Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Просвечивающий электронный микроскоп принцип работы. Просвечивающий электронный микроскоп. Подготовка образцов. Разрешение просвечивающего микроскопа

    Просвечивающий электронный микроскоп принцип работы. Просвечивающий электронный микроскоп. Подготовка образцов. Разрешение просвечивающего микроскопа
    Читайте также:
    1. В 1. Физическая сущность сварочной дуги. Зажигание дуги. Термоэлектронная и автоэлектронная эмиссии. Работа выхода электрона.
    2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО НАПИСАНИЮ КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «ЭЛЕКТРОННАЯ КОММЕРЦИЯ»
    3. Номинация: «Музыкально-художественная электронная презентация (групповой проект)»
    4. Номинация: «Музыкально-художественная электронная презентация (индивидуальный проект)»
    5. Регистрация измерительной информации. Электронная регистрация измерительной информации и её воспроизведение.
    6. Электронная коммерция в туризме. Применение мультимедийных технологий в области социально-культурного сервиса и туризма.

    Лабораторная работа №3

    Электронная микроскопия

    Цель работы: ознакомление с основами метода электронной просвечивающей и сканирующей (растровой) микроскопии; количественный анализ микроструктуры образцов по электронно-микроскопическим снимкам.

    Материалы и оборудование: напылительная установка, электронный просвечивающий и сканирующий микроскоп, образцы неорганических веществ и материалов, электронно-микроскопические снимки.

    Общие сведения

    Электронно-микроскопическое исследование неорганических веществ и материалов применяется для изучения особенностей их структуры и фазового со­става. Современные просвечивающие электронные микроскопы высокого разрешения позволяют получать увеличение до 150000 раз, наблюдать распределение атомов в кристаллических решетках.

    В электронном микроскопе используется электронный луч, длина волны кото­рого в 100 000 раз короче длин волн видимого света. Это обеспечивает возможность получения большего увеличения. Длина волны l (нм) электронного луча определяется из уравнения

    где V- напряжение ускоряющего поля, В.

    Если изображение формируется в результате прохождения электронного пучка через прозрачный для электронов образец, имеет место так называемая просвечивающая электронная микроскопия – ПЭМ. Резкое расширение возможностей обработки сигналов позволило развить целый комплекс методов, основанных на использовании принципов ПЭМ и объединенных под общим названием просвечивающей растровой электронной микроскопии – ПРЭМ: энергетический дисперсионный анализ рентгеновского излучения, спектроскопия вторичных электронов, анализ энергетических потерь проходящих электронов и др.

    В результате взаимодействия пучка первичных электронов с поверхностью образца может возникнуть вторичная электронная или электромагнитная эмиссия (в рентгеновской или оптической области спектра). В этом случае для получения информации об исследуемых объектах используется сканирующая (растровая) электронная микроскопия – СЭМ (или РЭМ), позволяющая получать изображения объектов в результате регистрации потока вторичных электронов, а также рентгеноспектральный микроанализ, регистрирующий эмитируемый образцом рентгеновский сигнал, что позволяет проводить качественный и количественный фазовый анализ исследуемых объектов.

    Основное различие принципов работы просвечивающего и растрового электронных микроскопом связано со способом сбора данных и формированием изображения. Как и в оптическом микроскопе, в просвечивающем электронном микроскопе информацию собирают непрерывно со всей изучаемой области, а увеличенное изображение фокусируют при помощи линз. Другими словами, информация со всех точек изображения собирается одновременно. В растровом электронном микроскопе информация собирается последовательнодля каждой точки по мере движения первичного пучка электронов. На это требуется время, необходимое для получения статистически значимого сигнала от каждой точки.

    Просвечивающая электронная микроскопия.

    Для проведения исследований методом ПЭМ используют просвечивающие электронные микроскопы, представляющие собой высоковакуумные высоковольтные устройства.

    Как видно из рис. 1, изображение формируется в результате прохождения пучка электронов через анализируемый образец.



    Рис.1 – Принципиальная схема просвечивающего электронного микроскопа

    При этом используются быстрые электроны, для получения которых в современных моделях микроскопов применяют ускоряющее напряжение порядка 100–200 кВ.

    В просвечивающем электронном микроскопе применяют два основных вида съемки: светлопольное изображение, отображающее морфологию исследуемого объекта и формируемое центральным пучком прошедших электронов и темнопольное изображение.

    Для получения информации о структуре исследуемых образцов на уровне атомного разрешения используют просвечивающую электронную микроскопию высокого разрешения – ВРПЭМ (High Resolution Transmission Electron Microscopy – HRTEM). Данный метод получил широкое распространение только в последние 10–15 лет и является весьма эффективным для определения строения наночастиц.

    На рис. 2 представлен снимок аналитического электронного микроскопа.



    Источником электронов является нагретая вольфрамовая нить, создающая пучок электронов с плотностью тока до 5x10 4 А/м 2 . Кристаллы гексаборида лантана (LaB 6) позволяют повышать плотность тока до 10 6 А/м 2 .

    Электроны испускаются электронной пушкой, установленной в верхней части колонны просвечивающего электронного микроскопа. Внутри колонны путем откачки воздуха поддерживается высокий вакуум. Испускаемые пушкой электроны ускоряются в трубке ускорителя и затем проходят через линзы осветителя, после чего попадают на образец.

    После прохождения через образец электронов в объективной линзовой системе формируется изображение. Затем проекционная линза создает увеличенное изображение. Получающееся в итоге изображение, формируемое на флюоресцентном экране, можно наблюдать через окошко камеры наблюдения. Оно может быть записано на фотопленку в фоторегистрирующей камере, либо выведено на экран монитора компьютера.

    Приготовление образцов для просвечивающей микроскопии. Для проведения исследований в просвечивающем электронном микроскопе необходимо иметь образцы толщиной не более 0,2 мкм, так как электроны легко поглощаются веществом. Это создает определенные трудности при приготовлении образцов. В этом случае прибегают к способам получения тонких пленок или ультратонких срезов: механической обработке, электрохимическому травлению, ионному травлению, напылению покрытия. Однако при использовании таких методов возможно нарушение первоначальной структуры материала.

    Более реальным является метод реплик – косвенный метод исследования, заключающийся в получении отпечатка (реплики) с исследуемой поверхности, с высокой точностью воспроизводящего ее топографию. Схема приготовления реплики показана на рис. 3.

    Реплику обычно получают методом напыления. Для этого используют опытный образец объемом не менее 1 см 3 . На свежий скол исследуемого образца наносят в вакууме при испарении углерод, который образует удерживающий слой в виде тонкой сплошной пленки. Угольная пленка не дает собственной структуры. Затем для по­вышения контрастности углеродную пленку оттеняют, напыляя под острым углом к поверхности слой тяжелого металла (платина, хром).

    Косое напыление тяжелого металла под углом 20–45° обеспечивает более интенсивное оседание его на соответствующих сторонах выступов и менее интенсивное на впадинах и противоположных сторонах выступов.

    Неодинаковая толщина такой пленки металла вызывает разное поглощение проходящих электронов, что влияет на яркость изображения и создает контраст.

    Полученную пленку отделяют от образца с помощью 10%-ного раствора желатина. При сушке желатин образует прозрачную пленку, которая отделяется от образца вместе с репликой. Затем пленку помещают в воду. При растворении желатина на поверхности воды остается угольно-платиновая пленка–реплика, которую помещают на несущую сеточку и переносят в объектодержатель электронного микроскопа.

    Для более четкого выявления структуры материала свежий скол предварительно (до нанесения реплики) подвергают травлению химическими реагентами. Из-за разной скорости растворения различных компонентов структуры формируется рельеф поверхности образцов. После травления скол тщательно промывают и высушивают. Метод реплик дает удовлетворительные результаты при величине структурных элементов не менее 10 нм. Рассматривая изображение поверхности образца на электронном микроскопе, выбирают наиболее характерные участки структуры.


    1 | | |

    Просвечивающий (трансмиссионный) электронный микроскоп (ПЭМ, англ, TEM - Transmission electron microscopy) - устройство для получения изображения ультратонкого образца путём пропускания через него пучка электронов . Ультратонким считается образец толщиной порядка 0.1 мкм . Прошедший через образец и провзаимодействовавший с ним пучок электронов увеличивается магнитными линзами (объективом) и регистрируется на флуоресцентном экране, фотоплёнке или сенсорном приборе с зарядовой связью (на ПЗС-матрице).

    История

    Первый ПЭМ создан немецкими инженерами-электронщиками Максом Кноллем и Эрнстом Руской 9 марта 1931 года . Первый практический ПЭМ был построен Альбертом Пребусом и Дж. Хиллиером в университете Торонто (Канада) в 1938 году на основе принципов, открытых ранее Кноллем и Руской. В 1986 году Эрнсту Руске за создание ПЭМ была присуждена Нобелевская премия .

    Основы

    Теоретически максимально возможное разрешение в оптическом микроскопе ограничено:

    • длиной волны фотонов, используемых для освещения образца;
    • угловой апертурой оптической системы (так называемым барьером Аббе).
    d = λ 2 n sin ⁡ α ≈ λ 2 NA {\displaystyle d={\frac {\lambda }{2n\sin \alpha }}\approx {\frac {\lambda }{2\,{\textrm {NA}}}}}

    В начале XX века ученые обсуждали вопрос преодоления ограничений относительно большой длины волны видимого света (длины волн 400-700 нанометров ) путём использования электронов. Поток электронов в электронном микроскопе создаётся посредством термоэлектронной или полевой эмиссии. В первом случае при высокой температуре электроны испускаются проволокой из вольфрама (см. нить накаливания) или монокристаллом гексаборида лантана . Затем электроны ускоряются высокой разностью потенциалов и фокусируются на образце электромагнитными (или реже - электростатическими) линзами. Прошедший через образец луч электронов содержит информацию об электронной плотности , фазе и периодичности ; эти данные используются при формировании изображения.

    Компоненты

    В состав ПЭМ входят следующие компоненты:

    • вакуумная система для удаления воздуха и увеличения таким образом длины свободного пробега электронов;
    • предметный столик : держатель образца, механизмы для изменения положения держателя и шлюзы ;
    • источник электронов : электронный прожектор или электронная пушка для генерирования потока (пучка) электронов;
    • источник высокого напряжения для ускорения электронов;
    • апертуры ограничивающие расходимость электронного пучка;
    • набор электромагнитных линз (и иногда электростатических пластин) для управления и контроля электронного луча;
    • экран , на который проецируется увеличенное электронное изображение (постепенно выходит из употребления и заменяется детекторами цифрового изображения).

    ПЭМ может включать дополнительные системы, например, сканирующую приставку, позволяющую работать в режиме растрового ПЭМ (см. растровый электронный микроскоп).

    Вакуумная система

    Вакуумная система служит для откачки воздуха до низкого давления (обычно до 10 -4 Па ) из области, в которой проходит пучок электронов. Применяется для уменьшения частоты столкновений электронов с атомами газа до незначительного уровня (увеличение длины свободного пробега).

    Вакуумная система откачки до рабочего давления состоит из нескольких ступеней:

    1. роторный или мембранный насос;
    2. турбомолекулярный или диффузионный (англ. ) насос.
    3. Гетероионные насосы для откачки электронной пушки полевой эмиссии (если таковая присутствует)

    С помощью насоса 1-й ступени достигается давление, требуемое для работы насоса 2-й ступени (низкий вакуум). Насос 2-й ступени доводит давление до необходимой рабочей величины.

    Части ПЭМ могут быть разделены:

    • специальной апертурой (англ. pressure-limiting aperture ), пропускающей электронный пучок, но затрудняющей обмен остаточными газами между частями вакуумной системы;
    • запорным клапаном (англ. gate valve ) для полного обособления частей микроскопа.

    Это может использоваться для создания в отдельных областях различного уровня вакуума (например, ПЭМ с автоэмиссией может оснащаться отдельной системой откачки воздуха из области электронной пушки для создания высокого вакуума 10 -4 …10 -7 Па и выше; система откачки может включать гетероионный насос).

    Предметный столик

    Предметный столик предназначен для удерживания образца во время облучения электронами и состоит из следующих элементов:

    • держатель образца;
    • механизмы для изменения положения держателя (поворот, наклон);
    • шлюзы , позволяюшие вводить держатель с образцом в вакуумную среду ПЭМ с минимальным увеличением давления.

    Образцы либо помещаются на сетку, либо вырезаются по форме держателя (самоподдерживающиеся образцы).

    Держатель приспособлен для фиксации как сеток, так и самоподдерживаемых образцов стандартного размера. Стандартный диаметр ПЭМ сетки - 3.05 мм .

    Электронная пушка

    Электронная пушка предназначена для создания пучка электронов с помощью термоэлектронной (термоэлектронные пушки) или полевой (автоэмиссионные пушки) эмиссии.

    Термоэлектронная пушка

    Термоэлектронная пушка состоит из трёх элементов:

    • катод (нить накала);

    При нагревании вольфрамовая нить или заостренный кристалл гексаборида лантана испускают (эмитируют) электроны (см. термоэлектронная эмиссия). Ускоряясь под действием разности потенциалов (напряжение смещения) значительная часть электронов проходит через отверстие в венельте. Изменяя напряжение смещения можно регулировать эмиссионный ток . Чем больше напряжение смещения, тем меньше площадь участка катода, испускающего электроны, тем меньше эмиссионный ток.

    Прошедшие через апертуру (отверстие) цилиндра Венельта электроны пересекаются в точке называемой кроссовером и являющейся виртуальным источником электронов в оптической системе микроскопа.

    Автоэмиссионная электронная пушка

    Различают автоэмиссионные пушки:

    • с катодом Шоттки.

    Катоды первых обычно состоят из вольфрамовой нити. Диаметр кончика нити - 100 нм .

    Катоды вторых работают аналогично катодам термоэлектронных пушек, но находятся под воздействием электрического поля, понижающего энергетический барьер (эффект Шоттки).

    Апертуры

    Апертуры представляют собой металлические пластины с отверстиями для прохождения электронов. Толщина пластин подбирается так, чтобы сквозь отверстия проходили только электроны, отклоняющиеся от оптической оси не более чем на выбранный угол.

    Подготовка образцов

    Подготовка образцов для ПЭМ может быть комплексной процедурой. Они должны иметь толщину 20-200 нм. Высокое качество образцов будет при толщине сравнимой со средней длиной свободного пробега электронов в образце, которая может быть всего несколько десятков нанометров.

    Материалы, имеющие достаточно малые размеры, чтобы быть прозрачными в электронном пучке, такие как порошки или нанотрубки, могут быть быстро приготовлены нанесением крошечного количества вещества на поддерживающую сетку или пленку.

    Образцы материалов

    Главная задача при подготовке образцов материалов - получить достаточно тонкие образцы с минимальными повреждениями структуры.

    Механическое утончение

    Для подготовки образцов может использоваться механическая полировка. Полировка должна быть высокого качества, чтобы быть уверенным, что образец имеет постоянную толщину в изучаемой области.

    Химическое травление

    Ионное травление

    Как правило применяется в качестве финальной обработки после механического или химического утоньшения. Заключается в распылении материала образца бомбардировкой ионами инертных газов, обычно аргона .

    Метод реплик

    Получил широкое распространение на заре ПЭМ в связи со сложностью других методов пробоподготовки.

    Биологические образцы

    Биологические образцы должны быть обезвожены или заморожены (жидкая вода не совместима с вакуумом в микроскопе) и разрезаны на тонкие пластины.

    Традиционный метод

    Традиционное приготовление биологических образцов для ПЭМ включает в себя процедуры, позволяющие сохранить морфологию тканей при их подготовке для наблюдения в условиях высокого вакуума. Образцы должны быть достаточно маленькими, чтобы позволить быстрое проникновение химических реагентов по всей толщине ткани (по крайней мере в одном из направлений их размер не должен превышать 0,7 мм). Образцы подвергаются химической фиксации (обычно альдегидами), вторичной фиксации в четырехокиси осмия, и затем обезвоживаются в органических растворителях (спирте или ацетоне). Обезвоженные образцы пропитываются эпоксидными смолами, которые затем полимеризуются. Получающиеся твердые блоки из смол с заключенными в них образцами, режутся на ультрамикротомах с помощью алмазных (реже – стеклянных) ножей на срезы толщиной 20-100 нанометров. Срезы помещаются на специальные сетки (диаметром 3 мм) и контрастируются соединениями тяжелых элементов (урана, свинца, вольфрами и др.).

    Криомикроскопия

    Методы визуализации

    Формирование контраста

    Формирование контраста в ПЭМ в основном зависит от режима работы.

    Светлое поле

    Базовый режим в ПЭМ - это режим светлого поля. В этом режиме контраст формируется рассеиванием и поглощением электронов образцом. Области образца с большей толщиной и большим атомным номером выглядят темнее, тогда как области без образца в пучке электронов - светлыми (поэтому режим называется светлопольным).

    Трехмерная визуализация

    Трехмерная модель реконструируется из серии изображений, полученных с одной и той же части образца под разными углами.

    Просвечивающая электронная микроскопия.

    1.Общая схема и принцип действия просвечивающего электронного микроскопа.

    Все современные просвечивающие электронные микроскопы (ПЭМ) могут работать в двух режимах – в режиме изображения и в режиме дифракции.

    Электронный пучок формируется в ускорительной колонне 1, состоящей из электронной пушки, секционной ускорительной трубки (обычно 6 секций) и системы отклонения. Энергия электронов на выходе ускорительной колонны, определяется величиной ускоряющего напряжения на электронной пушке и в различных типах ПЭМ может меняться в пределах 20-200 кэВ. Чем больше энергия электронов, тем меньше длина волны, тем больше проникающая способность электронов.

    После ускорительной колонны установлена система конденсорных линз 2, назначение которой получить электронный пучок с минимальным угловым расхождением. Ускорительная колонна совместно с системой конденсорных линз позволяет получать электронные пучки разного диаметра. Минимальный диаметр электронного пучка в ПЭМ может составлять несколько нанометров, что позволяет получать дифракцию от локальной области такого же диаметра в режиме микролучевой дифракции. При работе в режиме изображений при помощи системы конденсорных линз получают параллельный пучок электронов. Система отклонения предназначена для электронного наклона пучка в режиме изображения и дифракции.

    За системой конденсорных линз расположена объективная линза. Держатель с образцом 3 устанавливается в зазор полюсного наконечника объективной линзы, так чтобы образец находился в предполье объективной линзы. Гониометрическая головка позволяет осуществлять поворот образца относительно электронного пучка на угол ± 12º. Так как в просвечивающей электронной микроскопии изображение формируется электронами, прошедшими через образец, то его толщина должна быть много меньше длины пробега электронов в материале образца.

    Пройдя через образец, электроны попадают в объективную линзу 4. Данная короткофокусная (несколько мм) линза, имеющая небольшое увеличение (~ 50), является ключевой в дальнейшем формировании изображения, поэтому она снабжена корректором астигматизма – стигматором. Диафрагма объективной линзы расположена на задней фокальной плоскости объективной линзы. В последних моделях микроскопов изображения выводятся на монитор компьютера при помощи цифровых ПЗС камер.

    В ПЭМ используются электромагнитные линзы, которые состоят из обмотки, магнитопровода и полюсного наконечника. Полюсный наконечник является концентратором магнитного поля. Полюсный наконечник имеет форму круговой симметрии. В центре имеется отверстие с некоторым радиусом и зазор между полюсами. В результате такой конструкции полюсного наконечника, магнитный поток сжимается в зазоре. Электроны, проходя через объективную линзу, под действием магнитного поля отклоняются в направлении оптической оси и фокусируются в определенной точке оптической оси (в фокусе линзы).

    2.Реализация режимов наблюдения изображения (темное и светлое поле), микродифракции .

    Формирование электронно-микро-скопического изображения коротко можно описать следующим образом. Электронный пучок, сформированный осветительной системой, падает на объект и рассеивается. Далее, рассеянная волна объективной линзой преобразуется в изображение. Образованное объективной линзой изображение увеличивается промежуточными линзами и проецируется проекционной линзой либо на экран для наблюдения, либо на фотопластины или выводится на дисплей монитора.

    Светлопольное изображение формируется прямым пучком, а темнопольное – дифрагированным, рис.4.8.5.

    Рисунок 4.8.5 – Схема формирования светлопольного (а) и темнопольного (б)

    изображений: 1 – падающий пучок электронов; 2 – объект; 3 – дифрагированные пучки;

    4 – объективная линза; 5 – апертурная диафрагма; 6 – первичное микроскопическое

    изображение; А и В – зерна различной ориентации (В – ближе к «отражающему»

    положению).

    Поэтому те участки образца (зерна, субзерна), которые ближе к отражающему положению (брегговскому положению для определенного семейства (hkl)), будут на светлопольном изображении темнее (Iпр меньше), а те, которые больше отклоняются от отражающего положения – светлее (Iпр – больше), рис.4.8.6. На темнопольном изображении картина будет обратной.

    Для того чтобы получить изображение в светлом поле, апертурная диафрагма должна «пропустить» прямой пучок. Это достигается тем, что диафрагма, которая видна на экране в режиме получения дифракционной картины, располагается так, чтобы вырезать центральный рефлекс (изображение узла 000 обратной решетки), рис.4.8.5 а. Ясно, что пучок, формирующий изображение, распространяется при этом по оси объективной линзы. Для получения темнопольного изображения в лучах рефлекса HKL (максимум интенсивности при дифракции электронов на плоскостях (hkl)) апертурную диафрагму следует сдвинуть так (при работе микроскопа в дифракционном режиме), чтобы вырезать рефлекс HKL. При этом формирующий изображение дифрагированный пучок проходит по периферии объективной линзы, рис.4.8.5 б, где неоднородность (градиент) магнитного поля больше, чем вблизи оптической оси линзы. Поэтому возрастает размытие в изображении точки, обусловленное сферической аберрацией, а следовательно, ухудшается разрешение на темнопольном изображении. Чтобы получить темнопольное изображение с тем же разрешением, что и светлопольное (так называмое темнопольное изображение высокого разрешения), надо направить формирующий его дифрагированный пучок по оси линзы, для чего следует наклонить падающий пучок на угол 2θ.

    2. Электронография.

    ЭЛЕКТРОНОГРАФИЯ, метод исследования атомной структуры вещества, главным образом кристаллов, основанный на дифракции электронов. Существует несколько вариантов метода. Основным является электронография на просвет, при этом используют дифракцию электроноввысоких энергий (50-300 кэВ, что соответствует длине волны 5-10-3 нм). Электронографию проводят в специальных приборах - электронографах, в которых поддерживается вакуум 10-5-10-6 Па, время экспозиции около 1 с, или в трансмиссионных электронных микроскопах. Образцы для исследований готовят в виде тонких пленок толщиной 10-50 нм, осаждая кристаллическое вещество из растворов или суспензий, либо получая пленки вакуумным распылением. Образцы представляют собой мозаичный монокристалл, текстуру или поликристалл.

    Дифракционная картина - электронограмма - возникает в результате прохождения начального монохроматического пучка электронов через образец и представляет собой совокупность упорядочение расположенных дифракционных пятен - рефлексов, которые определяются расположением атомов в исследуемом объекте. Рефлексы характеризуются межплоскостными расстояниями dhkl в кристалле и интенсивностью Ihkl, где h, k и l - миллеровские индексы. По величинам и по расположению рефлексов определяют элементарную ячейку кристалла; используя также данные по интенсивности рефлексов, можно определить атомную структуру кристалла. Методы расчета атомной структуры в электронографии близки к применяемым в рентгеновском структурном анализе. Расчеты, обычно проводимые на ЭВМ, позволяют установить координаты атомов, расстояния между ними и т. д.

    3. Механизмы формирования контраста изображения в просвечивающем электронном микроскопе (общие понятия).

    Механизм формирования контраста в электронной линзе такой же, как формирование контраста в геометрической оптике с оптическими линзами. На рис. 17.3 показан ход лучей при образовании дифракционного контраста. Диафрагма объективной линзы установлена так, что она пропускает только центральный пучок, а отраженные электроны не достигают конечного изображения. Изображение будет сформировано из центрального пучка и электронов, неупруго рассеянных под малыми углами. Изображение является однолучевым и оно, в этом случае, называется светлопольным . Полученный контраст обусловлен распределением интенсивности электронов, отраженных по закону Вульфа-Брэгга и поэтому получил названиедифракционный контраст . При пропускании через диафрагму двух и более пучков (в том числе и центральный пучок), получаем многолучевое светлопольное изображение. На таких изображениях преобладает фазовый контраст.

    Изображения можно получить, пропуская через диафрагму объективной линзы только дифрагированные пучки. Тогда полученные изображения называются темнопольными и они так же бывают однолучевыми и многолучевыми.

    4. Предельные возможности просвечивающего электронного микроскопа.

    5. Требования к объектам исследования.

    1. Для исследований с высоким разрешением требуются ультратонкие образцы, толщиной порядка 10 нм.

    2. Приготовленный образец должен иметь достаточное количество прозрачных для электрона участков для исследования, чтобы можно было оценить, является ли данная структура типичной для исследуемого образца.

    Немецкие исследователи усовершенствовали метод просвечивающей электронной микроскопии, включив в рассмотрение не только амплитуду, но и фазу волновых функций проходящих через образец электронов. Другими словами, ученые записывали не фотографию, а голограмму образца, а затем восстанавливали с помощью компьютерного моделирования его исходную структуру. Это позволило физикам устранить искажения и разглядеть локальную структуру образца. Статья опубликована в Physical Review Letters , кратко о ней сообщает Physics .

    Электронные микроскопы бывают - сканирующие (растровые) или просвечивающие. В растровых микроскопах (РЭМ) изображение создается так: на поверхности экспериментального образца фокусируют тонкий электронный луч, который выбивает из нее различные частицы (фотоны, электроны или что-то еще), затем всевозможные датчики ловят их, и на основании собранных данных восстанавливается исходная картина. Отдаленно это напоминает принцип работы старых телевизоров с электронно-лучевой трубкой, только в них выбиваемые фотоны никто не собирает. Принцип работы просвечивающих микроскопов (ПЭМ), наоборот, больше напоминает обычные, оптические микроскопы: здесь образец просвечивают электронным пучком, затем регистрируют полученное изображение на фотопленке или ПЗС-матрице и восстанавливают по нему исходную структуру. Поскольку длина волны у электрона значительно меньше, чем у фотона, ПЭМ позволяют получить существенно большее разрешение - например, с их помощью можно разглядеть отдельные атомы.

    К сожалению, просвечивающая электронная микроскопия страдает от ряда недостатков. Изображение, которое создают проходящие через образец электроны, искажается из-за хроматических аббераций системы фокусирующих линз, вибраций установки, внешних электромагнитных полей и других негативных факторов. Чтобы корректно учесть эти искажения, ученые строят численную модель, которая описывает конкретную установку и конкретный образец, и пытаются подобрать ее параметры таким образом, чтобы рассчитанная и измеренная картины совпали. Это так называемый метод прямого моделирования (forward modeling approach). К сожалению, такой подход осложняется тем, что исходные параметры образца - например, наклон или толщина отдельных его мелких областей - изначально неизвестны, а параметры установки могут меняться в ходе эксперимента - например, из-за вибраций, полностью избавиться от которых нельзя. В результате точность ПЭМ значительно снижается по сравнению с теоретическим пределом.

    Тем не менее, здесь есть одна лазейка. Обычно просвечивающие микроскопы регистрируют только амплитуду волны, но не ее фазу (такую установку проще построить). В то же время, фаза волновой функции электронов очень чувствительна к локальным характеристикам образца, например, к плотности заряда или намагниченности. Следовательно, если применить в ПЭМ методы электронной голографии , то есть записывать не только амплитуду, но и фазу просвечивающих волн, можно будет значительно увеличить точность измерений.

    Группа ученых под руководством Флориана Винклера (Florian Winkler) успешно реализовала этот способ на практике. Для этого они просвечивали тонкую (толщиной около четырех нанометров) «чешуйку» из диселенида вольфрама WSe 2 пучком электронов, который разделялся и затем снова рекомбинировал, чтобы создать интерференционную картину (off-axis electron holography). Рабочее напряжение микроскопа составляло примерно 80 киловольт. Затем исследователи восстанавливали исходную структуру образца с помощью написанной ими программы.


    Восстановленная структура волновой функции образца: черный цвет отвечает нулевой фазе, белый - фазе около 1,2 радиан. Белая полоска в правом нижнем углу задает масштаб, ее дина примерно равна двум нанометрам. Цветными прямоугольниками выделены области, которые ученые в дальнейшем изучили более пристально

    Florian Winkler et al. / Phys. Rev. Lett.


    Для удобства программа разделяла различные вклады в амплитуду и фазу коэффициентов Фурье, а для оценки правдоподобности симуляции использовала специальную «функцию стоимости», которая равнялась нулю при условии полного совпадения рассчитанной и измеренной картин. Чтобы ускорить расчеты, ученые использовали симплекс-метод , в котором многомерный тетраэдр (симплекс) все сильнее и сильнее «стягивается» вокруг точки минимума «функции стоимости». Рассеивающий потенциал атомов образца рассчитывался с помощью теории функционала плотности (DFT), а затем использовался для нахождения волновых функций пролетевших через него электронов. В целом, на обсчитывание области размером 2×2 нанометра у стандартного компьютерного процессора уходило около двух с половиной минут.


    Измеренная (a) и рассчитанная (b) дифракционная картина, а также их разница (c)

    Florian Winkler et al. / Phys. Rev. Lett.


    В результате ученым удалось восстановить исходную структуру образца, то есть подобрать его параметры таким образом, чтобы рассчитанная дифракционная картина практически в точности совпала с реальной. Важно, что помимо общих для всей «чешуйки» параметров, таких как поглощающая способность, исследователям также удалось разглядеть ее локальную структуру - например, заметить изгибы «чешуйки», которые выражались в изменении фазы волновых функций ее атомов. Кроме того, с помощью разработанного метода ученым удалось увидеть и устранить влияние аббераций на конечное изображение.

    Электронный микроскоп-прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп (ЭМ) дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп. Электронный микроскоп - один из важнейших приборов для фундаментальных научных исследований строения вещества, особенно в таких областях науки, как биология и физика твердого тела.

    Познакомимся с конструкцией современного просвечивающего электронного микроскопа.

    Рисунок 1 - Разрез, показывающий основные узлы просвечивающего электронного микроскопа

    1- электронная пушка;2-анод;3 -катушка для юстировки пушки;4 -клапан пушки; 5 - 1-я конденсорная линза; 6 - 2-я конденсорная линза; 7 - катушка для наклона пучка; 8 -конденсор 2 диафрагмы;9 -объективная линза;10 -блок образца;11 -дифракционная диафрагма;12 -дифракционная линза;13 -промежуточная линза;14 -1-я проекционная линза;15 -2-я проекционная линза; 16 -бинокуляр (увеличение 12); 17-вакуумный блок колонны;18 -камера для 35-миллиметровой катушечной пленки; 19 -экран для фокусировки;20 -камера для пластинок; 21 -главный экран; 22 -ионный сорбционный насос.

    Принцип его построения в общем аналогичен принципу микроскопа оптического, имеются осветительная (электронная пушка), фокусирующая (линзы) и регистрирующая (экран) системы. Тем не менее он сильно отличается в деталях. Например, свет беспрепятственно распространяется в воздухе, тогда как электроны легко рассеиваются при взаимодействии с любым веществом и, следовательно, беспрепятственно могут перемещаться только в вакууме. Иными словами, микроскоп помещают в вакуумную камеру.

    Рассмотрим более детально узлы микроскопа. Система из нити накала и ускоряющих электродов носит название электронной пушки (1). В сущности, пушка напоминает триодную лампу. Поток электронов испускается раскаленной вольфрамовой проволочкой (катодом), собирается в пучок и ускоряется в поле двух электродов. Первый - управляющий электрод, или так называемый "цилиндр Венельта", окружает катод, и на него подается напряжение смещения, небольшой отрицательный относительно катода потенциал в несколько сотен вольт. Благодаря наличию такого потенциала на "цилиндре Венельта" фокусируется электронный пучок, выходящий из пушки. Второй электрод - анод (2), пластинка с отверстием в центре, через которое электронный пучок попадает в колонну микроскопа. Между нитью накала (катодом) и анодом приложено ускоряющее напряжение, обычно до 100 кВ. Как правило, имеется возможность ступенчато менять напряжение от 1 до 100 кВ.

    Задача пушки - создание стабильного потока электронов при малой испускающей области катода. Чем меньше площадь, испускающая электроны, тем проще получить их тонкий параллельный пучок. Для этого применяют V-образные или специально остро заточенные катоды.

    Далее в колонне микроскопа размещены линзы. Большинство современных электронных микроскопов имеют от четырех до шести линз. Выходящий из пушки электронный пучок направляется через пару конденсорных линз (5,6) на объект. Конденсорная линза позволяет в широких пределах изменять условия освещения объекта. Обычно конденсорные линзы представляют собой электромагнитные катушки, в которых токонесущие обмотки окружены (за исключением узкого канала диаметром около 2 - 4 см) сердечником из мягкого железа (рис.2) .

    При изменении тока, протекающего через катушки, изменяется фокусное расстояние линзы, вследствие этого пучок расширяется или сужается, увеличивается или уменьшается площадь объекта, освещаемая электронами.

    Рисунок 2 - Упрощенная схема магнитной электронной линзы

    Обозначены геометрические размеры полюсного наконечника; штриховой линией показан контур, фигурирующий в законе Ампера. Штриховой линией показана так же линия магнитного потока, которая качественно определяет фокусирующее действие линзы. Вр-напряженность поля в зазоре вдали от оптической оси. На практике обмотки линзы имеют водяное охлаждение, а полюсный наконечник съемный

    Чтобы получить большое увеличение, необходимо облучать объект потокам большой плотности. Конденсор (линза) обычно освещает площадь объекта, много большую интересующей нас при данном увеличении. Это может привести к перегреву образца и загрязнению его продуктами разложения масляных паров. Температуру объекта можно снизить, уменьшая приблизительно до 1 мкм облучаемую область с помощью второй конденсорной линзы, которая фокусирует изображение, образуемое первой конденсорной линзой. При этом увеличивается поток электронов через исследуемую площадь образца, повышается яркость изображения, образец меньше загрязняется.

    Образец (объект) обычно помещают в специальный объектодержатель на тонкой металлической сетке диаметром 2 - 3 мм. Объектодержатель перемещается системой рычагов в двух взаимоперпендикулярных направлениях, наклоняется в разные стороны, что особенно важно при исследовании среза тканей либо таких дефектов кристаллической решетки, как дислокации и включения.

    Рисунок 3 - Конфигурация полюсного наконечника высокоразрешающего объектива электронного микроскопа Siemens-102 .

    В этой удачной промышленной конструкции диаметр отверстия верхнего полюсного наконечника 2R1=9 мм, диаметр отверстия нижнего полюсного наконечника 2R2=3 мм и межполюсный зазор S=5 мм (R1, R2и S определены на рис.2):1 -объектодержатель,2 -столик образца,3- образец,4 -объективная диафрагма,5 -термисторы,6 -обмотка линзы,7- верхний полюсный наконечник,8 -охлаждаемый стержень,9 -нижний полюсный наконечник,10 -стигматор,11- каналы системы охлаждения,12 -охлаждаемая диафрагма

    В колонне микроскопа с помощью вакуумной системы откачки создается относительно низкое давление, примерно 10-5мм рт. ст. На это уходит довольно много времени. Чтобы ускорить подготовку прибора к работе, к камере объектов присоединяется специальное устройство для быстрой смены объекта. В микроскоп при этом попадает лишь очень небольшое количество воздуха, которое удаляется вакуумными насосами. Смена образца обычно занимает 5 мин.

    Изображение. При взаимодействии электронного пучка с образцом электроны, проходящие вблизи атомов вещества объекта, отклоняются в направлении, определяемом его свойствами. Этим главным образом и обусловлен видимый контраст изображения. Кроме того, электроны могут еще претерпеть неупругое рассеяние, связанное с изменением их энергии и направления, пройти через объект без взаимодействия или быть поглощенными объектом. При поглощения электронов веществом возникает световое или рентгеновское излучение либо выделяется тепло. Если образец достаточно тонок, то доля рассеянных электронов невелика. Конструкции современных микроскопов позволяют использовать для формирования изображения все эффекты, возникающие при взаимодействии электронного луча с объектом.

    Электроны, прошедшие через объект, попадают в объективную линзу (9), предназначенную для получения первого увеличенного изображения. Объективная линза - одна из наиболее важных частей микроскопа, "ответственная" за разрешающую способность прибора. Эта связано с тем, что электроны входят под сравнительно большим углом наклона к оси и вследствие этого даже незначительные аберрации существенно ухудшают изображение объекта.

    Рисунок 4 - Образование первого промежуточного изображения объективной линзой и эффект аберрации .

    Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран, что позволяет записать его на видеоленту. Видеозапись применяется для регистрации изображений, меняющихся во времени, например, в связи с протеканием химической реакции. Чаще всего окончательное изображение регистрируется на фотопленке или фотопластинке. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Кроме того, на единице площади фотопленки может быть зарегистрировано в 100 раз больше сигналов, чем на единице площади видеоленты. Благодаря этому изображение, зарегистрированное на фотопленке, можно дополнительно увеличить примерно в 10 раз без потери четкости.

    Электронные линзы, как магнитные, так и электростатические, несовершенны. Они имеют те же дефекты, что и стеклянные линзы оптического микроскопа - хроматическая, сферическая аберрация и астигматизм. Хроматическая аберрация возникает из-за непостоянства фокусного расстояния при фокусировке электронов с различными скоростями. Эти искажения уменьшают, стабилизируя ток электронного луча и ток в линзах.

    Сферическая аберрация обусловлена тем, что периферийные и внутренние зоны линзы формируют изображение на разных фокусных расстояниях. Намотку катушки магнита, сердечник электромагнита и канал в катушке, через который проходят электроны, нельзя выполнить идеально. Асимметрия магнитного поля линзы приводит к значительному искривлению траектории движения электронов.

    Работа в режимах микроскопии и дифракции. Затененные области отмечают ход эквивалентных пучков в обоих режимах .

    Если магнитное поле несимметрично, то линза искажает изображение (астигматизм). То же самое можно отнести и к электростатическим линзам. Процесс изготовления электродов и их центровка должны быть в высокой степени точны, ибо от этого зависит качество линз.

    В большинстве современных электронных микроскопов нарушения симметрии магнитных и электрических полей устраняют с помощью стигматоров. В каналы электромагнитных линз помещают небольшие электромагнитные катушки, изменяя ток, протекающий через них, они исправляют поле. Электростатические линзы дополняют электродами: подбирая потенциал, удается компенсировать асимметрию основного электростатического поля. Стигматоры весьма тонко регулируют поля, позволяют добиваться высокой их симметрии.


    Рисунок 5 - Ход лучей в электронном микроскопе просвечивающего типа

    В объективе есть еще два важных устройства - апертурная диафрагма и отклоняющие катушки. Если в формировании конечного изображения участвуют отклоненные (дифрагированные) лучи, то качество изображения будет плохим вследствие сферической аберрации линзы. В объективную линзу вводят апертурную диафрагму с диаметром отверстия 40 - 50 мкм, которая задерживает лучи, дифрагированные под углом более 0,5 градуса. Лучи, отклоненные на небольшой угол, создают светлопольное изображение. Если апертурной диафрагмой заблокировать проходящий луч, то изображение формируется дифрагированным лучом. Оно в этом случае получается в темном поле. Однако метод темного поля дает менее качественное изображение, чем светлопольный, поскольку изображение формируется лучами, пересекающимися под углом к оси микроскопа, сферическая аберрация и астигматизм проявляются в большей степени. Отклоняющие же катушки служат для изменения наклона электронного луча. Для получения окончательного изображения нужно увеличить первое увеличенное изображение объекта. Для этой цели применяется проекционная линза. Общее увеличение электронного микроскопа должно меняться в широких пределах, от небольшого соответствующего увеличению лупы (10,20), при котором можно исследовать не только часть объекта, но и увидеть весь объект, до максимального увеличения, позволяющего наиболее полно использовать высокую разрешающую способность электронного микроскопа (обычно до 200000). Здесь уже недостаточно двухступенчатой системы (объектив, проекционная линза). Современные электронные микроскопы, рассчитанные на предельную разрешающую способность, должны иметь по крайней мере три увеличивающие линзы - объектив, промежуточную и проекционную линзы. Такая система гарантирует изменение увеличения в широком диапазоне (от10 до 200000).

    Изменение увеличения осуществляется регулировкой тока промежуточной линзы.

    Еще один фактор, способствующий получению большего увеличения, - изменение оптической силы линзы. Чтобы увеличить оптическую силу линзы, в цилиндрический канал электромагнитной катушки вставляют специальные так называемые "полюсные наконечники". Они изготовляются из мягкого железа или сплавов е большой магнитной проницаемостью и позволяют сконцентрировать магнитное поле в небольшом объеме. В некоторых моделях микроскопов предусмотрена возможность смены полюсных наконечников, таким образом добиваются дополнительного увеличения изображения объекта.

    На конечном экране исследователь видит увеличенное изображение объекта. Различные участки объекта по-разному рассеивают падающие на них электроны. После объективной линзы (как уже указывалось выше) будут фокусироваться только электроны, которые при прохождении объекта отклоняются на малые углы. Эти же электроны фокусируются промежуточной и проекционной линзами на экране для конечного изображения. На экране соответствующие детали объекта будут светлые. В том случае, когда электроны при прохождении участков объекта отклоняются на большие углы, они задерживаются апертурной диафрагмой, расположенной в объективной линзе, и соответствующие участки изображения будут на экране темными.

    Изображение становится видимым на флюоресцентном экране (светящимся под действием падающих на него электронов). Фотографируют его либо на фотопластинку, либо на фотопленку, которые расположены на несколько сантиметров ниже экрана. Хотя пластинка помещается ниже экрана, благодаря тому что электронные линзы имеют довольно большую глубину резкости и фокуса, четкость изображения объекта на фотопластинке не ухудшается. Смена пластинки - через герметичный люк. Иногда применяют фотомагазины (от 12 до 24 пластинок), которые устанавливают также через шлюзовые камеры, что позволяет избежать разгерметизации всего микроскопа.

    Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность электронного микроскопа определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимущество электронного микроскопа в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение электронного микроскопа равно 50 - 100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения около 0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой около 2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию.

    Для достижения разрешения по точкам лучше чем 0,5 нм необходимо поддерживать прибор в отличном состоянии и, кроме того, использовать микроскоп, который специально предназначен для работ, связанных с получением высокого разрешения. Нестабильность тока объективной линзы и вибрации объектного столика следует свести к минимуму. Исследователь должен быть уверен, что в полюсном наконечнике объектива отсутствуют остатки объектов, оставшихся от предыдущих исследований. Диафрагмы должны быть чистыми. Микроскоп следует устанавливать в месте, удовлетворительном с точки зрения вибраций, посторонних магнитных полей, влажности, температуры и пыли. Постоянная сферической аберрации должна быть меньше 2 мм. Однако самыми важными факторами при работе с высоким разрешением являются стабильность электрических параметров и надежность микроскопа. Скорость загрязнения объекта должна быть меньше, чем 0,1 нм/мин, и это особенно важно для работы с высоким разрешением в темном поле.

    Температурный дрейф должен быть минимальным. Для того чтобы свести к минимуму загрязнение и максимально увеличить стабильность высокого напряжения, необходим вакуум причем его следует измерять в конце линии откачки. Внутренность микроскопа, в особенности объем камеры электронной пушки, должны быть скрупулезно чистыми.

    Удобными объектами для проверки микроскопа являются тест-объекты с маленькими частичками частично графитизированного угля, в которых видны плоскости кристаллической решетки. Во многих лабораториях такой образец всегда держат под рукой, чтобы проверять состояние микроскопа, и каждый день, прежде чем начать работу с высоким разрешением, на этом образце получают четкие изображения системы плоскостей с межплоскостным расстоянием 0,34 нм, используя держатель образца без наклона. Такая практика проверки прибора настоятельно рекомендуется. Больших затрат времени и энергии требует поддержание микроскопа в наилучшем состоянии. Не следует планировать исследования, требующие высокого разрешения, до тех пор пока не обеспечено поддержание состояния прибора на соответствующем уровне, и, что еще более важно, до тех пор пока микроскопист не вполне уверен, что результаты, полученные с помощью изображений высокого разрешения, оправдают затраченные время и усилия.

    Современные электронные микроскопы оборудуются рядом приспособлений. Весьма важна приставка для изменения наклона образца во время наблюдения (гониометрическое устройство). Так как контраст изображения получается главным образом за счет дифракции электронов, то даже малые наклоны образца могут существенно влиять на него. Гониометрическое устройство имеет две взаимно перпендикулярные оси наклона, лежащие в плоскости образца, и приспособленные для его вращения на 360°. При наклоне устройство обеспечивает неизменность положения объекта относительно оси микроскопа. Гониометрическое устройство также необходимо при получении стереоснимков для изучения рельефа поверхности излома кристаллических образцов, рельефа костных тканей, биологических молекул и т. п.

    Стереоскопическая пара получается съемкой в электронном микроскопе одного и того же места объекта в двух положениях, когда он повернут на небольшие углы к оси объектива (обычно ±5°).

    Интересная информация об изменении структуры объектов может быть получена при непрерывном наблюдении за нагревом объекта. С помощью приставки удается изучить поверхностное окисление, процесс разупорядочения, фазовые превращения в многокомпонентных сплавах, термические превращения некоторых биологических препаратов, провести полный цикл термической обработки (отжиг, закалка, отпуск), причем с контролируемыми высокими скоростями нагрева и охлаждения. Вначале были разработаны устройства, которые герметично присоединялись к камере объектов. Специальным механизмом объект извлекался из колонны, термообрабатывался, а затем вновь помещался в камеруобъектов. Преимущество метода - отсутствие загрязнения колонны и возможность длительной термообработки.

    В современных электронных микроскопах имеются устройства для нагревания объекта непосредственно в колонне. Часть объектодержателя окружена микропечью. Нагрев вольфрамовой спирали микропечек осуществляется постоянным током от небольшого источника. Температура объекта изменяется при изменении тока нагревателя и определяется по градуировочной кривой. В устройстве сохраняется высокое разрешение при нагреве вплоть до 1100°С - порядка 30 Е.

    В последнее время разработаны устройства, позволяющие нагревать объект электронным пучком самого микроскопа. Объект располагается на тонком вольфрамовом диске. Диск нагревается расфокусированным электронным лучом, небольшая часть которого проходит через отверстие в диске и создает изображение объекта. Температуру диска можно менять в широких пределах, изменяя его толщину и диаметр электронного луча.

    Есть в микроскопе и столик для наблюдения объектов в процессе охлаждения до -140° С. Охлаждение - жидким азотом, который заливается в сосуд Дьюара, соединенный со столиком специальным хладопроводом. В этом устройстве удобно исследовать некоторые биологические и органические объекты, которые без охлаждения под воздействием электронного луча разрушаются.

    С помощью приставки для растяжения объекта можно исследовать движение дефектов в металлах, процесс зарождения и развития трещины в объекте. Создано несколько типов подобных устройств. В одних использовано механическое нагружение перемещением захватов, в которых крепится объект, или передвижением нажимного стержня, в других - нагрев биметаллических пластин. Образец приклеивается или крепится захватами к биметаллическим пластинам, которые расходятся в стороны, когда их нагревают. Устройство позволяет деформировать образец на 20% и создавать усилие в 80 г.

    Самой важной приставкой электронного микроскопа можно считать микродифракционное устройство для электронографических исследований какого-либо определенного участка объекта, представляющего особый интерес. Причем микродифракционную картину на современных микроскопах получают без переделки прибора. Дифракционная картина состоит из серии либо колец, либо пятен. Если в объекте многие плоскости ориентированы благоприятным для дифракции образом, то изображение состоит из сфокусированных пятен. Если электронный луч попадает сразу на несколько зерен беспорядочно ориентированного поликристалла, дифракция создается многочисленными плоскостями, образуется картина из дифракционных колец. По местоположению колец или пятен можно установить структуру вещества (например, нитрид или карбид), его химический состав, ориентацию кристаллографических плоскостей и расстояние между ними.