерять величину постоянного напряжения, период, частоту и амплитуду переменного напряжения.

    Краткая теория Структура осциллографа

    Электронный осциллограф является универсальным прибором, позволяющим следить за быстропротекающими электрическими процессами (длительностью до 10 -12 с). С помощью осциллографа можно измерить напряжение, силу тока, промежутки времени, определять фазу и частоту переменного тока.

    Т.к. в функционирующих нервах и мышцах живых организмов возникают разности потенциалов, то электронный осциллограф, или его модификации широко применяют в биологических и медицинских исследованиях работы различных органов, сердца, нервной системы, глаз, желудка и т.д.

    Прибор можно использовать для наблюдения и измерения неэлектрических величин, если применять специальные первичные преобразователи.

    В осциллографе нет движущихся механических частей (см. рис. 1), а происходит отклонение электронного пучка в электрическом или магнитном полях. Узкий пучок электронов, попадая на экран, покрытый специальным составом, вызывает его свечение в этой точке. При перемещении пучка электронов можно следить за ним по движению светящейся точки на экране.

    Электронный луч «следит» за изменением изучаемого электрического поля не отставая от него, т.к. электронный луч является практически безинерционным.

    Рис. 1. Рис. 2.

    Структура электронно-лучевой трубки Катод и модулятор

    В этом большое достоинство электронного осциллографа по сравнению с другими регистрирующими приборами.

    Современный электронный осциллограф имеет следующие основные узлы: электронно-лучевая трубка (ЭЛТ), генератор развертки, усилители, блок питания.

    Устройство и работа электронно-лучевой трубки

    Рассмотрим устройство электронно-лучевой трубки с электростатической фокусировкой и электростатическим управлением электронным лучом.

    ЭЛТ, схематически изображенная на рис. 1, представляет собой стеклянную колбу специальной формы, в которой создан высокий вакуум (порядка 10 -7 мм рт.ст.). Внутри колбы расположены электроды, выполняющие функцию электронной пушки для получения узкого пучка электронов; отклоняющие луч пластины и экран, покрытый слоем люминофора.

    Электронная пушка состоит из катода 1, управляющего (модулирующего) электрода 2, дополнительного, экранирующего электрода 3 и первого и второго анодов 4, 5.

    Подогревной катод 1 выполнен в виде небольшого никелевого цилиндра, внутри которого находится нить накала, имеет слой оксида на передней торцевой части с малой работой выхода электронов для получения электронов (рис. 2).

    Катод находится внутри управляющего электрода или модулятора, представляющего собой металлический стакан с отверстием в торце, через которое могут проходить электроны. Управляющий электрод имеет отрицательный потенциал относительно катода и, изменяя величину этого потенциала, можно регулировать интенсивность потока электронов, проходящих через его отверстие и тем самым изменять яркость свечения экрана. Одновременно электрическое поле между катодом и модулятором фокусирует пучок электронов (рис. 2).

    Экранирующий электрод 3 имеет потенциал немного выше потенциала катода и служит для облегчения выхода электронов, исключения взаимодействия электрических полей управляющего электрода 2 и первого анода 4.

    Дополнительная фокусировка и ускорение электронов происходит электрическим полем между первым и вторым анодами, образующими электронную линзу. Аноды эти выполнены в виде цилиндров с диафрагмами внутри. На первый анод 4 подается положительный потенциал по отношению к катоду порядка сотен вольт, на второй 5 порядка тысячи вольт. Линии напряженности электрического поля между этими анодами представлены на рис.3.

    Принцип работы электронно-лучевой трубки построен на испускании электронов отрицательно заряженным термокатодом, которые затем при­тягиваются положительно заряженным анодом и собираются на нем. Это принцип работы старой электронной лампы с термокатодом.

    В ЭЛТ высокоскоростные электроны испускаются электронной пуш­кой (рис. 17.1). Они фокусируются электронной линзой и направляют­ся к экрану, который ведет себя как положительно заряженный анод. Экран покрыт изнутри флуоресцирующим порошком, который начинает светиться под ударами быстрых электронов. Электронный пучок (луч), испускаемый электронной пушкой, создает неподвижное пятно на экра­не. Для того чтобы электронный пучок оставил след (линию) на экране, его нужно отклонять как в горизонтальном, так и в вертикальном напра­влениях - Х и Y.

    Рис. 17.1.

    Методы отклонения пучка

    Существует два метода отклонения пучка электронов в ЭЛТ. В электростатическом методе используются две параллельные пластины, между которыми создается разность электрических потенциалов (рис. 17.2(а)). Электростатическое поле, возникающее между пластинами, отклоняет электроны, попадающие в область действия поля. В электромагнитном методе пучок электронов управляется магнитным полем, создаваемым электрическим током, протекающим через катушку. При этом, как по­казано на рис. 17.2(б), применяются два набора управляющих катушек (в телевизорах они называются отклоняющими катушками). Оба метода обеспечивают линейное отклонение.


    Рис. 17.2. Электростатический (а) и электромагнитный (б)

    методы отклонения электронного пучка.

    Однако метод электростатического отклонения имеет более широкий частотный диапазон, именно поэтому его применяют в осциллографах. Электромагнитное отклонение лучше подходит для высоковольтных трубок (кинескопов), работающих в те­левизорах, и к тому же более компактно в реализации, поскольку обе катушки располагаются в одном и том же месте вдоль горловины теле­визионной трубки.

    Конструкция ЭЛТ

    На рис. 17.3 дано схематическое представление внутреннего устройства электронно-лучевой трубки с электростатической отклоняющей систе­мой. Показаны различные электроды и соответствующие им потенциалы. Электроны, испускаемые катодом (или электронной пушкой), проходят через небольшое отверстие (апертуру) в сетке. Сетка, потенциал которой отрицателен по отношению к потенциалу катода, определяет интен­сивность или число испускаемых электронов и, таким образом, яркость пятна на экране.


    Рис. 17.3.


    Рис. 17.4.

    Затем электронный пучок проходит сквозь электрон­ную линзу, фокусирующую пучок на экран. Конечный анод А 3 имеет потенциал в несколько киловольт (по отношению к катоду), что соот­ветствует диапазону сверхвысоких напряжений (СВН). Две пары откло­няющих пластин D 1 и D 2 обеспечивают электростатическое отклонение пучка электронов в вертикальном и горизонтальном направлениях соот­ветственно.

    Вертикальное отклонение обеспечивают Y-пластины (пластины верти­кального отклонения), а горизонтальное - Х-пластины (пластины гори­зонтального отклонения). Входной сигнал подается на Y-пластины, кото­рые отклоняют электронный пучок вверх и вниз в соответствии с ампли­тудой сигнала.

    X-пластины заставляют пучок перемещаться по горизонтали от одно­го края экрана к другому (развертка) с постоянной скоростью и затем очень быстро возвращаться в исходное положение (обратный ход). На Х- пластины подается сигнал пилообразной формы (рис. 17.4), вырабатывае­мый генератором. Этот сигнал называют сигналом временной развертки.

    Подавая соответствующим образом сигналы на Х- и Y-пластины, можно получить такое смещение электронного пучка, при котором на экране ЭЛТ будет «прорисовываться» точная форма входного сигнала.

    В этом видео рассказывается об основных принципах работы электронно-лучевой трубки:

    Используемая как для передачи, так и для приема электронно-лучевая трубка снабжена устройством, испускающим электронный луч, а также устройствами, обеспечивающими управление его интенсивностью, фокусировку и отклонение. Здесь рассказывается обо всех этих операциях. В заключение профессор Радиоль заглядывает в будущее телевидения.

    Итак, мой любезный Незнайкин, я должен объяснить тебе устройство и принципы работы электронно-лучевой трубки, так как она применяется в телевизионных передатчиках и приемниках.

    Электронно-лучевая трубка существовала задолго до появления телевидения. Она использовалась в осциллографах - измерительных приборах, позволяющих наглядно увидеть формы электрических напряжений.

    Электронная пушка

    Электронно-лучевая трубка имеет катод обычно с косвенным накалом, который испускает электроны (рис. 176). Последние притягиваются анодом, имеющим положительный относительно катода потенциал. Интенсивностью потока электронов управляет потенциал другого электрода, установленного между катодом и анодом. Этот электрод носит название модулятора, имеет форму цилиндра, частично охватывающего катод, а в его дне есть отверстие, через которое проходят электроны.

    Рис. 176. Пушка электронно-лучевой трубки, испускающая пучок электронов. Я - нить накала; К - катод; М - модулятор; А - анод.

    Я чувствую, что ты сейчас испытываешь определенное недовольство мною. "Почему он не сказал мне, что это просто-напросто триод?!" - возможно, думаешь ты. На самом деле, модулятор играет ту же самую роль, что и сетка в триоде. А все эти три электрода вместе образуют электршпую пушку. Почему? Стреляет она чем-нибудь? Да. В аноде проделано отверстие, через которое пролетает значительная часть притягиваемых анодом электронов.

    В передатчике электронный луч «просматривает» различные элементы изображения, пробегая по светочувствительной поверхности, на которую проецируется это изображение. В приемнике луч создает изображение на флуоресцирующем экране.

    Чуть позже мы более подробно рассмотрим эти функции. А сейчас я должен изложить тебе две основные проблемы: как концентрируется луч электронов и как заставляют его отклоняться, чтобы обеспечить просмотр всех элементов изображения.

    Способы фокусировки

    Фокусировка необходима для того, чтобы сечение луча в месте его соприкосновения с экраном не превышало размеров элемента изображения. Луч в этой точке соприкосновения обычно называют пятном.

    Для того чтобы пятно было достаточно малым, луч нужно пропустить через электронную линзу. Так называют устройство, использующее электрические или магнитные поля и воздействующее на электронный луч так же, как двояковыпуклая стеклянная линза на световые лучи.

    Рис. 177. Благодаря воздействию нескольких анодов электронный луч фокусируется в одну точку на экране.

    Рис. 178. Фокусировка электронного луча обеспечивается магнитным полем, создаваемым катушкой, к которой приложено постоянное напряжение.

    Рис. 179. Отклонение электронного луча переменным полем.

    Рис. 180. Две пары пластин позволяют отклонять электронный луч в вертикальном и горизонтальном направлениях.

    Рис. 181. Синусоида на экране электронного осциллографа, в котором на горизонтальные отклоняющие пластины приложено переменное напряжение, а на вертикальные пластины - линейное напряжение такой же частоты.

    Фокусировка осуществляется электрическими силовыми линиями, для чего за первым анодом устанавливают второй (также снабженный отверстием), на который подают более высокий потенциал. Можно также установить за вторым анодом третий и подать на него еще более высокий потенциал, чем на второй. Разность потенциалов между анодами, через которые проходит электронный луч, воздействует на электроны наподобие электрических силовых линий, идущих от одного анода к другому. И это воздействие имеет тенденцию направить к оси луча все электроны, траектория которых отклонилась (рис. 177).

    Потенциалы анодов в используемых в телевидении электронно-лучевых трубках часто достигают нескольких десятков тысяч вольт. Величина же анодных токов, наоборот, очень небольшая.

    Из сказанного ты должен понять, что мощность, какую нужно отдать в трубке, не представляет собой ничего сверхъестественного.

    Сфокусировать луч можно также воздействием на поток электронов магнитным полем, создаваемым протекающим по катушке током (рис. 178).

    Отклонение электрическими полями

    Итак, нам удалось настолько сфокусировать луч, что его пятно на экране имеет крохотные размеры. Однако неподвижное пятно в центре экрана не дает никакой практической пользы. Нужно заставить пятно пробегать по чередующимся строкам обоих полукадров, как это объяснил тебе Любознайкин во время вашей последней беседы.

    Как обеспечить отклонение пятна, во-первых, по горизонтали, чтобы оно быстро пробегало по строкам, и, во-вторых, по вертикали, чтобы пятно переходило с одной нечетной строки на следующую нечетную или же с одной четной на следующую четную? Кроме того, нужно обеспечить очень быстрый возврат с конца одной строки к началу той, которую пятну предстоит пробежать. Когда же пятно закончит последнюю строку одного полукадра, оно должно очень быстро подняться кверху и занять исходное положение в начале первой строки следующего полукадра.

    В этом случае отклонение электронного луча может также осуществляться изменением электрических или магнитных полей. Позднее ты узнаешь, какую форму должны иметь управляющие разверткой напряжения или токи и как их получить. А сейчас посмотрим, как устроены трубки, отклонение в которых осуществляется электрическими полями.

    Эти поля создают путем приложения разности потенциалов между двумя металлическими пластинами, расположенными по одну и другую сторону от луча. Можно сказать, что пластины представляют собой обкладки конденсатора. Ставшая положительной обкладка притягивает электроны, а ставшая отрицательной - их отталкивает (рис. 179).

    Ты легко поймешь, что две расположенные горизонтально пластины определяют отклонение электронного луча но вертикали. Для перемещения луча по горизонтали нужно использовать две пластины, расположенные вертикально (рис. 180).

    В осциллографах как раз и используют этот способ отклонения; там устанавливают как горизонтальные, так и вертикальные пластины. На первые подают периодические напряжения, форму которых мужно определить, - эти напряжения отклоняют пятно по вертикали. На вертикальные пластины подают напряжение, отклоняющее пятно по горизонтали с постоянной скоростью и почти мгновенно возвращающее его к началу строки.

    При этом появляющаяся на экране кривая отображает форму изменения изучаемого напряжения. По мере перемещения пятна слева направо рассматриваемое напряжение заставляет его подниматься или опускаться в зависимости от своих мгновенных значений. Если ты будешь таким образом рассматривать напряжение сети переменного тока, то на экране электронно-лучевой трубки увидишь красивую синусоидальную кривую (рис. 181).

    Флуоресценция экрана

    А теперь пора тебе объяснить, что экран электронно-лучевой трубки изнутри покрыт слоем флуоресцентного вещества. Так называют вещество, которое под воздействием ударов электронов светится. Чем мощнее эти удары, тем выше вызываемая ими яркость.

    Не путай флуоресценцию с фосфоресценцией. Последняя присуща веществу, которое под воздействием дневного света или света электрических ламп само становится светящимся. Именно так светятся ночью стрелки твоего будильника.

    Телевизоры оснащают электронно-лучевыми трубками, экран которых сделан из полупрозрачного флуоресцентного слоя. Под воздействием электронных лучей этот слой становится светящимся. В черно-белых телевизорах производимый таким образом свет - белый. Что же касается цветных телевизоров, то в них флуоресцентный слой состоит из 1500000 элементов, одна треть которых излучает красный свет, другая треть светится синим светом, а последняя треть - зеленым.

    Рис. 182. Под воздействием магнитного поля магнита (тонкие стрелки) электроны отклоняются в перпендикулярном ему направлении (толстые стрелки).

    Рис. 183. Катушки, создающие магнитные поля, обеспечивают отклонение электронного луча.

    Рис. 184. По мере увеличения угла отклонения трубку делают короче.

    Рис. 185. Размещение проводящего слоя, необходимого для отвода с экрана во внешнюю цепь первичных и вторичных электронов.

    Позднее тебе объяснят, как комбинации этих трех цветов позволяют получить всю гамму самых разнообразных цветов, в том числе и белый свет.

    Магнитное отклонение

    Вернемся к проблеме отклонения электронного луча. Я описал тебе способ, основанный на изменении электрических полей. В настоящее время в телевизионных электронно-лучевых трубках используется отклонение луча магнитными полями. Эти поля создают электромагниты, расположенные вне трубки.

    Напомню, что магнитные силовые линии стремятся отклонить электроны в направлении, которое образует с ними прямой угол. Следовательно, если полюсы намагничивания расположены слева и справа от электронного луча, то силовые линии идут в горизонтальном направлении и отклоняют электроны сверху вниз.

    А полюсы, расположенные сверху и снизу от трубки, смещают электронный луч по горизонтали (рис. 182). Пропуская по таким магнитам переменные токи соответствующей формы, заставляют луч совершать требующийся путь полной развертки изображений.

    Итак, как ты видишь, электронно-лучевая трубка окружена немалым количеством катушек. Вокруг нее находится соленоид, обеспечивающий фокусировку электронного луча. А отклонением этого луча управляют две пары катушек: в одной витки расположены в горизонтальной плоскости, а в другой - в вертикальной, Первая пара катушек отклоняет электроны справа налево, вторая -г вверх и вниз (рис. 183).

    Угол отклонения луча от оси трубки раньше не превышал , полное же отклонение луча составляло 90°. В наши дни изготовляют трубки с полным отклонением луча до 110°. Благодаря этому длина трубки уменьшилась, что позволило изготовить телевизоры меньшего объема, так как глубина их футляра уменьшилась (рис. 184).

    Возвращение электронов

    Ты, может быть, спрашиваешь себя, каков конечный путь электронов, ударившихся о флуоресцентный слой экрана. Так знай, что этот путь заканчивается ударом, вызывающим испускание вторичных электронов. Совершенно недопустимо, чтобы экран накапливал первичные и вторичные электроны, так как их масса создала бы отрицательный заряд, когорый стал бы отталкивать другие излучаемые электронной пушкой электроны.

    Для предотвращения такого накопления электронов внешние стенки колбы от экрана до анода покрывают проводящим слоем. Таким образом, приходящие на флуоресцентный слой электроны притягиваются анодом, имеющим очень высокий положительный потенциал, и поглощаются (рис. 185).

    Контакт анода выводят на боковую стенку трубки, тогда как все другие электроды соединяют со штырьками цоколя, расположенного на противоположном относительно экрана конце трубки.

    Существует ли опасность взрыва?

    Еще один вопрос, несомненно, рождается в твоем мозгу. Ты, должно быть, спрашиваешь себя, с какой силой атмосфера давит на эти большие вакуумные трубки, устанавливаемые в телевизорах. Ты знаешь, что на уровне земной поверхности атмосферное давление составляет около . Площадь же экрана, диагональ которого равна 61 см, составляет . Это означает, что воздух давит на этот экран с силой . Если учесть остальную часть поверхности колбы в ее конической и цилиндрической частях, то можно сказать, что трубка выдерживает общее давление, превышающее 39-103 Н.

    Выпуклые участки трубки легче, чем плоские, выдерживают высокое давление. Поэтому раньше трубки изготовляли с весьма выпуклым экраном. В наши дни научились делать экраны достаточно прочными, чтобы даже при плоской форме они успешно выдерживали давление воздуха. Поэтому риск взрыва, направленного внутрь, исключен. Я умышленно сказал взрыва, направленного внутрь, а не просто взрыва, так как если разрывается электронно-лучевая трубка, то ее осколки устремляются внутрь.

    В старых телевизорах из предосторожности перед экраном устанавливали толстое защитное стекло. В настоящее время обходятся без него.

    Плоский экран будущего

    Ты молод, Незнайкин. Перед тобой открывается будущее; ты увидишь эволюцию и прогресс электроники во всех областях. В телевидении, несомненно, наступит такой день, когда электронно-лучевая трубка в телевизоре будет заменена плоским экраном. Такой экран будут вешать на стену как простую картину. А все схемы электрической части телевизора благодаря микроминиатюризации будут размещены в раме этой картины.

    Использование интегральных схем даст возможность до минимума сократить размер многочисленных схем, составляющих электрическую часть телевизора. Применение интегральных схем уже получило широкое распространение.

    И наконец, если все ручки и кнопки управления телевизором придется размещать на окружающей экран раме, то наиболее вероятно, что для регулировки телевизора будут применяться дистанционные устройства управления. Не поднимаясь со своего кресла, телезритель сможет переключать телевизор с одной программы на другую, изменять яркость и контрастность изображения и громкость звукового сопровождения. Для этой цели у него под рукой будет маленькая коробочка, излучающая электромагнитные волны или ультразвуки, которые заставят телевизор произвести все заданные переключения и регулировки. Впрочем, такие устройства уже существуют, но пока не получили широкого распространения...

    А теперь вернемся из будущего в настоящее. Я предоставляю Любознайкину возможность объяснить тебе, как электронно-лучевые трубки в настоящее время используются для передачи и приема телевизионных изображений.