Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Зачем россии самолет с вертикальным взлетом (фото). Привет студент

    Зачем россии самолет с вертикальным взлетом (фото). Привет студент

    "Самолёт вертикального взлёта и посадки: прошлое, настоящее, будущее"

    Храмов Максим Анатольевич

    План работы.

    Введение.

    Что такое самолёт вертикального взлёта посадки?

    Прошлое СВВП.

    Настоящее СВВП

    Предполагаемое будущее СВВП.

    Заключение.

    Введение.

    Мы привыкли думать, что самолёты обязательно должны взлетать, разгоняясь по взлётной полосе. Но история знает немало конструкций самолётов вертикального взлёта и посадки (для краткости их называют СВВП). Но реально массовым стал лишь британский Харриер и его модификации. Я поставил цель - в этой работе рассказать о развитии СВВПв прошлом и определить вероятные пути развития СВВП в течении ближайших 30-40 лет (шестое поколение).

    Что такое самолёт вертикального взлёта посадки?

    Для начала я хочу уточнить, что такое Самолёт Вертикального Взлёта Посадки. Я понимаю под этим термином самолёт с двигателями, размещёнными в фюзеляже и оснащёнными системой управления вектором тяги, которая позволяет ему совершать вертикальный взлёт или посадку, но при этом не лишает его возможности взлетать как обычный самолёт с взлетной полосы. Машины именно такого типа появились лишь в 50-е годы, хотя и до этого были проекты вертикально взлетающих самолётов, но они не были реализованы в силу сложности конструкции. К традиционным СВВП относятся получившие распространение Харриер, Як-38, и, не получившие распространения, Як-141 и F-35В. У этих машин были свои недостатки и свои преимущества.

    Почему он появился?

    Необходимость в СВВП того типа, каким я его определил, появилась в 50-60х годах, когда СССР готовился к боевым действиям в Европе. Американские стратеги логично предполагали, что в случае начала войны аэродромы будут быстро выведены из строя или, того хуже, захвачены. ПВО брала на себя часть задач по противодействию советской авиации, вертолёты так же брали на себя часть задач поддержки войск при отступлении (бундесвер не смог бы выдержать превосходящих сил Советской армии), но они были слишком несовершенны для этого, слишком медлительны, слишком хрупки, слишком слабо вооружены. Поэтому требовался самолёт поддержки войск на поле боя, а заодно, противодействия самолётам. Проблему подогревала требовательность тогдашних истребителей к длине и качеству взлётных полос. Ещё одним способом применения таких самолётов могла стать установка на авианосцы, заложенные во время войны, т.к. из-за их малых размеров авианосцы не могли принимать современные им палубные истребители. Задача была поставлена и работа началась.

    Прошлое самолёта вертикального взлёта посадки


    Первым серийным самолётом вертикального взлёта и посадки и единственным, реально принимавшим участие в боевых действиях (Фолклендская война), был Харриер. Он появился благодаря уникальному мотору Rolls-Royce Pegasus, который имел не одно, а сразу четыре сопла, разнесённых симметрично на разные стороны, это минимизировало «мёртвый груз» систем вертикального взлёта посадки, но устанавливать сопла, а, соответственно, двигатель пришлось в центре масс, очень близко к кабине. Благодаря своему двигателю, самолёт мог использовать в воздушном бою вертолётные приёмы, что его не раз спасало, но предъявляло к лётчику дополнительные требования. Теоретически, при должном развитии мотора и усовершенствовании аэродинамики вполне можно было бы получить сверхзвуковую скорость.





    Отечественные СВВП проектировались сначала просто как ответ западным, без чёткой цели, но в результате им нашли применение. СВВП намеревались использовать в качестве палубных самолётов. Отечественные СВВП Як-38 и Як-141 имели другую систему получения вертикальности нежели Харриер, на них было установлено три двигателя: два подъёмных и один подъёмно-маршевый, различалась только их мощность. Несмотря на отсутствие принципиальных различий, самолёты получились очень разными, как по характеристикам, так и по внешнему виду. Скорость, дальность, полезная нагрузка на Як-141 были в разы больше, чем на Як-38, который из-за своей малой дальности даже получил прозвище «самолёт обороны фок мачты». Вызвано это было низкой тяговооружённостью Як-38 и общей недоразвитостью самолёта, который по сути дела, являлся опытной машиной и создавался как переходная ступень для отработки инфраструктуры и приёмов пилотирования. Именно с отсутствием опыта пилотирования связано большинство аварий. Но и Як-141 не был вершиной прогресса отечественных СВВП, на его основе прорабатывался проект Як-43. Информации об этом самолёте мало, но известно, что на него планировали ставить бомбордировочный мотор НК-25 тягой 25000 кгс или Р134-300 тягой 17000 кгс. Но одно известно достоверно - это должен был быть самолёт с применением технологий снижения радиолокационной заметности. Этот самолёт должен был стать самым совершенным СВВП.

    Настоящее самолёта вертикального взлёта и посадки

    Но перестройка и последовавший за ней развал Советского Союза передали знамя прогресса в этой области США, где в это время появилась новая оборонная программа JSF (Единый ударный истрибитель). По этой программе, предусматривавшей создание единого истребителя для армии, флота и корпуса морской пехоты, было представлено два прототипа: X-35 от компании Локхид Мартин и Х-32 от компании Боинг. Прототип Боинга представлял из себя развитие идей заложенных в Харриере и, на мой взгляд, был более прогрессивным. Но из-за более слабого мотора он проиграл прототипу от Локход Мартин, который и получил индекс F-35. F-35, в общем и целом, представляет из себя скрещивание Як-141, F-22 Raptor и развитие более раннего проекта F-24. От Як-141 он взял идею двигательной установки, двигатель с поворачиваемым в вертикальной плоскости соплом и дополнительным мотором. Отдельно хочу сказать о вращающихся в разные стороны роторах, на Яке это было сделано для компенсации гироскопического момента. От F-22 Raptor он взял хвостовое оперение. От F-24 носовую часть с воздухозаборниками и кабиной. Новым было трапецевидное крыло. Имелось три разные модификации:F-35B для корпуса морской пехоты на замену AV-8B Harrier II, F-35A для ВВС на замену F-16 и F-35C, для ВМС на замену F/A-18. F-35B отличался от всех наименьшими размерами и массой, а так же наличием подъёмного импеллера. Вместо подъёмных моторов, как на Як-141, на нём стоит импеллер с приводом от двигателя Pratt & Whitney F-135, самого мощного из истребительных.




    Предполагаемое будущее самолёта вертикального взлёта и посадки.

    На мой субъективный взгляд,будущее СВВП весьма туманно, им просто нет применения. Сейчас разработаны СВВП пятого поколения, которые удовлетворяют потребности военных. Но поскольку разработка последнего и самого совершенного СВВП F-35B стоила Пентагону свыше 56 миллиардов долларов, а так же в связи с уменьшением расходов американского военного бюджета на 500 миллиардов долларов, разработка СВВП шестого поколения в США остаётся под большим вопросом. Другое дело Россия. У нас имеется большой опыт в разработке СВВП. К тому же, мы увеличиваем военный бюджет и, можно надеяться, что в будущем Россия приступит к разработке СВВП шестого поколения.

    Во- первых, я думаю, что будущее за двухдвигательными СВВП. Большинство классических СВВП, таких как F-35, Харриер, Як-141 имеют один двигатель. Один двигатель хорош тем, что он весит меньше, чем два и потребляет меньше топлива, но это так же прибавляет проблем. Чтобы обеспечить необходимую тяговооружённость, либо самолёт должен быть лёгким, либо двигатель должен быть очень мощным . А так как самолёты со временем становятся всё тяжелее и тяжелее, то необходимо устанавливать на СВВП два двигателя. К тому же, два двигателя - это в два раза больше шансов, что при отказе или повреждении ракетой, снарядом, птицей, в конце концов, самолёт сможет вернуться на аэродром.

    Во- вторых, возникает проблема - какой это будет двигатель? Единый подъёмно-маршевый двигатель, такой как Rolls-Royce Pegasus на Harrier и Pratt & Whitney F119-PW-100 на Boeing X-32, минимизирует вес оборудования для вертикального взлёта и посадки, но так как подъёмные сопла должны размещаться в центре тяжести, двигатель приходится делать, либо с вынесенными за обводы фюзеляжа маршевыми соплами, что негативно сказывается на аэродинамике, ЭПР, скорости истечения газов из сопел и так далее, либо делать двигатель длинным или самолёт коротким, чтобы вывести реактивную струю на расположенное в хвосте сопло.



    F119-PW-100(SE614) Rolls-Royce Pegasus

    Разделённая на, по сути дела, два разных мотора двигательная установка как Pratt & Whitney F135-400 на Lockheed Martin F-35 Lightning II и Р79В-300+2хРД-41 на Як-141 снимает часть ограничений по длине самолёта. Платой за это становится то, что самолёту приходится таскать за собой весь полёт почти безполезную подъемную двигательную установку, которая в случае F-35 заставляет делать самолёт более широким, а в случае Як-141 заставляет таскать с собой дополнительный запас топлива.



    Подъёмно- маршевый двигатель самолёта Як-141 Схема ДУ самолёта F-35B

    Выбор двигателя так же зависит от назначения самолёта. Для штурмовика важна живучесть, неприхотливость, надёжность.
    Для истребителя тяга, низкий расход топлива. Поэтому, в зависимости от предназначения СВВП, двигатель может быть разным.
    На штурмовиках нужен двигатель подобный Rolls-Royce Pegasus, обеспечивающий высокую манёвренность и не занимающий большие объёмы. Для истребителя следует выбирать разделённую двигательную установку, так как она позволит обеспечить меньшую ЭПР, а так же большую тяговооружённость.

    Основной задачей штурмовика с вертикальным взлётом будет поддержка морских десантов. Он будет базироваться на универсальных десантных кораблях. Истребитель вертикального взлёта будет базироваться на лёгких авианосцах и выполнять все те же функции, что и стандартный палубный истребитель на суперавианосцах.

    Выводы.

    В ходе работы я рассмотрел историю и перспективы СВВП и считаю, что они будут летать в 21 веке, потому что СВВП могут выполнять те задачи, которые не могут выполнить ни самолеты, в силу их привязанности к взлетно-посадочным полосам, ни вертолеты из-за их ограниченной скорости. К сожалению, пока непреодолимым препятствием развитию СВВП, с технической точки зрения, является колоссальный расход топлива на взлётных режимах. Но по мере развития техники этот недостаток удастся преодолеть. И, вероятно, наступит такой момент, когда СВВП заменят вертолеты, как слишком медленные, и самолеты, как требующие сложной инфраструктуры, и образуют единый класс летательных аппаратов будущего.

    Источники информации

    Е.И. Ружицкий.Европейские самолеты вертикального взлета. - Москва. Астель АСТ. 2000 стр. 20-44; 105-108; 144-150.

    Энциклопедия для детей. Техника. Издательство "Аванта" 2005. стр.566; 574; 585-586; 593

    http:/ /ru.wikipedia.org/wiki/Hawker_Siddeley_Harrier

    http://ru.wikipedia.org/wiki/McDonnell_Douglas_AV-8_Harrier_II

    http://ru.wikipedia.org/wiki/Як-141

    http://ru.wikipedia.org/wiki/Boeing_X-32

    http://ru.wikipedia.org/wiki/Lockheed_Martin_F-35_Lightning_II

    http://ru.wikipedia.org/wiki/Як-38

    http://ru.wikipedia.org/wiki/Як-36

    http://ru.wikipedia.org/wiki/BAE_Harrier_II

    http://www.airwar.ru/enc/fighter/yak141.html

    http://www.airwar.ru/enc/fighter/x35.html

    http://www.airwar.ru/enc/attack/harrgr1.html

    Несмотря на волну критики примененной в самолете концепции вертикального взлета, о необходимости возобновления производства машин такого класса в последнее время все чаще говорят и в России 15 Декабрь 2017, 11:33

    Одна из самых дорогих "игрушек" Пентагона - истребитель-бомбардировщик F-35B - на этой неделе принял участие в совместных американо-японских учениях, направленных на охлаждение ракетно-ядерного пыла КНДР. Несмотря на волну критики примененной в самолете концепции вертикального взлета, о необходимости возобновления производства машин такого класса в последнее время все чаще говорят и в России. В частности, о планах строительства самолетов с вертикальным взлетом и посадкой (СВВП) недавно сообщил замминистра обороны Юрий Борисов. О том, зачем России нужен такой самолет и хватит ли у авиапрома сил для его создания.

    Самым массовым отечественным боевым самолетом с вертикальным взлетом и посадкой стал Як-38, который приняли на вооружение в августе 1977 года. Машина заслужила неоднозначную репутацию среди авиаторов - из 231 построенного борта в катастрофах и авиационных инцидентах разбилось 49.

    Основным эксплуатантом самолета стал Военно-морской флот - Як-38 базировались на авианесущих крейсерах проекта 1143 "Киев", "Минск", "Новороссийск" и "Баку". Как вспоминают ветераны палубной авиации, высокая аварийность вынуждала командование резко сокращать количество учебных полетов, а налет пилотов Як-38 составлял символическую по тем временам цифру - не более 40 часов в год. В итоге в полках морской авиации не было ни одного летчика первого класса, лишь единицы обладали вторым классом летной квалификации.

    Боевые характеристики тоже были сомнительными - из-за отсутствия бортовой радиолокационной станции он лишь условно мог вести воздушные бои. Использование Як-38 в качестве чистого штурмовика выглядело неэффективным, поскольку боевой радиус при вертикальном взлете составлял всего 195 километров, а в жарком климате - и того меньше.


    Сверхзвуковой многоцелевой истребитель-перехватчик вертикального взлета и посадки Як-141

    На замену "трудному ребенку" должна была прийти более совершенная машина Як-141, однако после развала СССР интерес к ней пропал. Как видно, отечественный опыт создания и эксплуатации СВВП не назовешь удачным. Почему же тема самолетов вертикального взлета и посадки стала вновь актуальной?

    Флотский характер

    "Такая машина жизненно необходима не только Военно-морскому флоту, но и Военно-воздушным силам, - рассказал РИА Новости военный эксперт, капитан первого ранга Константин Сивков. - Главная проблема современной авиации заключается в том, что реактивному истребителю нужна хорошая взлетно-посадочная полоса, а таких аэродромов очень немного, уничтожить их первым ударом довольно просто. Самолеты же вертикального взлета в угрожаемый период можно рассредоточить хоть по лесным полянам. Такая система применения боевой авиации будет обладать исключительной боевой устойчивостью".

    Впрочем, целесообразность использования СВВП в сухопутном варианте не всем видится обоснованной. Одна из главных проблем заключается в том, что при вертикальном взлете самолет расходует много топлива, что сильно ограничивает его боевой радиус. Россия же - страна большая, поэтому для достижения господства в воздухе у истребительной авиации должны быть "длинные руки".

    "Выполнение боевых задач истребительной авиации в условиях частично разрушенной аэродромной инфраструктуры можно обеспечить за счет укороченного взлета обычных машин с участка полосы длиной менее 500 метров, - считает исполнительный директор агентства "Авиапорт" Олег Пантелеев. - Другой вопрос, что у России есть планы на строительство авианосного флота, здесь применение вертикально взлетающих самолетов будет наиболее рационально. Это необязательно могут быть авианосцы, это могут быть и авианесущие крейсеры с наименьшими стоимостными параметрами".


    Истребитель F-35

    К слову, F-35B сегодня является сугубо морской машиной, главный ее заказчик - корпус морской пехоты США (самолет будет базироваться на десантных кораблях). Британские F-35B составят основу авиакрыла новейшего авианосца Queen Elizabeth, который ввели в строй совсем недавно.

    В то же время, по мнению Константина Сивкова, для начала работ по созданию российского аналога F-35B российским КБ не обязательно дожидаться новых авианосных кораблей. "Самолеты с вертикальным взлетом и посадкой могут базироваться не только на авианосцах. Например, танкер оборудуется рампой и становится своего рода авианосцем, в советское время у нас были такие проекты. Кроме того, СВВП могут использоваться с боевых кораблей, способных принимать вертолеты, например с фрегатов", - рассказал наш собеседник.

    Сможем, если захотим

    Между тем очевидно, что создание российского вертикально взлетающего самолета потребует внушительных ресурсов и средств. Стоимость разработки F-35B и его собратьев с горизонтальным взлетом, по различным оценкам, уже достигла 1,3 миллиарда долларов, а в создании машины участвовали сразу несколько государств.

    Экспериментальный реактивный самолет вертикального взлета и посадки X-13 «Vertijet» был создан по заказу ВВС США компанией Ryan Aeronautical в середине 1950-х. Было построено два самолета.
    Первый самолет вертикального взлета и посадки (СВВП) X-13 «Vertijet» был построен в 1955 г. и начал проходить наземные испытания на базе ВВС США, где совершил ряд полетов с помощью вспомогательного шасси, позволяющего осуществлять обычные взлет и посадку. Наземные испытания включали 15 часов испытаний на стенде в вертикальном положении и 10 часов - в горизонтальном положении.
    Первый полет па режиме висения СВВП Х-13 «Vertijet» совершил в начале 1956 г., а первый полет с переходом от вертикального взлета к горизонтальному полету и затем к вертикальной посадке в ноябре 1956 г.


    В 1956 г. фирмой «Ryan» был построен второй экспериментальный самолета с вертикальным взлетом Х-13 с обычным трех опорным шасси, который совершал взлет с разбегом, переходил к полету на режиме висения, а затем совершал посадку с пробегом. В процессе испытаний самолета Х-13 «Vertijet» фирма «Ryan» встретилась с рядом новых проблем, одной из которых стала необходимость преодоления гироскопического эффекта вращающихся масс двигателя и гироскопической прецессии, воздействующих на путевое и продольное управление, что потребовало разработки для X-13 системы автоматической стабилизации. Другой проблемой стал срыв потока на треугольном крыле при углах атаки более 30° на переходных режимах, вызывавший неустойчивость движения самолета.

    Самолет Х-13 «Vertijet» выполнен по бесхвостовой схеме с треугольным крылом и одним турбореактивным двигателем и не имеет обычного шасси.
    Фюзеляж отличается небольшим удлинением, в носовой части его размещена кабина летчика. При переходе от вертикального взлета к горизонтальному полету и обратно сиденье летчика может наклоняться вперед на 70°. Для улучшения обзора, особенно при вертикальном взлете и посадке, фонарь имел большую площадь остекления, а в кабине было установлено зеркало заднего обзора, как на автомобиле.
    Крыло треугольное, высокорасположенное, малого удлинения, размахом 6,4 м со стреловидностью по передней кромке около 60°. Площадь крыла - 17 м2, нагрузка на крыло 215 кг/м2. На крыле имеются элероны, а на концах крыла установлены небольшие вертикальные шайбы.


    Особенностью конструкции самолета X-13 «Vertijet» является отсутствие шасси. Для взлета и посадки самолета используется тележка с установленной на ней рампой, последняя может подниматься гидравлическими силовыми цилиндрами и принимать вертикальное положение. При подготовке самолета к взлету рампа опускается, на ней устанавливается самолет, затем она поднимается. Самолет имеет крюк в носовой части фюзеляжа, который зацепляется за трос прицепного устройства на рампе. Кроме того, на экспериментальном самолете на центральной части фюзеляжа установлены вспомогательные ферменные стойки, опирающиеся на рампу. Когда рампа, поднимаясь, занимает вертикальное положение, самолет повисает на крюке «подобно летучей мыши».

    При вертикальном взлете с рампы, к которой самолет подвешен на крюке, летчик увеличивает тягу двигателя, самолет при этом перемещается вверх, крюк выходит из зацепления с тросом и самолет вертикально поднимается, а затем постепенно переходит в горизонтальный полет.
    Перед посадкой летчик переводит самолет из горизонтального в вертикальное положение, в котором самолет поддерживается тягой двигателя. При уменьшении тяги самолет снижается, затем, управляя тягой двигателя и газовыми и струйными рулями, летчик подводит самолет к рампе, пока не зацепится крюком за трос. После этого рампа вместе с самолетом опускается в горизонтальное положение.


    Для того чтобы летчик мог точно определить расстояние до рампы при приближении к ней, на рампе в горизонтальном положении была установлена мерная рейка с нанесенными на ней делениями. Кроме того, сверху рампы расположена площадка, на которой находится оператор, подающий руками сигналы летчику.
    По мнению фирмы «Ryan», такой метод взлета и посадки вертикально взлетающих самолетов дает ряд преимуществ, позволяя значительно упростить конструкцию самолета, отказавшись от обычного шасси, и получить экономию в весе конструкции. Тележка с рампой может использоваться также для транспортировки самолета к районам боевых действий и для технического обслуживания.

    Силовая установка самолета X-13 «Vertijet» состоит из одного турбореактивного двигателя Rolls-Royce Avon R.A.28, установленного в хвостовой части фюзеляжа, воздух в двигатель поступает через боковые воздухозаборники. Тяга двигателя составляет 4540 кгс, что при взлетной массе самолета 3630 кг позволяет получить тяговооруженность 1,25.
    В горизонтальном полете самолет управляется с помощью элеронов и руля направления. На вертикальных режимах самолет управляется с помощью газовых рулей и струйной системы управления: на концах крыла расположены реактивные сопла, к которым подводится сжатый воздух, отбираемый от компрессора турбореактивного двигателя.


    Оба СВВП успешно проходили летные испытания, которые завершились без каких-либо летных происшествий в 1958 г., когда разработка СВВП Х-13 «Vertijet» была прекращена ВВС, отдавшими предпочтение СВВП с горизонтальным положением фюзеляжа. Общая стоимость разработки, постройки и испытаний двух экспериментальных СВВП Х-13 превысила 7 млн. долл. Тем не менее ВВС и флот США не раз возвращались к схеме СВВП с вертикальным положением фюзеляжа, предлагая ее использовать для палубных истребителей легких авианосцев, взлетающих с поворотных рамп.

    Летно-технические характеристики СВВП Х-13 «Vertijet»
    Экипаж, чел.: 1;
    Длина, м: 7,14;
    Размах крыльев, м: 6,40;
    Высота, м: 4,62;
    Вес пустого, кг: 2424;
    Максимальный взлетный вес, кг: 3272;
    Силовая установка: 1 х ТРД Rolls-Royce Avon, взлетная тяга 4540 кгс;
    Максимальная скорость, км/ч: 560;
    Дальность, км: 307;
    Практический потолок, м: 6100;

    МОСКВА, 15 дек — РИА Новости, Вадим Саранов. Одна из самых дорогих "игрушек" Пентагона — истребитель-бомбардировщик F-35B — на этой неделе принял участие в совместных американо-японских учениях, направленных на охлаждение ракетно-ядерного пыла КНДР. Несмотря на волну критики примененной в самолете концепции вертикального взлета, о необходимости возобновления производства машин такого класса в последнее время все чаще говорят и в России. В частности, о планах строительства самолетов с вертикальным взлетом и посадкой (СВВП) недавно сообщил замминистра обороны Юрий Борисов. О том, зачем России нужен такой самолет и хватит ли у авиапрома сил для его создания, — в материале РИА Новости.

    Самым массовым отечественным боевым самолетом с вертикальным взлетом и посадкой стал Як-38, который приняли на вооружение в августе 1977 года. Машина заслужила неоднозначную репутацию среди авиаторов — из 231 построенного борта в катастрофах и авиационных инцидентах разбилось 49.

    В ГД рассказали о судьбе группировки ВМФ у берегов Сирии после вывода войск По словам представителя парламентской группы по Сирии Дмитрия Белика, состав группировки не изменится, сейчас в нее входит более 10 кораблей и судов, в том числе вооруженных "Калибрами".

    Основным эксплуатантом самолета стал Военно-морской флот — Як-38 базировались на авианесущих крейсерах проекта 1143 "Киев", "Минск", "Новороссийск" и "Баку". Как вспоминают ветераны палубной авиации, высокая аварийность вынуждала командование резко сокращать количество учебных полетов, а налет пилотов Як-38 составлял символическую по тем временам цифру — не более 40 часов в год. В итоге в полках морской авиации не было ни одного летчика первого класса, лишь единицы обладали вторым классом летной квалификации.

    Боевые характеристики тоже были сомнительными — из-за отсутствия бортовой радиолокационной станции он лишь условно мог вести воздушные бои. Использование Як-38 в качестве чистого штурмовика выглядело неэффективным, поскольку боевой радиус при вертикальном взлете составлял всего 195 километров, а в жарком климате — и того меньше.

    На замену "трудному ребенку" должна была прийти более совершенная машина Як-141, однако после развала СССР интерес к ней пропал. Как видно, отечественный опыт создания и эксплуатации СВВП не назовешь удачным. Почему же тема самолетов вертикального взлета и посадки стала вновь актуальной?

    Флотский характер

    "Такая машина жизненно необходима не только Военно-морскому флоту, но и Военно-воздушным силам, — рассказал РИА Новости военный эксперт, капитан первого ранга Константин Сивков. — Главная проблема современной авиации заключается в том, что реактивному истребителю нужна хорошая взлетно-посадочная полоса, а таких аэродромов очень немного, уничтожить их первым ударом довольно просто. Самолеты же вертикального взлета в угрожаемый период можно рассредоточить хоть по лесным полянам. Такая система применения боевой авиации будет обладать исключительной боевой устойчивостью".

    Впрочем, целесообразность использования СВВП в сухопутном варианте не всем видится обоснованной. Одна из главных проблем заключается в том, что при вертикальном взлете самолет расходует много топлива, что сильно ограничивает его боевой радиус. Россия же — страна большая, поэтому для достижения господства в воздухе у истребительной авиации должны быть "длинные руки".

    "Выполнение боевых задач истребительной авиации в условиях частично разрушенной аэродромной инфраструктуры можно обеспечить за счет укороченного взлета обычных машин с участка полосы длиной менее 500 метров, — считает исполнительный директор агентства "Авиапорт" Олег Пантелеев. — Другой вопрос, что у России есть планы на строительство авианосного флота, здесь применение вертикально взлетающих самолетов будет наиболее рационально. Это необязательно могут быть авианосцы, это могут быть и авианесущие крейсеры с наименьшими стоимостными параметрами".


    К слову, F-35B сегодня является сугубо морской машиной, главный ее заказчик — корпус морской пехоты США (самолет будет базироваться на десантных кораблях). Британские F-35B составят основу авиакрыла новейшего авианосца Queen Elizabeth, который ввели в строй совсем недавно.

    В то же время, по мнению Константина Сивкова, для начала работ по созданию российского аналога F-35B российским КБ не обязательно дожидаться новых авианосных кораблей. "Самолеты с вертикальным взлетом и посадкой могут базироваться не только на авианосцах. Например, танкер оборудуется рампой и становится своего рода авианосцем, в советское время у нас были такие проекты. Кроме того, СВВП могут использоваться с боевых кораблей, способных принимать вертолеты, например с фрегатов", — рассказал наш собеседник.

    Сможем, если захотим

    Между тем очевидно, что создание российского вертикально взлетающего самолета потребует внушительных ресурсов и средств. Стоимость разработки F-35B и его собратьев с горизонтальным взлетом, по различным оценкам, уже достигла 1,3 триллиона долларов, а в создании машины участвовали сразу несколько государств.

    Как считают эксперты, для производства машины, сопоставимой по характеристикам с F-35B, понадобится решить ряд серьезных задач: миниатюризация авионики, создание нового поколения бортовых систем и проектирование планера с особыми характеристиками. Возможности для этого у российского авиапрома есть, тем более что многие системы можно унифицировать с самолетом пятого поколения Су-57. При этом одним из самых трудозатратных узлов может стать двигатель машины.

    "Разработчик двигателя для Як-38 прекратил свое существование. Если какая-либо документация по поворотному соплу, в том числе и форсажному, наверняка еще сохранилась, то людей с практическим опытом создания таких узлов и агрегатов, скорее всего, уже не найти. Здесь у нас, вероятно, утеряны компетенции, — считает Олег Пантелеев. — В целом же, полагаю, что авиационная промышленность сможет дать достойный ответ в виде дееспособного проекта СВВП, если заказчик в лице Минобороны примет решение по авианесущему флоту и его авиационной составляющей".

    Россия сможет приступить к созданию авианосцев в обозримой перспективе. Как заявляют в Минобороны, в 2025-2030 годах ожидается закладка тяжелого авианосца проекта 23000 "Шторм". К этому времени ВМФ России намерен получить два новых универсальных десантных корабля "Прибой", способных нести самолеты с вертикальным взлетом и посадкой.

    Самолеты вертикального (укороченного) взлета и посадки

    Самолеты вертикального взлета и посадки, летающие на крейсерских (горизонтальных) режимах полета как обычные самолеты, способны, как вертолеты, висеть в воздухе, а также взлетать и садиться вертикально. Для обеспечения режимов ВВП (вертикального взлета и посадки) на таком самолете необходимо иметь специальную силовую установку, обеспечивающую создание подъемной силы, превышающей вес самолета.
    Стартовая вертикальная тяговооруженность (отношение подъемной силы, создаваемой двигателями, к весу самолета) современных СВВП находится в пределах 1,05-1,45.
    В зависимости от того, каким образом создается подъемная сила на режимах ВВП и сила тяги на маршевых (крейсерских) режимах, можно провести классификацию СВВП (рис. 7.69).
    Единая силовая установка (СУ) имеет в своем составе один или несколько подъемно-маршевых двигателей , которые на режимах ВВП создают вертикальную тягу, а на обычных режимах - маршевую тягу. Тяга создается либо воздушным винтом, либо струей газов реактивного двигателя. Изменение направления вектора тяги подъемно-маршевых двигателей может быть конструктивно обеспечено либо поворотом всего двигателя в нужном направлении, например относительно крыла или вместе с крылом, на котором они закреплены, либо за счет изменения направления струи (и вектора тяги) реактивного двигателя.

    Принципиальная схема одного из возможных устройств, обеспечивающих изменение направления вектора тяги P с помощью скользящего козырька 1 , проиллюстрирована рис. 7.70.

    Составная СУ включает в себя две группы двигателей: одна из них - для создания вертикальной тяги на режимах ВВП (подъемные двигатели ), другая - для создания маршевой тяги (маршевые двигатели ).
    Комбинированная СУ также состоит из двух групп двигателей:подъемно-разгонных иподъемно-маршевых , которые (в большей или меньшей мере) участвуют в создании и вертикальной и маршевой тяги.

    Выбор типа силовой установки существенным образом влияет на возможность решения специфических проблем, возникающих при проектировании СВВП, и определяет фактически его концепцию, аэродинамическую и конструктивно-силовую компоновку.
    Двигатели 1 (рис. 7.71) создают подъемную силу (P=G /2 ), уравновешивающую силу тяжести G самолета. На режимах работы вблизи экрана 2 (поверхности ВПП) струи двигателей 3 создают вокруг самолета сложные течения, обусловленные взаимодействием отраженных от экрана газовых струй 4 с воздушными потоками 5 , текущими в воздухозаборники двигателей. Форма и интенсивность этих течений на

    режимах висения вблизи экрана, взаимодействие этих течений с набегающим потоком на режимах ВВП и переходных режимах (от вертикального к горизонтальному движению) зависят от мощности, количества и расположения двигателей (т. е. от компоновки СВВП), что существенным образом влияет на аэродинамические и моментные характеристики СВВП, т. е. определяет его компоновку.
    Воздействие газовых струй двигателей вызываетэрозию поверхности аэродрома , степень которой зависит и от типа двигателей, создающих подъемную силу, и от их расположения. Частицы поверхности аэродрома, вымываемые газовыми струями, вместе с высокотемпературными восходящими вверх течениями воздействуют на конструкцию СВВП и, попадая в воздухозаборники двигателей, снижают надежность их работы, ресурс и тяговые характеристики. С целью уменьшения влияния струй на поверхность аэродрома и на самолет часто применяется методика эксплуатации СВВП в режиме укороченного взлета и посадки (УВП), когда дистанции разбега и пробега составляют всего несколько десятков метров. Это позволяет также увеличить весовую отдачу СВВП за счет существенно меньших расходов топлива на режимах взлета и посадки.
    Одной из основных проблем, возникающих при разработке СВВП, является обеспечение балансировки, устойчивости и управляемости их на режимах ВВП и переходных режимах, когда поступательная скорость равна нулю либо недостаточно велика для эффективной работы аэродинамических поверхностей, создающих балансирующие и управляющие силы и моменты.
    Балансировка, устойчивость и управляемость СВВП на этих режимах обеспечивается либо рассогласованием (модуляцией) тяги двигателей, т.е. увеличением или уменьшением тяги одного двигателя по сравнению с другим, либо с помощью системы струйных рулей , либо комбинацией этих способов.

    Рассогласование ΔP тяги (рис. 7.72) маршевых двигателей 3 приводит к возникновению момента рыскания ΔM y , рассогласование ΔP 1 первой группы подъемных двигателей 1 приводит к возникновению момента крена ΔM x . Рассогласование тяги ΔP 1 и ΔP 2 первой и второй группы подъемных двигателей 2 приводит к возникновению момента тангажа ΔM z .
    Струйная система управления СВВП (рис. 7.73) включает в себя несколько удаленных от центра масс самолета на максимально возможное расстояние реактивных сопел (1, 5, 6 ), к которым с помощью трубопроводов 4 подводится сжатый воздух от компрессора подъемно-маршевого двигателя 3 . Конструкция сопла 1 позволяет регулировать расход воздуха и, следовательно, тягу. Конструкция сопел 5 и 6 позволяет изменять не только величину, но и направление силы тяги на противоположное (реверсировать тягу сопла).
    При сбалансированном по тангажу (относительно оси Z ) самолете (сумма моментов сил тяги сопла 1 , подъемного 2 и подъемно-маршевого двигателя 3 относительно центра масс равна нулю) увеличение силы тяги сопла 1 вызовет кабрирующий момент, уменьшение - пикирующий.

    Показанное на рис. 7.73 направление струй из сопел 5 и 6 приводит к кренению самолета на левое крыло и развороту влево.

    Управление режимом работы двигателей и струйными рулями для изменения действующих на самолет сил и моментов на режимах ВВП и переходных режимах летчик осуществляет такими же рычагами управления, как и на обычном самолете, т. е. одновременно с созданием управляющих реактивных сил соответствующим образом отклоняются и аэродинамические рулевые поверхности (руль высоты, элероны и руль направления), которые, однако, не создают управляющих сил на малых (доэволютивных) скоростях поступательного движения самолета. С ростом скорости поступательного движения растут и силы на рулевых поверхностях и с помощью автоматики постепенно выключаются из работы системы струйного управления.

    Здесь необходимо отметить, что на малых (доэволютивных) скоростях СВВП не обладает собственной устойчивостью, так как малы аэродинамические силы, способные возвратить его в исходное положение при случайных внешних воздействиях. Поэтому устойчивость СВВП на этих режимах (стабилизация его и поддержание состояния балансировки) обеспечивается включенными в систему управления средствами автоматики, которые, реагируя на угловые перемещения самолета при возмущениях, без вмешательства летчика с помощью струйных рулей возвращают самолет в исходное положение балансировки.
    Мы перечислили здесь лишь некоторые проблемы формирования облика СВВП, решение которых уже на ранних стадиях проектирования требует взаимодействия проектировщиков различных специализаций.
    К настоящему моменту в мире спроектировано, построено и испытано более 50 типов самолетов вертикального (укороченного) взлета и посадки. В большинстве проектов этих самолетов в основу были положены требования военного применения.
    Первый отечественный боевой СВВП был создан в ОКБ им. А.С. Яковлева (см. раздел 20.2).
    Преимущества СВВП, о которых мы упоминали в начале раздела 7.4, несомненно приведут к созданию СВВП, способных конкурировать с обычными самолетами при перевозках пассажиров и грузов на короткие и средние расстояния.


    Гидроавиация

    Работы по созданию самолетов, приспособленных для взлета с водной поверхности и посадки на нее, начались практически одновременно с работами по созданию самолетов, базирующихся на земле.
    28 марта 1910 года первый полет нагидросамолете (от гидро... (греч. hydor - вода) и самолет) сoбственной конструкции совершил француз А. Фабр.
    Исторически сложилось так, что у истоков отечественного воздухоплавания и авиации стояли офицеры военно-морского флота России. Первыми в мире они разработали тактику морской авиации, осуществили с воздуха бомбардировку вражеского корабля, создали проект авианосца, первыми пролетели в небе Арктики.

    Географические и стратегические особенности театров военных действий того времени, протяженные морские границы на Балтийском и Черном морях, отсутствие специально оборудованных аэродромов для эксплуатации сухопутных самолетов и в то же время обилие крупных рек, озер, свободных морских пространств обусловили потребность создания морского самолетостроения в нашей стране.
    Развитие гидроавиации началось с постановки сухопутного самолета на поплавки. Первые поплавковые гидросамолеты (рис. 7.74) имели два основных поплавка 1 и дополнительный 2 (вспомогательный) поплавок в хвостовой или носовой части.
    В зависимости от того, каким способом обеспечивается базирование и эксплуатация самолета с поверхности акваторий (от лат. aqua - вода) - гидродромов , можно провести классификацию гидросамолетов (рис. 7.75).
    Поплавковые схемы применяются в настоящее время для легких самолетов, хотя уже в 1914 году совершил первый полет четырехмоторный тяжелый самолет "Илья Муромец" (см. рис. 19.1), поставленный на поплавки по трехпоплавковой схеме с хвостовым поплавком, в 1929 году в перелете по маршруту Москва - Нью-Йорк самолета "Страна Советов" (см. рис. 19.7) 7950 км - от Хабаровска до Сиэтла самолет летел над водой, и на этом участке сухопутное шасси заменялось поплавковым по двухпоплавковой схеме .

    Рост размеров и масс гидросамолетов и, как следствие, рост размеров поплавков позволил размещать в них экипаж и оборудование, что привело к созданию гидросамолетов типа "летающая лодка" однолодочной схемы и двухлодочнойсхемы - катамаран (от тамильского каттумарам , буквально - связанные бревна).
    Интегральная схема наиболее целесообразна для тяжелых многоцелевых океанских гидросамолетов. Частично погруженное в воду крыло позволяет уменьшить размеры лодки и повысить аэрогидродинамическое совершенство гидросамолета.
    Самолет-амфибия (от греч. amphibios - ведущий двойной образ жизни) приспособлен для взлета с земли и воды и посадки на них.
    Таким образом, технические решения, обеспечивающие базирование и эксплуатацию самолета с водной поверхности, фактически определяют облик (аэродинамическую схему) гидросамолета.
    Сложность и количество проблем, которые должны решить проектировщики при создании гидросамолета, существенно возрастают, поскольку помимо высоких аэродинамических и взлетно-посадочных характеристик обычного самолета должны быть обеспечены и заданные ТЗ мореходные качества.
    Оценить мореходные качества гидросамолета позволяют методы научной дисциплины "Гидромеханика", изучающей движение и равновесие жидкостей, а также взаимодействие между жидкостями и твердыми телами, полностью или частично погруженными в жидкость.
    Мореходные качества (мореходность) гидросамолета характеризуют возможность его эксплуатации в акваториях с определенными гидрометеорологическими условиями - скоростью и направлением ветра, направлением, скоростью движения, формой, высотой и длиной волн воды.
    Мореходность гидросамолета оценивается предельным волнением акватории, при котором возможна безопасная эксплуатация.
    Аналогично тому, как для оценки летных характеристик самолета (см. раздел 3.2.2) применяется международная стандартная атмосфера (МСА), для характеристики волнения акватории используется определенная шкала (математическая модель), устанавливающая связь между словесной характеристикой волнения, высотой волны и баллом (от 0 до IX) - степенью волнения .
    В соответствии с этой шкалой, например, слабое волнение (высота волны до 0,25 м) оценивается баллом I, значительное волнение (высота волны 0,75-1,25 м) оценивается баллом III, сильное волнение (высота волны 2,0-3,5 м) оценивается баллом V, исключительное волнение (высота волны 11 м) оценивается баллом IX.
    Мореходные качества (мореходность ) гидросамолета включают в себя такие характеристики гидросамолета, как плавучесть , остойчивость , управляемость , непотопляемость и т. п.
    Эти качества определяются формой и размерами находящейся под водой водоизмещающейчасти (лодки или поплавка) гидросамолета, распределением масс гидросамолета по длине и высоте.
    В дальнейшем при рассмотрении мореходных характеристик гидросамолета, если их без особой оговорки в равной мере можно отнести к лодке и поплавку, будем использовать термин "лодка". Плавучесть - способность гидросамолета плавать в заданном положении относительно водной поверхности.
    Гидросамолет, как и любое другое плавающее тело, например судно, поддерживается на плаву архимедовой силой

    Р = W ρ в g = G ,

    Сила тяжести гидросамолета G приложена в центре масс самолета (ц.м.),сила поддержания (архимедова сила, сила воздействия вытесненной жидкости на лодку гидросамолета) Р приложена в центре масс вытесненного лодкой объема воды, или, по корабельной терминологии (которой широко пользуются проектировщики гидросамолетов), в центре величины (ц.в.).

    Очевидно, что для обеспечения равновесия самолета на плаву (рис. 7.76) силы G и P должны лежать на прямой, соединяющей ц.м. и ц.в., в вертикальной продольной плоскости симметрии гидросамолета - диаметральной плоскости лодки (ДП). Очевидно также, что основная плоскость лодки (ОП) - горизонтальная плоскость, проходящая через нижнюю точку поверхности лодки перпендикулярно к диаметральной плоскости, и, соответственно, нижняя строительная горизонталь лодки (НСГ), строительная горизонталь самолета (СГС) и палуба 1 - верхняя поверхность лодки в общем случае не параллельны плоскости водной поверхности и линии соприкосновения поверхности воды с корпусом лодки гидросамолета W о L о .

    Линия соприкосновения спокойной поверхности воды с корпусом лодки гидросамолета W о L о при полной взлетной массе и выключенных двигателях - грузовая ватерлиния (от голл. water - вода и lijn - линия). Грузовая ватерлиния (ГВЛ) при плавании в пресной воде не совпадает с ГВЛ при плавании в морской воде, поскольку плотность пресной речной или озерной воды ρ в =1000 кг/м 3 , плотность морской воды ρ в = 1025 кг/м 3 .
    Соответственно,осадкаТ (расстояние от ГВЛ до самой нижней части лодки, характеризующее погружение лодки ниже уровня воды) при одинаковой взлетной массе гидросамолета в пресной воде будет больше, чем в морской.
    Значения осадок носом и кормой определяют посадку лодки гидросамолета относительно поверхности воды - дифферент лодки (от лат. differens (differetis) - разница) - наклон ее в продольной плоскости, который измеряется углом дифферента φ 0 или разностью между осадками кормы и носа. Если разность равна нулю, говорят, что лодка "сидит на ровном киле"; если осадка кормы больше осадки носа - лодка "сидит с дифферентом на корму" (как показано на рис 7.76), если меньше - лодка "сидит с дифферентом на нос".
    Остойчивость (аналог термина "устойчивость" в морской терминологии) при плавании - способность гидросамолета, отклоненного внешними возмущающими силами от положения равновесия, возвращаться в исходное положение после прекращения действия возмущающих сил.
    Очевидно, что при плавании частично или вполне (полностью) погруженного в воду тела нет никаких других сил для возвращения его в положение равновесия, кроме силы тяжести G и равной ей силы поддержания Р . Следовательно, только взаимное положение этих сил определит остойчивость или неостойчивость плавающего тела, что иллюстрирует рис. 7.77.

    Если центр масс тела расположен ниже центра величины (рис. 7.77,а), при отклонении от положения равновесия возникает стабилизирующий момент ΔМ = Gl , возвращающий тело в исходное положениеостойчивого равновесия .
    Если центр масс тела расположен выше центра величины (рис. 7.77,в), при отклонении от положения равновесия возникает дестабилизирующий момент ΔМ = Gl , и тело не может самостоятельно возвратиться в исходное положение неостойчивого равновесия .
    Если положение центра масс тела совпадает с положением центра величины (рис. 7.77,б ), тело находится в безразличном равновесии.
    Следует отметить, что положение центра величины существенным образом зависит от формы погруженной части тела и угла отклонения его от исходного положения равновесия.
    Остойчивость гидросамолета (как и остойчивость судна) принято определять взаимным положением центра масс и метацентра - центра кривизны линии, по которой смещается центр величины водоизмещающего тела при выведении его из равновесия.
    Метацентр - от греч. meta - между, после, через - составная часть сложных слов, означающих промежуточность, следование за чем-либо, переход к чему-либо другому, перемену состояния, превращение и лат. - centrum средоточие, центр.
    Различают поперечную и продольную остойчивость гидросамолета (при наклонении самолета соответственно в поперечной и продольной плоскостях).
    Поперечная остойчивость. Рассмотрим случай поперечного наклонения - отклонение диаметральной плоскости лодки (ДП) от вертикали, например под воздействием порыва ветра.
    Гидросамолет (рис. 7.78,а) находится на плаву в состоянии равновесия, сила тяжести G и сила поддержания Р равны, лежат в диаметральной плоскости, размер а определяет возвышение центра масс над центром величины.

    От боковой составляющей порыва ветра V в (рис. 7.78,б ) возникнет кренящий момент М кр в , зависящий от скоростного напора, площади и размаха наветренной (обращенной в ту сторону, откуда дует ветер) консоли крыла, площади боковой проекции гидросамолета. Под действием этого момента самолет накренится на некоторый малый (будем считать - бесконечно малый) угол γ и новое положение лодки определит новую грузовую ватерлинию W 1 L 1 , плоскость которой наклонена на угол γ от исходной ватерлинии W о L о .
    Форма подводной (водоизмещающей) части лодки изменится: объем, ограниченный в каждом поперечном сечении лодки фигурой 1 , выйдет из-под воды, а равный ему объем, ограниченный в каждом поперечном сечении лодки фигурой 2 , уйдет под воду. Таким образом, величина поддерживающей силы не изменится (Р = W ρ в g = G ) С о в точку С 1 . Точка М о пересечения двух смежных линий действия архимедовых сил при бесконечно малом угле γ между ними и является начальным метацентром .
    Метацентрический радиус ρ 0 определяет начальную кривизну линии смещения центра величины лодки при крене.
    Мерой поперечной остойчивости гидросамолета является значение метацентрической высоты h о = ρ о - а :
    - если h о > 0 - лодка остойчива;
    - если h о = 0 - равновесие безразличное;
    - если h о < 0 - лодка неостойчива.
    В рассмотренном примере h о < 0. Нетрудно видеть, что перпендикулярные к поверхности воды и равные силы Р и G будут составлять пару с плечом l , причем момент этой пары М кр G = Gl совпадает по направлению с возмущающим моментом М кр в и увеличивает угол крена. Таким образом, гидросамолет, показанный на рис. 7.78,б , при действии внешних возмущений не возвращается к исходному положению, т. е. не обладает поперечной остойчивостью.
    Очевидно, что для обеспечения поперечной остойчивости центр масс должен находиться ниже самого низкого положения метацентра.
    Большинство современных гидросамолетов выполнено по классической аэродинамической схеме с фюзеляжем - лодкой, которой придаются соответствующие формы для выполнения взлета с воды и посадки на воду, высокорасположенным крылом с установленными на нем или на лодке двигателями для максимального удаления их от водной поверхности с целью исключить при движении по воде заливание крыла водой и попадание ее в двигатели и на винты самолетов с винтомоторной силовой установкой, поэтому в большинстве случаев центр масс самолета выше метацентра (как на рис. 7.78,б ) и однолодочный гидросамолет в поперечном отношении неостойчив.
    Проблемы поперечной остойчивости гидросамолета однопоплавковой или однолодочной схемы могут быть решены применением подкрыльных поплавков (рис. 7.79).

    Подкрыльный поплавок 1 устанавливают на пилоне 2 по возможности ближе к концу крыла 3 .Опорные (поддерживающие) подкрыльные поплавки не касаются воды при движении гидросамолета на ровной воде 4 и обеспечивают остойчивое положение гидросамолета с углами крена 2-3° при стоянке,несущиеподкрыльные поплавки частично погружены в воду и обеспечивают стоянку без крена.
    Водоизмещение поплавка выбирается таким образом, чтобы под воздействием ветра с определенной скоростью V в гидросамолет, находящийся на скате волны 5 , соответствующей предельному волнению акватории, заданному в ТЗ на проектирование, накренился на определенный угол γ . В этом случае восстанавливающий момент поплавка, определяемый поддерживающей силой поплавка Р п и расстояниемb п от диаметральной плоскости поплавка до диаметральной плоскости лодки, М п = Р п b п , должен парировать (уравновесить) кренящие моменты М кр в от ветра и М кр G от неостойчивой лодки.

    Продольная остойчивость определяется такими же условиями, как и поперечная. Если под действием какого-либо внешнего возмущения гидросамолет (рис. 7.80) получит продольное наклонение от исходного положения, определяемого ватерлинией W о L о , например увеличение на угол Δφ дифферента на нос, это определит новую грузовую ватерлинию W 1 L 1 .
    Объем лодки 1 выйдет из-под воды, а равный ему объем 2 уйдет под воду, при этом значение поддерживающей силы не изменится (Р = W ρ в g = G ) , однако центр величины сместится из исходного положения С 0 в точку С 1 . Точка М о * пересечения двух смежных линий действия поддерживающих сил при бесконечно малом угле Δφ между ними определит положение начального продольного метацентра .
    Мера продольной остойчивости гидросамолета - продольная метацентрическая высота H о = R о - а .
    Обеспечить продольную остойчивости гидросамолета проще, чем поперечную, в том смысле, что сильно развитая в длину лодка почти всегда обладает естественной продольной остойчивостью (H о > 0).
    Отметим, что пикирующий момент от силы тяги двигателя, линия действия которой обычно проходит выше центра масс самолета, заглубляет носовую часть лодки, уменьшает угол начального дифферента, т. е. заставляет лодку принять некоторый дифферент на нос, что определит новую грузовую ватерлинию , которая называется "упорной" .
    Гидростатические силы (силы поддержания), обеспечивающие плавучесть и остойчивость лодки в состоянии покоя, естественно, в большей или меньшей мере проявляются и в процессе движения по воде.
    Весьма важной характеристикой гидросамолета, определяющей его мореходность, является способность преодолевать сопротивление воды и развивать необходимую скорость движения по воде при минимальных затратах мощности.
    Гидродинамическая сила сопротивления воды движению лодки в режиме плавания определяется трением воды в пограничном слое (сопротивление трения) и распределением гидродинамического давления потока воды на лодку (сопротивление формы, связанное с образованием вихревых течений - его иногда называют водоворотным сопротивлением) и зависит от скорости движения (скоростного напора ρ в V 2 /2 ), формы и состояния поверхности лодки.
    Здесь уместно напомнить, что плотность воды ρ в больше плотности воздуха на уровне моря примерно в 800 раз!
    К этому сопротивлению добавляется волновое сопротивление, которое, в отличие от волнового сопротивления, связанного с необратимыми потерями энергии в скачке уплотнения при полете с закритическими скоростями (см. раздел 5.5), возникает при движении тела вблизи свободной поверхности жидкости (поверхности раздела воды и воздуха).
    Волновое сопротивление - часть гидродинамического сопротивления, характеризующая затрату энергии на образование волн.
    Волновое сопротивление в воде (тяжелой жидкости) возникает при движении погруженного или полупогруженного тела (поплавка, лодки) вблизи свободной поверхности жидкости (т. е. границы воды и воздуха). Движущееся тело оказывает добавочное давление на свободную поверхность жидкости, которая под влиянием собственной силы тяжести будет стремиться вернуться к исходному положению и придет в колебательное (волновое) движение. Носовая и кормовая части лодки образуют взаимодействующие между собой системы волн, оказывающие существенное влияние на сопротивление.
    В режиме плавания равнодействующая сил гидродинамического сопротивления практически горизонтальна.
    Форма водоизмещающей части гидросамолета (как и форма судна) должна обеспечить способность движения по воде с минимальным сопротивлением и, как следствие, с минимальными затратами мощности (ходкость судна , по морской терминологии).
    При проектировании гидросамолетов (как и судов) для выбора форм и оценки гидродинамических характеристик используются результаты испытаний путем буксировки ("протаски") динамически подобных моделей в опытовых бассейнах (гидроканалах ) или в открытых акваториях.
    Однако, в отличие от судна, комплекс характеристик мореходности гидросамолета значительно шире, основной из них является способность производить безопасные взлеты и посадки на взволнованной поверхности с определенной высотой волны, при этом скорости хода по воде гидросамолетов во много раз превышают скорости морских судов.
    Благодаря особой форме днища лодки гидросамолета возникают гидродинамические силы, поднимающие носовую часть и вызывающие общее значительное всплытие лодки.
    Следовательно, движение гидросамолета, в отличие от судна, происходит при переменном водоизмещении и угле дифферента лодки (фактически угле набегания водяного потока на днище, аналогичном углу атаки крыла). На скоростях движения по воде, близких к скорости отрыва при взлете, водоизмещение практически равно нулю - гидросамолет идет в режиме глиссирования (от франц. glisser - скользить) - скольжения по поверхности воды. Характерная особенность режима глиссирования заключается в том, что равнодействующая сил гидродинамического сопротивления воды имеет настолько большую вертикальную составляющую (гидродинамическую силу поддержания ), что лодка большей частью своего водоизмещающего объема выходит из воды и скользит по ее поверхности. Поэтому обводы (очертания наружной поверхности) лодки гидросамолета (рис. 7.81) существенно отличаются от обводов судна.

    Основное отличие состоит в том, что днище (нижняя поверхность лодки, которая является основной опорной поверхностью при движении гидросамолета по воде) имеет один или несколькореданов (франц. redan - уступ), первый из которых, как правило, располагается вблизи центра масс гидросамолета, а второй в кормовой части. Прямые в плане реданы (рис. 7.81,а ) создают в полете значительно большее сопротивление, чем заостренные (стреловидные, оживальные) реданы (рис. 7.81,б ), гидродинамическое сопротивление и брызгообразование которых существенно меньше. Со временем ширина второго редана постепенно уменьшалась, межреданная часть днища стала сходиться в одной точке (рис. 7.81,в ) на корме лодки.

    В процессе развития гидроавиации изменялась и форма поперечного сечения лодки (рис. 7.82). Лодки с плоским днищем (рис. 7.82,а ) и с продольными реданами (рис. 7.82,б ), слабокилеватые (т. е. с небольшим наклоном участков днища от центральной килевой линии к бортам - рис. 7.82,в ) и с вогнутым днищем (рис. 7.82,г ) постепенно уступали место килеватым лодкам с плоскокилеватым днищем (рис. 7.82,д ) или с более сложным (в частности, криволинейным) профилем килеватости (рис. 7.82,е ).
    Здесь следует отметить, что гидросамолеты не имеют амортизаторов (см. раздел 7.3), способных поглощать и рассеивать энергию ударов при посадке на воду. Поскольку вода - практически несжимаемая жидкость, то сила удара о воду соизмерима с силой удара о землю. Основное назначениекилеватости - заменить собой амортизатор и при

    постепенном погружении в воду клиновой (килеватой) поверхности при посадке смягчить посадочный удар, а также удары воды о днище лодки при движении на взволнованной поверхности воды.
    Характерные обводы лодки современного гидросамолета представлены на рис. 7.83. Лодка имеет поперечную и продольную килеватость днища.
    Поперечная килеватость лодки (или угол, образуемый килем и скулами) выбирается исходя из условий обеспечения приемлемых перегрузок на взлетно-посадочных режимах и обеспечения динамической путевой остойчивости.
    Угол поперечной килеватости носовой части лодки начиная от первого редана β р н плавно увеличивается к носу лодки (на виде спереди А-А - наложенные сечения по носовой части лодки) таким образом, что формируется волнорез в носовой частим лодки, "разваливающий" встречную волну и уменьшающий волно- и брызгообразование.
    Скула (линия пересечения днища и борта лодки) препятствует прилипанию воды к бортам. Для создания приемлемого волно- и брызгообразования применяют выгиб носовых скул , т. е. профилировку днища носовой части лодки по сложным криволинейным поверхностям.

    Днище межреданной части лодки (на виде сзади Б-Б - наложенные сечения по кормовой части лодки) обычно плоскокилеватое - значение угла β р м постоянно. Углы поперечной килеватости на редане обычно порядка 15-30°.
    Продольная килеватость лодки γ л = γ н + γ м определяется углом продольной килеватости носовой части γ н и углом продольной килеватости межреданной части γ м .

    Длина, форма и продольная килеватость носовой части (γ н @ 0¸3° ), влияющие на продольную остойчивость и угол начального дифферента, выбираются такими, чтобы исключить зарывание носом и заливание палубы водой при высоких скоростях хода.
    Продольная килеватость межреданной части (γ м @ 6¸9° ) выбирается так, чтобы обеспечить устойчивое глиссирование, посадку на сушу при максимально допустимом угле атаки и сход на воду (для самолета-амфибии) по существующимслипам (англ. slip , букв. - скольжение) - уходящим в воду наклонным береговым площадкам для схода амфибии на воду и выхода на берег.
    При достаточной продольной килеватости межреданной части отрыв при взлете с воды может происходить "с подрывом" (увеличением угла атаки) на максимально допустимом коэффициенте подъемной силы.
    Отрыв с воды при взлете осложнен тем, что кроме сил сопротивления воды движению лодки, рассмотренных выше, между днищем лодки и водой действуют силы сцепления (подсасывания), особенно в задней части лодки.
    Назначение редана - уничтожить подсасывающее действие воды (подсос) при разбеге, уменьшить этим сопротивление воды, дать возможность лодке "отлипнуть&qu