Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Как называется расстояние между внутренними головками. Самые распространенные колеи. Особенности устройства пути в кривых

    Как называется расстояние между внутренними головками. Самые распространенные колеи. Особенности устройства пути в кривых

    Основные нормы устройства и содержания рельсовой колеи бесстыкового и звеньевого пути совпадают.

    Главным требованием при проектировании и устройстве рельсовой колеи является обеспечение безопасности движения поездов с установленными скоростями при возможном минимуме сил взаимодействия колеса и рельсовой плети, снижении интенсивности накопления остаточных деформаций и расходов на техническое обслуживание и ремонт бесстыкового пути.

    Путь и подвижной состав представляют собой единую механическую систему, составные части которой работают взаимосвязано и взаимозависимо.

    Железнодорожные экипажи состоят из неподрессоренной и обрессоренной частей. Массу ходовых частей подвижного состава, непосредственно взаимодействующую с рельсами и отделенную от остальной массы экипажа упругими связями (например, рессорами), называют неподрессоренной массой. Остальная часть экипажа считается обрессоренной массой.

    Обе эти части при движении экипажей (локомотивы, вагоны) совершают сложные колебания как относительно пути, так и друг друга. Колебания возникают в основном из:за неровности пути и неровности на колесах, а также зависят от режима тяги, сопротивления движению колес и ряда других причин.

    Вертикальные силы воздействия на рельсовые плети колес движущегося по пути локомотива или вагона складываются из собственного веса подвижного состава, приходящегося на одно колесо (статическая нагрузка), и дополнительных вертикальных сил, возникающих при колебаниях надрессорного строения и неподрессоренных масс, вызванных в том числе неровностями пути и колес.

    Все перечисленные вертикальные силы имеют различную природу и свои особенности. Постоянна во времени только статическая нагрузка, а все остальные силы имеют вероятностную природу.

    Помимо вертикальных сил подвижной состав передает на путь также горизонтальные поперечные и продольные силы.

    При движении экипажей в прямых участках пути возникают боковые силы , связанные с вилянием подвижного состава. Силы, действующие на кузов и передающиеся через раму экипажа на колесные пары, называются рамными . Боковое воздействие колеса на рельсовую плеть состоит из силы нажатия гребня на головку рельса и сил трения, возникающих при поперечном скольжении колеса по рельсу.

    Таким образом, боковое воздействие колеса на рельс в прямых участках пути может быть найдено как алгебраическая сумма всех этих сил.

    При движении экипажа в кривой возникают дополнительные горизонтальные силы - центробежная сила и направляющее усилие.
    Центробежная сила

    J = Q/gV 2 /3,6 2 R

    где Q - вес экипажа, Н;
    g - ускорение свободного падения, 9,81 м/ с 2 ;
    V - скорость движения, км/ч;
    R - радиус кривой, м;
    3,6 - коэффициент перехода между скоростью в км/ч и в м/с.
    Центробежная сила J должна компенсироваться силой Т, возникающей из:за устройства возвышения наружного рельса в кривой

    T = h/SQ

    где h - возвышение наружного рельса, мм;
    S - расстояние между кругами катания колес, мм.
    В связи с действием сил Т, J и сил трения скольжения колес по рельсам (рис. 2.17) возникают направляющие силы Y 1 , Y 2 , которые поворачивают тележки.

    Совместное действие этих сил может быть заменено их алгебраической суммой F нп = J + T. Если центробежная сила J полностью компенсируется силой Т, то F нп = J + T = 0.

    Если F нп? 0, то возникают дополнительные поперечные силы U поп, пропорциональные величинам непогашенного поперечного ускорения

    Y доп = ba нп

    где b - коэффициент, учитывающий установку тележки в рельсовой колее;
    анп - непогашенное поперечное ускорение в м/с 2 , имеет вид:

    а нп = V 2 /3,6 2 R – gh/S

    В зависимости от знака непогашенного поперечного ускорения может возникнуть перегрузка наружной или внутренней рельсовой плети.

    Таким образом, в кривом участке пути направляющее усилие, боковое и рамное воздействия зависят от центробежной силы, которая, в свою очередь, пропорциональна величине непогашенных горизонтальных ускорений.

    При прохождении по пути подвижного состава возникают и силы, действующие вдоль пути. Вызываемое ими продольное перемещение рельсов относительно шпал или всей путевой решетки в балласте называется угоном пути.

    Среди многих факторов, приводящих к угону пути, наиболее значимыми являются сопротивление движению поезда, перемещение рельсов относительно опор вследствие изгиба рельсов под движущейся нагрузкой, торможение подвижного состава и ряд других.

    Ранее были рассмотрены вопросы распределения продольных температурных напряжений по длине рельсовой плети (см. рис. 1.1). Если на длине плети имеются участки с плохо закрепленными промежуточными скреплениями (незакрепленными или слабо закрепленными клеммами), то при проходе поезда на этих участках происходят местные подвижки плетей, приводящие к образованию на их концах значительных дополнительных сжимающих или растягивающих плеть сил угона. Складываясь с продольными температурными силами, силы угона могут вызвать потерю устойчивости бесстыкового пути.

    Кратко рассмотрев действующие на бесстыковой путь при проходе по нему подвижного состава вертикальные и продольные силы, перейдем к вопросам устройства рельсовой колеи бесстыкового пути.

    Очертания рельсовых нитей в прямых участках пути определяются основными нормативами, касающимися устройства и содержания рельсовой колеи относительно направления в плане, ее ширины, положения рельсовых нитей по уровню, подуклонки рельсов.

    Путь в плане должен соответствовать проектному положению. Положение рельсовых плетей в плане нормируется и оценивается в зависимости от установленных на участке скоростей движения поездов по разности смежных стрел изгиба рельсовых плетей, измеряемых от середины хорды длиной 20 м.

    Разность смежных стрел в этом случае не должна превышать:

    • при скоростях 81-140/71-90 км/ч - 10 мм;
    • при скоростях 61-80/61-70 км/ч - 15 мм;
    • при скоростях 41-60 км/ч - 20 мм;
    • при скоростях 16-40 км/ч - 25 мм;
    • при скоростях 15 км/ч - 30 мм.

    Разность смежных стрел изгиба может проверяться также от середины хорды длиной 4, 10, 15, 25 и 30 м.

    При направленной внутрь колеи короткой неровности в плане в прямых участках пути по любой, а в кривых участках пути - по наружной рельсовой нити разность смежных стрел изгиба, измеряемых от середины хорды длиной 4 м, не должна превышать:

    • 8 мм при скоростях до 140 км/ч;
    • 9 мм при скоростях до 120 км/ч; 14 мм при скоростях до 60 км/ч;
    • 15 мм при скоростях до 40 км/ч; 18 мм при скоростях до 15 км/ч.
    • При разности стрел более 18 мм движение поездов закрывается.

    Расстояние между внутренними рабочими гранями головок рельсов, измеренное на уровне 13 мм ниже поверхности катания, называется шириной рельсовой колеи .

    По направлению выравнивают одну рельсовую нить (рихтовочную), а другую - устанавливают по шаблону в пределах допусков по ширине колеи.

    Если на прямом участке пути поставить колесную пару так, чтобы гребень одного колеса был прижат к рельсу, то между гребнем второго колеса и рабочей гранью головки второго рельса будет зазор? (рис. 2.18). При большом зазоре? колеса опираются на рельсы узкой полоской, что может вызвать проваливание колес внутрь колеи. Если зазора не будет вообще, может возникнуть заклинивание колесной пары в рельсовой колее.

    Пример 2.1. Определим ширину рельсовой колеи, при которой возможен провал колес внутрь колеи. Из рис. 2.18 видно, что

    S – (T + 2q + 2?)

    где S - ширина рельсовой колеи в прямом участке пути, мм;
    T - насадка колес, мм;
    q - толщина гребня, мм;
    ? - утолщение гребня выше расчетной плоскости, равное для вагонных колес 1 мм, для локомотивных колес - 0 мм.

    На рис. 2.19 показана колесная пара в момент, когда шестимиллиметровая фаска на колесе совпадает с началом закругления головки рельса. Можно считать, что такое положение колеса является началом его проваливания в рельсовой колее.

    Для вагонной колесной пары проваливание может произойти при ширине колеи

    S = 25 + 1 + 1437 + 130 – 6 = 1574 мм

    где 25 - минимально допустимая толщина изношенного гребня, мм;
    1 - расстояние от нерабочей грани гребня на расчетном уровне до вертикали, от которой отсчитывается насадка колесной пары, мм;
    1437 - минимальная величина насадки колесной пары, мм;
    130 - полная ширина вагонного колеса, мм;
    6 - ширина фаски на наружной грани колеса, мм;
    13 - горизонтальное расстояние от начала закругления головки рельса до ее рабочей грани, мм.

    Недопустимой считают такую ширину колеи, при которой точка перехода коничности поверхности катания колеса 1/20 в 1/7 совпадает с началом закругления головки рельса, поскольку в этом случае возможно распирание рельсовой колеи. Это может произойти при ширине колеи 1574 – 24 = 1550 мм (см. рис. 2.19).

    Если учесть изгиб вагонной оси и упругое уширение колеи под поездной нагрузкой, то становится очевидной обоснованность существующего запрета на ширину колеи более 1548 мм.

    Пример 2.2. Определим ширину рельсовой колеи, при которой возможно заклинивание колесной пары в колее.

    Опасный предел ширины колеи по ее сужению определяется тем, что при наибольшем расстоянии между рабочими гранями гребней вагонных колес 1443+2?33+2?1=1511 мм при ширине колеи 1511 мм возможно
    заклинивание колесной пары. Поэтому ширина рельсовой колеи в прямых менее 1512 мм не допускается.

    Ранее указывалось, что процесс виляния колес подвижного состава сопровождается возникновением сил трения скольжения и сил воздействия гребней колес на рельсы при набегании. Первые относительно невелики, однако вторые могут достигать величин 30-40 кН. Эти силы зависят от скорости набегания колес на рельсы при вилянии, которая будет тем выше, чем больше зазор в рельсовой колее? (см. рис. 2.18).

    Номинальная ширина рельсовой колеи в прямых и кривых участках бесстыкового пути радиусом 350 м и более составляет 1520 мм; в кривых участках пути радиусом менее 350 м до 300 м включительно - 1530 мм.
    Для ширины колеи 1520 мм предусматриваются два вида допусков по ширине колеи в зависимости от скоростей движения поездов: +8, –4 мм - при скоростях движения более 50 км/ч и +10, –4 мм - при скоростях движения 50 км/ч и менее.

    Верх головок обеих рельсовых нитей на прямых участках должен быть на одном уровне. Разрешается содержать путь с возвышением по уровню одной рельсовой нити над другой 6 мм. Длина такого прямого участка должна быть не менее 200 м, за исключением участков, расположенных между смежными кривыми одного направления.

    При возвышении одной рельсовой нити на 6 мм экипаж немного наклонится, что приведет к возникновению боковой силы, которая слегка прижмет колеса к пониженной рельсовой нити и затруднит их виляние. Поскольку эта рельсовая нить является рихтовочной, то прижимающееся к ней колесо будет двигаться более плавно.

    На двухпутных линиях выше ставят бровочную рельсовую нить, чтобы рихтовочной стала более устойчивая междупутная рельсовая нить.
    На однопутных линиях при проведении очередного среднего ремонта, как правило, меняют рихтовочную нить.

    Возвышение одной рельсовой нити над другой на прямом участке должно заканчиваться не ближе 25 м от начала возвышения в кривой, если повышенная нить на прямой совпадает по уровню с пониженной нитью в кривой.

    Если на прямых участках пути с возвышением одной рельсовой нити над другой расположено мостовое полотно с ездой на балласте, то на нем также должно быть сохранено это возвышение. На мостах с ездой поверху и мостовыми брусьями возвышение допускается при длине моста не более 25 м. На мостах большей длины с мостовыми брусьями, в тоннелях и на подходах к ним протяженностью 25 м, а также на стрелочных переводах в прямых участках пути допускать повышение од: ной рельсовой нити над другой на 6 мм запрещается.

    Номинальный уклон отвода по уровню от нормы 6 мм к нулевому положению не должен превышать 1.

    Допустимые отклонения от норм расположения рельсовых плетей по уровню составляют ±6 мм. Если, например, сначала левая рельсовая плеть выше правой на 6 мм, а затем наоборот, то минимальное расстояние между такими превышениями должно быть не менее 20 м, так как при меньшем расстоянии образуется перекос пути. К перекосам пути относятся резкие изменения положения рельсовых плетей по уровню в разные стороны при расстоянии между вершинами пик 20 м и менее.

    При таком перекосе возможно обезгруживание одного из колес вагона, что в сочетании с большими боковыми силами может привести к сходу подвижного состава.

    На рис. 2.20 показано положение тележки при проходе через перекос, измеряемый на базе тележки, когда центры обоих колес задней и левого колеса передней колесной пары находятся в одной горизонтальной плоскости, а правое колесо передней колесной пары опустилось.
    В этом случае нагрузка на него от рессоры несколько уменьшается, т.е. происходит его частичная разгрузка. Если такая разгрузка совпадает с сильным боковым прижатием гребня колеса к головке рельса, то оно, вращаясь, может подняться на головку рельса, а затем и сойти с нее.

    Конспект лекций по ПТЭ

    ВВЕДЕНИЕ

    В соответствии с требованиями ПТЭ все элементы железнодорожного пути должны обеспечивать безопасное и плавное движение поездов с наибольшими скоростями, установленными для данного участка.

    В современных условиях работы ОАО «Российские железные дороги» перед работниками транспорта поставлены задачи по освоению возрастающих перевозок грузов и пассажиров: повышать веса поездов, увеличивать скорости движения, повсеместно усиливать мощности железнодорожного пути – укладывать бесстыковую конструкцию на железобетонном основании.

    Изменения условий эксплуатации железнодорожного пути требуют корректировки параметров рельсовой колеи: возвышения; переходных кривых; в некоторых случаях уположения круговых кривых.

    Переустройство рельсовой колеи связано со сдвижками оси пути в поперечном направлении, при этом необходимо не только определить величины сдвижек пути, но и найти оптимальные решения, которые позволят использовать существующую ширину основной площадки земляного полотна без устройства боковых присыпок.

    Учитывая, что размеры и конструктивное оформление рельсовой колеи находятся в зависимости от размеров и конструктивных особенностей ходовых частей экипажей, в данной работе приведены основные сведения о них и об особенностях ходовых частей вагонов, обусловливающих повышенное боковое воздействие гребней колес на головку рельсов.

    В конспекте лекций показана последовательность решения задач проектирования и расчетов рельсовой колеи в прямых и кривых участках пути, приведены требования к ее элементам, расчетные схемы, формулы и примеры расчетов.

    При этом основное внимание обращается на формулирование цели расчетов и проектирования, обоснование принимаемых решений, анализ полученных результатов, сравнение вариантов и аргументированные выводы и предложения.

    Конспект лекций издан в дополнение к разделу «Рельсовая колея» учебника «Железнодорожный путь» . Содержание и последовательность изложения материала соответствуют сложившейся практике решения задач в курсовом и дипломном проектировании.

    Конспект рассчитан на студентов, разрабатывающих курсовые и дипломные проекты по разделу «Проектирование рельсовой колеи».

    План лекции:

    1.2. Устройство ходовых частей подвижного состава.

    1.1. Что такое рельсовая колея?

    «Рельсовой колеей называются две геометрические линии, проходящие вдоль пути по внутренним граням головок рельсов на уровне их контакта с гребнями колес. Условно считают, что эти линии проходят по внутренним (рабочим) граням головок рельсов на уровне, находящемся на 13 мм ниже их поверхности катания». Это определение принадлежит профессору В.М. Панскому.


    Очертания рельсовых нитей под поездной нагрузкой представляют собой один из основных результатов деятельности путевого хозяйства, относятся к числу факторов, включающих железнодорожный путь в перевозочный процесс.

    Очертания рельсовых нитей во многом регламентированы нормативами на устройство и содержание рельсовой колеи.

    Основным требованием при проектировании и устройстве рельсовой колеи является обеспечение безопасности движения поездов с установленными скоростями при минимуме сил взаимодействия рельсового пути и подвижного состава.

    Согласно Правилам технической эксплуатации железных дорог РФ (ЦРБ 756) сооружение и устройство железных дорог должно соответствовать требованиям, обеспечивающим пропуск поездов с наибольшими установленными скоростями: пассажирских – 140 км/ч, рефрижераторных – 120 км/ч, грузовых – 90 км/ч, а по конкретным участкам железных дорог на основании приказа начальника дороги устанавливаются дифференцированные скорости.

    Рельсовая колея на прямых участках пути характеризуется: шириной колеи, положением рельсовых нитей по уровню и подуклонкой. На рис. 1 показана колесная пара, находящаяся на рельсовой колее в прямом участке пути.

    Размеры ширины колеи S, насадки колес Т и толщины гребней h (рис. 1) с учетом допусков и износа колес установлены ПТЭ .

    Шириной колесной колеи q (колесной пары) называют расстояние между рабочими гранями гребней (реборд) колес в расчетной плоскости. Последняя расположена на 10 мм ниже средних кругов катания колес (для неизношенных колес и рельсов).

    Рис. 1. Положение колесной пары в рельсовой колее на прямом участке пути:

    а – ширина колеса; δ 1 , δ 2 – зазоры между гребнями колес и рабочими гранями головок рельса; h 1 , h 2 – толщина гребней колес; μ – утолщение гребней колес выше расчетной плоскости; Т – насадка колес; q – ширина колесной пары; S – ширина колеи

    В кривых участках железнодорожного пути рельсовая колея устраивается с учетом следующих особенностей.

    1 . При движении железнодорожного экипажа по кривой появляется сила инерции, которую обычно называют центробежной силой. Эта сила создает дополнительное давление на наружную рельсовую нить и вызывает крен кузова на рессорах, в связи с этим рельсы быстрее изнашиваются, возникают отбои рельсовых нитей, увеличиваются напряжения в элементах верхнего строения пути, пассажиры испытывают неприятные ощущения. С целью нейтрализации вредного влияния центробежной силы в кривых приподнимают наружную рельсовую нить над внутренней, т. е. устраивают возвышение наружной рельсовой нити .

    2 . При переходе экипажа из прямой непосредственно в круговую кривую внезапно появляется центробежная сила. Для исключения динамического эффекта – внезапного воздействия экипажа на путь, вызывающего боковой толчок при входе экипажа в кривую и выходе их нее, между круговой кривой и прямой устраивают особую кривую – переходную .

    3 . Для облегчения вписывания (прохода) тележек экипажей в кривые участки пути (R < 350 м) устраивают уширение рельсовой колеи .

    4 . Для соблюдения требований габарита приближения строений (С) в кривых двухпутных линий увеличивают междупутные расстояния .

    5 . С целью обеспечения расположения рельсовых стыков в одном створе (по «наугольнику») укладывают по внутренней нити укороченные рельсы .

    Параметры рельсовой колеи как в прямых, так и в кривых участках пути должны обеспечивать безопасное движение экипажей и минимизировать их силовое воздействие на путь. Поэтому размеры и конструктивное оформление рельсовой колеи определяются во взаимосвязи ее с ходовыми частями подвижного состава, т. е. размерами и конструктивными особенностями ходовых частей экипажей, в частности, колесных пар .

    1.2. Устройство ходовых частей подвижного состава

    Любой экипаж (локомотив, вагон) состоит из неподрессоренной части и надрессорного строения. К неподрессоренной относятся ходовые части подвижного состава, т.е. тележки.

    Они предназначены для обеспечения безопасного движения экипажей по рельсовому пути с заданной скоростью, плавного хода и наименьшего сопротивления движению. На рис. 2 показана двухосная тележка грузового вагона модели 18-100, рассчитанная на конструкционную скорость движения 120 км/ч типа ЦНИИ-ХЗ-0.

    Рис. 2. Двухосная тележка грузового вагона с литыми боковыми рамами типа ЦНИИ-ХЗ-0:

    1 – литая боковая рама; 2 – надрессорная балка; 3 – комплект центрального подвешивания с фрикционными гасителями колебаний; 4 – буксовый узел; 5 – колесная пара; 6 – тормозная рычажная передача

    Тележка ЦНИИ-ХЗ-0 состоит из двух колесных пар 5 , с четырьмя буксовыми узлами 4 , двух литых боковых рам 1 , надрессорной балки 2 , двух комплектов центрального подвешивания с фрикционными гасителями колебаний 3 и тормозной рычажной передачи 6 .

    Боковая рама имеет объединенные пояса и колонки, образующие в средней части проем для размещения комплекта центрального рессорного подвешивания, а по концам – буксовые проемы.

    Надрессорная балка (рис. 3) имеет полую конструкцию замкнутого поперечного сечения и форму, близкую к брусу равного сопротивления изгибу. Она отлита вместе с подпятником, служащим опорой кузова вагона, опорами для размещения скользунов и выемками для размещения фрикционных клиньев. На каждой из двух опор скользунов размещаются перевернутые коробки 8 с регулировочными прокладками 9 .


    Рис. 3. Надрессорная балка тележки типа ЦНИИ-ХЗ-0:

    1 – подпятник; 2 – кронштейн мертвой точки рычажной передачи тормоза; 3 – опора для скользуна; 4 и 5 – бурты, ограничивающие смещения наружных и внутренних пружин рессорного комплекта при движении тележки; 6 – выемка, служащая для размещения фрикционных клиньев; 7 – полка крепления кронштейна мёртвой точки; 8 – колпак (коробка) скользуна; 9 – прокладки для регулировки зазоров между скользунами вагона и тележки; 10 – болт, предохраняющий колпак скользуна от падения; 11 – поддон для опоры шкворня; 12– колонка, усиливающая опору на подпятник пятника вагона

    Рессорное подвешивание тележки состоит из двух комплектов, каждый из которых имеет пять, шесть или семь двухрядных цилиндрических пружин (в зависимости от грузоподъемности вагона) и два фрикционных клиновых гасителя колебаний.

    Колесные пары – это ось с глухонасаженными на нее стальными колесами. Тип колесной пары определяется типом оси, диаметром колес, конструкцией подшипника и способом крепления его на оси.

    Рис. 4. Колесная пара: 1 – ось колесной пары;

    2 – бандаж; 3–5 – шейки; 6 – предподступичная часть;

    7 – подступичная часть; 8 – средняя часть

    Размеры оси (рис. 4) зависят от величины расчетной нагрузки на ось. Исходя из расчетной нагрузки определяются диаметры шеек 3 , 4 , 5 , подступичной – 7 и средней – 8 частей оси. Предподступичная часть 6 является ступенью перехода шейки к подступичной части оси и служит для установки уплотняющих устройств буксы. На подступичных частях 7 прочно закрепляются колеса.

    В настоящее время в эксплуатации находится небольшое количество колесных пар с подшипниками скольжения, которые заменяются роликовыми. На торцах шеек 5 таких колесных пар имеются буртики 9 , ограничивающие продольные перемещения подшипников скольжения.

    Основным типом вагонных колес являются цельнокатаные, а локомотивных – бандажные.

    Стальное цельнокатаное колесо (рис. 5) состоит из обода 1 , диска 2 , ступицы 3 . Рабочая часть колеса представляет собой поверхность катания 4 . Ступица 3 с ободом 1 объединены диском 2 , расположенным под некоторым углом к плоскости круга катания, что придает колесу упругость и способствует снижению уровня динамических сил во время движения. Ступица 3 служит для посадки колеса на подступичной части оси. Поверхность катания обрабатывается по специальному профилю (рис. 6).

    Бандажные (составные ) колеса состоят из колесного центра, бандажа и предохранительного кольца. Учитывая сложные условия работы и повышение надежности в эксплуатации, бандаж изготовляют из стали повышенной прочности и твердости, а колесный центр – из более вязкой и дешевой стали. При достижении предельного износа или появлении других повреждений бандаж можно заменить без смены колесного центра.

    На дорогах России установлен стандарт на размеры колес. Диаметр колес измеряют по среднему кругу катания. Средний круг катания – это вертикальное сечение колеса, которое расположено на расстоянии 70 мм от внутренней грани колеса.

    Вагонные колеса имеют диаметр по среднему кругу катания d в = 950 и 1050 мм. Локомотивные (тепловозные и электровозные) – d тэп,Эл = 1050 и 1250 мм. Диаметр колес паровозов d пар = 1200 и 1850 мм. От диаметра колес зависит износ металла головки рельсов. Колеса опираются на головку рельса небольшой площадкой, которая имеет форму, напоминающую эллипс. При прочих равных условиях площадь контакта зависит от диаметра колеса. Чем меньше диаметр, тем меньше контактный эллипс, тем большие напряжения возникают в металле головки рельса и соответственно увеличивается износ.

    Рис. 5. Стальное цельнокатаное вагонное колесо: а – внутренняя грань колеса;

    б – наружная грань колеса; 1 – обод; 2 – диск; 3 – ступица; 4 – поверхность катания

    Колеса своими ступицами (см. рис. 5) под сильным давлением (от 35 до 105 т) наглухо насаживаются на подступичную часть оси (см. рис. 4), диаметр которой на 0,1…0,3 мм больше диаметра ступиц. Таким образом, колеса могут вращаться только вместе с осью. Глухая насадка колес на оси обеспечивает неизменность расстояния между колесами и, следовательно, не допускает их проваливания внутрь колеи или схода наружу.

    Расстояние между внутренними гранями бандажей или ободов цельнокатанных колес называется насадкой Т (см. рис. 1). В Правилах технической эксплуатации железных дорог записаны нормы и допуски для указанных расстояний. Насадка вагонных и локомотивных колес Т = 1440 мм . Допуски зависят от скорости движения экипажей. При скоростях до 120 км/ч отклонения допускаются в сторону увеличения и уменьшения не более 3 мм (т. е. Т = 1440 ± 3 мм) . При скоростях от 120 до 140 км/ч отклонения допускаются в сторону увеличения не более 3 мм и в сторону уменьшения не более 1 мм, т.е. Т = 1440 (+3; 1 мм ) .

    Колеса имеют реборды (гребни). Назначение реборд – обеспечение направления и предохранение от схода колес с рельсов . Свес (высота) гребней (считая от среднего круга катания неизношенного колеса) локомотивных колес равен 30 мм, а вагонных – 28 мм (рис. 6).

    Рис. 6. Очертание и основные размеры колес:

    а – локомотивного; б – вагонного (штриховой линией показаны предельные износы колес)

    Толщина гребней (реборд) измеряется на уровне расчетной плоскости, т. е. по нормали к геометрической оси колесной пары, расположенной на расстоянии 10 мм от средних кругов катания неизношенных колес (рис. 6). Ввиду того, что поверхность катания колес со временем изнашивается, толщину гребня измеряют на расстоянии от вершины реборды 20 мм (для локомотивных колес) и 18 мм (для вагонных), которые практически остаются неизменными весь срок службы колес.

    Толщину гребней колес в расчетной плоскости принято обозначать буквой h. В процессе эксплуатации гребни колес изнашиваются неодинаково, поэтому на рис. 1 показана толщина гребня одного колеса h 1 , другого – h 2 . Выше расчетной плоскости толщина гребней вагонных колес продолжает увеличиваться на μ = 1 мм (см. рис. 1), а у локомотивных колес μ = 0.

    Толщина неизношенного нового гребня вагонного и локомотивного колес h max = 33 мм . Наименьшая толщина изношенного гребня (реборды) при скоростях движения до 120 км/ч допускается h min = 25 мм , при скорости движения более 120 км/ч до 140 км/ч h min = 28 мм .

    Колеса железнодорожных экипажей имеют коническую форму поверхности катания (рис. 6). Коническая обточка колес необходима для обеспечения плавности движения экипажей, безопасного прохода по стрелочным переводам и недопущения образования седлообразного (желобчатого) износа колес.

    Если одно такое колесо катится по рельсу меньшим кругом, а другое колесо этой же оси большим кругом, то последнее колесо будет опережать первое. Возникает виляющее движение колесной пары. Однако колесные пары в основном занимают среднее положение в рельсовой колее. Как только колесная пара выведена по каким-либо причинам из среднего положения, она сейчас же стремится вновь занять симметричное положение, при этом колесные пары будут двигаться по волнообразной кривой, а не в перекошенном в плане положении, как это было бы при цилиндрических колесах.

    Колеса с цилиндрической поверхностью катания не обеспечили бы плавности движения. Любая неровность пути (в плане или в профиле) вызывала бы резкое перемещение экипажа вбок (т. е. толчок).

    Кроме того, уже при небольшом износе таких колес на них образовывалось бы седлообразное углубление или желоб. Желоб на поверхности катания колеса недопустим, так как в ряде случаев он приводил бы к значительному росту динамических сил и даже ударных.

    Например, резкие удары получаются при прохождении колеса, имеющего седлообразный (желобчатый) прокат, по крестовине при перекатывании с сердечника на усовик или наоборот, а также по стрелке при перекатывании с остряка на рамный рельс.

    При коничности поверхности катания колес 1/20 на участке преимущественного их износа седлообразного углубления не возникает. Износ имеет вид, показанный штриховой линией на рис. 6.

    Коничность колес имеет некоторые недостатки. Она приводит к «вилянию» экипажей, является одной из причин проскальзывания колес в кривых участках пути. Однако спокойное, плавное и устойчивое движение экипажей, которое обеспечивает коничность поверхности катания колес, так важно, что с указанными ее недостатками приходится мириться.

    Колеса в поперечном разрезе имеют сложную форму (рис. 6). Гребень колес сопрягается с поверхностью катания по кривой, очерченной радиусом 15 мм у вагонов и 13,5 мм у локомотивов. Этот радиус близок к радиусу сопряжения верхней и боковой граней головки рельсов для того, чтобы затруднить вкатывание колес на рельсы. Далее идет коническая поверхность с уклоном 1/20, затем 1/7. Переход коничности колес от 1/20 к 1/7 сделан с той целью, чтобы облегчить их перекатывание с остряка на рамный рельс и с сердечника крестовины на усовик и обратно. Край колеса заканчивается фаской шириной и высотой 6 мм, у цельнокатаных колес фаска с наружной стороны заменяется закруглением радиусом 10 мм.

    В процессе эксплуатации поперечный профиль колес изменяет форму, появляется вертикальный износ (прокат), измеряемый по среднему кругу катания.

    Прокат колес пассажирских вагонов, моторвагонного подвижного состава и локомотивов при скорости движения свыше 120 км/ч до 140 км/ч не должен превышать 5 мм , а при скорости движения до 120 км/ч – более 7 мм , у моторвагонного и специального самоходного подвижного состава и пассажирских вагонов в поездах местного и пригородного сообщения – более 8 мм , у вагонов рефрижераторного парка и грузовых вагонов – более 9 мм .

    Шириной колесной пары (колесной колеей ) (см. рис. 1)называют расстояние между рабочими гранями гребней колес в расчетной плоскости .

    где Т – насадка колес; h 1 , h 2 – толщина гребней колес; μ – утолщение гребней колес выше расчетной плоскости; ξ q – уменьшение ширины колесной пары за счет упругого изгиба ее оси под нагрузкой (для загруженных вагонов ξ q = 2÷4 мм, для локомотивов ξ q = 1 мм).

    В соответствии с формулой (1) при неизношенных гребнях колес ширина колесной пары без учета изгиба оси под нагрузкой составляет: у вагонных колес

    Мм; у локомотивных колес мм.

    Наибольшая ширина колесной пары:

    – у вагонов мм;

    – у локомотивов мм.

    Считать, что минимальная ширина колесной пары вагонов мм, исходя из допускаемой минимальной насадки 1437 мм и толщины гребня 25 мм, было бы неправильно, так как на одной колесной паре совпадение изношенных до допускаемого предела 25 мм гребней одновременно на обоих колесах фактически не бывает. Один из гребней всегда изнашивается более интенсивно, чем другой и, следовательно, раньше достигает установленного предела 25 мм. Это является следствием того, что колесные пары не идеально перпендикулярны к оси кузова, а середина их не идеально совпадает с осью кузова (при сборке вагона получаются небольшие неточности в допускаемых пределах). Кроме этого, при проходе экипажей в кривых тележка вагона занимает перекосное положение, что способствует неодинаковому износу гребней колес.

    В связи с этим величина q min была установлена ЦНИИ МПС специальными обмерами массы колесных пар и обработкой результатов методами математической статистики. При этом получилось, что q min = 1492 мм .

    При расчетах взаимозависимости размеров рельсовой колеи и колесных пар следует учитывать изменение величины насадки колесных пар Т, установленной при изготовлении, и вследствие изгиба осей под нагрузкой.

    В связи с тем, что буксовые узлы в современном подвижном составе располагаются снаружи колесной пары, ширина насадки на расчетном уровне уменьшается. Величина этого уменьшения ξ q зависит от конструкции, размеров колесных пар и величины осевой нагрузки. Обычно в расчеты вводят ξ q = 2 мм для вагонов и ξ q = 1 мм для локомотивов (рис. 7).

    (или другое основание) рельсовые нити, по которым катятся колёса подвижного состава. Каждая рельсовая нить состоит из отдельных рельсов. Стыки между ними фиксируются специальными скреплениями либо сваркой. Ширина рельсовой колеи соответствует расстоянию между колёсами локомотивов и вагонов . Выбор этой ширины для железных дорог имеет свою историю. Расстояние между рельсами первых английских железных дорог соответствовало размерам карет, которые на первых порах служили вагонами. В Англии ширина колеи для карет, согласно закону, не должна была превышать 4 футов 6 дюймов, поэтому и ширина рельсовой колеи первой железной дороги была 1435 мм – всего на 2.5 дюйма шире колеи карет. Такой же размер был принят и во многих странах Европы, закупавших паровозы в Ньюкасле, на заводе Стефенсона. Эту колею, которую часто называют «нормальной», имеют примерно 75 % всех железных дорог в мире. На остальных дорогах ширина колеи различна, напр. в Ирландии – 1600 мм, в Испании – 1676 мм, в Африке, Японии и Австралии – 1076 мм и т. д. Существуют также узкоколейные дороги – 1000.914.891.762.750 и даже 600 мм, которые обычно соединяют основные магистрали с промышленными предприятиями, рудниками, шахтами и имеют свой специальный подвижной состав. В России первая между Царским Селом и Санкт-Петербургом имела ширину колеи 6 футов – 1829 мм. Дорога между Санкт-Петербургом и Москвой была построена с другой колеёй, известной во всём мире как русская, – 5 футов, или 1524 мм. Эта колея просуществовала более 100 , только в 1970 г. размер её был округлён до 1520 мм – в частности, для удобства расчётов.

    Энциклопедия «Техника». - М.: Росмэн . 2006 .


    Смотреть что такое "рельсовая колея" в других словарях:

      Две рельсовые нитки, пришитые к шпалам костылями или шурупами на точно установленном расстоянии одна от другой. Ширина жел. дор. Р. к., или расстояние между внутренними гранями головок рельсов, в большинстве европейских стран составляет 1435 мм.… … Технический железнодорожный словарь

      Измерение ширины колеи Смена тележек на ст. Гродеково (116 км от Уссурийска Ширина колеи расстояние между внутренними гранями головок рельсов, на арго железнодорожников «шаблон». В настоящее время самая распространённая ширина колеи в мире… … Википедия

      Два рельса (рельсовые нити), расположенные на определённом расстоянии один от другого, прикрепленные к опорам (шпалам) железнодорожного пути (См. Железнодорожный путь) рельсовыми скреплениями. Для большинства железных дорог мира… …

      Автомобиля, расстояние между продольными осями отпечатков (на поверхности дороги) правого и левого колёс одной оси автомобиля; при сдвоенных задних колёсах грузовых автомобилей и автобусов расстояние между серединами отпечатков правого и… … Большая советская энциклопедия

      И; ж. 1. Канавка, углубление от колёс на дороге. В глубоких колеях стоит вода. * И вязнут спицы расписные В расхлябанные колеи (Блок). 2. Железнодорожный путь, образуемый двумя параллельно лежащими рельсами. Широкая, узкая к. железной дороги.… … Энциклопедический словарь

      колея рельсовая - Две параллельные рельсовые нити, установленные на определённом расстоянии одна от другой, скреплённые со шпалами, брусьями или плитами [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN railway tracktrack gauge DE … Справочник технического переводчика

      Безрельсового сухопутного транспортного средства расстояние между колесами каждой оси или между центральными линиями гусениц транспортного средства. Колея рельсовая две рельсовые нити, уложенные на определенном растоянии одна от другой и… … Большой Энциклопедический словарь

      КОЛЕЯ - (1) безрельсового сухопутного транспорта расстояние между центрами площадей контактов (см.) с землёй, характеризующее устойчивость транспортного средства при определённой высоте его центра тяжести. Если транспортное средство имеет гусеничный ход … Большая политехническая энциклопедия

      1) расстояние между колёсами каждой оси или между центральными линиями гусениц трансп. средства. 2) Следы, образов. в мягком грунте или снегу при движении трансп. средств. 3) К. рельсовая см. Железнодорожная колея … Большой энциклопедический политехнический словарь

      Две параллельные рельсовые нити, установленные на определённом расстоянии одна от другой, скреплённые со шпалами, брусьями или плитами (Болгарский язык; Български) релсов коловоз (Чешский язык; Čeština) kolej (Немецкий язык; Deutsch) Gleis… … Строительный словарь

    Рельсовый пусть состоит из основания - земляного полотна, балластного слоя, шпал и рельсов со скреплениями.

    Земляное полотно вместе с искусственными сооружениями составляет важнейшую часть рельсовых путей и называется ниж­ним строением пути.

    Балластный слой, шпалы, рельсы и рельсовые скрепления на­зывают верхним строением пути.

    Звенья рельсов соединяются между собой и образуют «нитку» рельсового пути. Две нитки составляют рельсовую колею. Расстоя­ние между внутренними гранями головок рельсов называют шири­ной рельсовой колеи.

    В промышленности строительных материалов стандартной яв­ляется узкая колея шириной 750 мм.

    Расположение пути определяется трассой, планом и профилем. Ось пути, разбитая на местности (или нанесенная на карту), на­зывается трассой. Проекция трассы на горизонтальную плоскость Называется планом пути. Проекция развернутой трассы на вер­тикальную плоскость называется профилем пути.

    Трасса пути по возможности должна иметь минимум кривых, у которых радиус должен быть принят в соответствии с нормами проектирования.

    Профиль пути должен быть по возможности спокойным, неров­ности следует «смягчать» путем подрывки и подсыпки.

    Назначение щебеночного балластного слоя - равномерно рас­пределять давление, воспринимаемое шпалами, на основание пути. Балласт делает путь более упругим, смягчает удары колес подвиж­ного состава о рельсы, позволяет держать шпалы и рельсовые пути на одном определенном уровне. Шпалы, к которым прикреп­ляют рельсы, связывают обе нитки рельсового пути, обеспечивая постоянство ширины колеи, передают и распределяют давление от рельсов на балласт. Шпалы изготовляют железобетонными пли из древесины хвойных пород, для предохранения от гниения их пропитывают антисептиками. Шпалы для колеи шириной 750 мм Имеют длину 1,5 м. Расстояние между шпалами 600-800 мм (1500 шпал на 1 км пути).

    Путь в плане состоит из отдельных прямых участков, соеди­ненных между собой плавными кривыми. Профиль пути состоит из горизонтальных и наклонных участков, соединенных между собой сопрягающими дугами. Величину уклона измеряют танген­сом угла наклона I = tg р и обозначают десятичной дробью или знаком °/0[). Например, уклон в 4 тясячных обозначается I = = 0,004 или I - 4 °/00.

    Продольные уклоны узкоколейных путей прини­мают в пределах 15-20 °/00.

    На рабочих площадках, во избежание самокатного движения вагонеток, продольные уклоны принимают меньшими в зависи­мости от грузоподъемности подвижного состава:

    Грузоподъемность вагонеток в т................................. 1,2,3,5

    Уклоны путей в %о................................................... 6, 5, 4. 3

    Земляное полотно для узкоколейных путей устраивается с не - заглубленным (рис. 156, а) и с заглубленным (рис. 156,6) балласт­ным слоем.

    Пути с незаг луб ленным балластным слоем целесообразно устраи­вать за пределами иромплощадки или на территории, удаленной От цехов, с незначительным движением безрельсового транспорта, "когда пути не связаны с отметками чистого пола в зданиях и плани­ровочными рабочих площадок.

    На п ром площадке пути обычно связаны с отметками чистого Пола зданий и прокладываются по центральной части промпло - Щадки, где они пересекают автопроезды, тротуары и рабочие пло­щадки с твердым покрытием, вследствие чего укладку узкоколей­ных путей следует производить с заглубленным балластным слоем.

    18 Евневич 273

    Устройство путей с незаглубленным балластным слоем вызы­вает необходимость повышения проездов и тротуаров в местах пересечений, чем нарушаются планировка, система водоотвода и благоустройство промплощадки.

    Для перевода подвижного состава пути соединяют между собой специальными устройствами, которые можно разделить и а две

    Поворотная плита надета на центральную цапфу и по краям опи­рается на шарики, уложенные в кольцевом желобе неподвижной плиты.

    В цехах заводов промышленности строительных материалов для перевода отдельных платформ или вагонеток на несколько параллельных путей широко применяют поперечные тележки, перемещаемые по поперечному рельсовому пути, обслуживающему несколько параллельных цеховых путей (рис. 158). На платформе поперечной тележки уложены короткие рельсы, иа которые вка-

    Тывается вагонетка. Для того чтобы головки рельсов на тележке находились на одном уровне с головками рельсов параллельных путей, поперечный рельсовый путь должен быть заглублен.

    Для соединения и разветвления путей при движении по ним как отдельных вагонеток, так и поездов, служат стрелочные пере­воды.

    Стрелочный перевод (рис. 159) состоит из двух остряков или перьев 1 с соединяющими тягами, рамных рельсов 2, переводного механизма Зу крестовины 4, переходных рельсов 5 , контррель­сов 6.

    Остряки (перья) изготовляют сострагиванием иа клин от­резков обыкновенных рельсов. Передний острый конец пера иа-

    Зывают острием, а противоположный - корнем. Стрелочные перья соединены между собой поперечными стяжками. Когда одно перо прижато к рамиому рельсу, второе отодвинуто иа расстоя­ние, достаточное для прохода реборды колеса. Это расстояние называется шагом пера.

    Крестовину изготовляют из стального литья или сварной. В горле крестовины нитка рельсового пути оказывается прерван­ной, и на этом участке колеса теряют направляющий их рабочий кант. Поэтому для направления подвижного состава против кре­стовины у наружных рельсов устанавливают контррельсы, кото­рые еще до подхода вагонетки к крестовине направляют реборду колеса в нужном направлении.

    Стрелочный перевод характеризуется маркой крестовины -

    Двойным тангенсом половинного угла -|г между осями соединяе­Мых путей

    Обычно применяют крестовины марок ]/5, У7 и V9. Стрелку можно переводить вручную или дистанционно при помощи мотор­ного или электромагнитного привода.

    При укладке путей, а также при про­ектировании всех сооружений, примыкаю­щих к железнодорожным путям, следует учитывать установленные габариты при­ближения строений и габарит подвиж­ного состава.

    Габаритом приближения строений на­зывают предельное поперечное очертание железнодорожного пути,^внутрь которого ие должны заходить никакие части"соору - жений и устройств, расположенных по обеим сторонам пути.

    Габаритом подвижного состава назы­вают предельное поперечное очертание, в котором, не выходя наружу, должен поме­щаться па прямом горизонтальном пути исправный и нагруженный подвижной со­став со всеми выступающими частями и поездными сигналами.

    Габарит приближения строений должен быть больше габарита подвижного состава, чтобы между ними оставался промежуток, соответствующий нормированным допу­скам.

    Габариты для путей широкой колеи показаны на рис. 160, а, для узкой колеи (750 мм) - иа рис. 160, б.

    Железнодорожная колея, состоит из двух параллельных рельсовых нитей, уложенных на основание, в состав которого входят блоки, брусья и шпалы. Последние изделия изготавливаются из различной древесины, но предпочтение отдаётся сосне. В последнее время всё чаще для этих целей применяется железобетон. Все перечисленные составляющие крепятся с учётом определённого расстояния друг от друга. Рельсовая колея непосредственно направляет колёса подвижного состава, следующего во время движения по криволинейным и прямым участкам дороги. Рельсовая подуклонка и ширина самой колеи считаются основными параметрами всей колеи в целом. Наклон внутренней части колеи в соотношении с верхней плоскостью, состоящей из шпал, в терминологии носит название подуклонка рельсов. Как и во всех инженерных сооружениях, рельсовые пути имеют специальные допуски превышать которые нельзя, для этих целей совершаются периодические осмотры железной дороги. Установленный регламент проведения осмотровых работ предназначен регулирования периодичности их исполнения.

    Ширина колеи в России

    Стандартная

    Ширина колеи железной дороги в России имела в разные времена и на разных путях различные параметры данного показателя. Так первая российская железная дорога, соединяющая Царскосельский вокзал города Санкт-Петербурга, Царское Село и Павловское, была запущена в эксплуатацию в 1837 году. Носила название Царскосельского пути. Ширина рельсовой колеи той поры равнялась значению - 1829 мм. Но уже в 1851 году Россия торжественно открывает Перетербурго-Московскую железную дорогу. После смерти императора Николая Первого в 1855 году, ветка пути становится Николаевской. Как правило, после свершения революции в России начинают переименовывать всё и вся. Не избежала данной участи и Николаевская дорога, начиная с 1923 года, во всех документах она проходит уже, как Октябрьская. Сообщение по ней осуществлялось между Москвой и Санкт-Петербургом, параметр ширины рельсовой колеи равен 1524 мм, отличаясь от значительной части европейских стран, порядка 60 % от общего числа государств в большую сторону на 89 мм. Но, несмотря на все эти описанные различия, данный размер ширины колеи железной дороги на долгие годы в Российской империи и в СССР становится тем самым пресловутым стандартом.

    Протяжённость Николаевской дороги составляла шестьсот четыре версты или 645 километров. В качестве сравнения, астрономический расчёт данного пути между Москвой и Санкт-Петербургом равен показателю 598 версты, тогда, как длина шоссейной дороги между назваными городами равнялась 674 вёрстам. Всё это ярко свидетельствует в защиту чисти легенд, связанных со строительством дороги.

    Одной из популярных баек заключалась в том, что Николай Первый отдавал все распоряжения, касающиеся строительства будущей Николаевской железной дороги, лично сам. Свидетели подтверждают, что император очертил линию путей сообщения по линейке. Правда, не обошлось без казуса, якобы самодержец, проводя линию дороги, очертил на карте, в районе Бологого один из пальцев своей руки. Государевы указания не обсуждаются, а выполняются. Хотя, на самом деле данный изгиб имеет своё объяснение. В районе Мстинского моста должен был прокладываться путь по прямой, но мощности тогдашних паровозов явно бы не хватило, поскольку перепад природного профиля не позволил бы это сделать, дополнительно пришлось бы цеплять ещё один паровик. Потому пришлось строить путь с изгибом, так называемый, Веребьинский обход, при этом, создавая и новую станцию Оксочи. Сегодня другие времена и другие мощности локомотивов, а кривая железной дороги с большим радиусом позволяет обеспечивать на указанном участке скоростное движение поездных составов. Даже кривые с меньшим радиусом сегодня будут реконструированы. Давно уже нет серпантина Веребьинского обхода, а в станции Оксмочи больше нет надобности, Октябрьская железная дорога стала действительно прямой, как и хотел того российский самодержец. Дорога изначально создавалась с двумя линиями путей.

    Что касается ширины рельсовой колеи, то к этому стандарту инженеры обратились из-за экономии, учитывая опыт строительства Царскосельской дороги, а также строительный опыт американских инженеров по созданию железнодорожных путей. Чем шире колея, тем больше потребуется денежных ассигнований. В действительности споров о ширине рельсовой колеи вначале проектирования было очень много. На этом настаивал в своё время американский инженер Уистлер. Европейская колея с размером - 1435 мм российскими спецами была отвергнута по причине отсутствия необходимого уровня устойчивости, а главное, невозможности развивать высокую скорость, а какой же русский человек не любит прокатится с ветерком. Имелись по этому поводу и соображения оборонительного характера. Тогда считалось, что наступающий неприятель не сможет воспользоваться русской железной дорогой из-за разницы в её ширине. Что в большей степени и подтвердилось при ведении военных действий вражескими войсками на территории нашего государства в период первых двух мировых войн. Любители легенд свидетельствуют, что спорам о ширине рельсовой колеи положил конец Николай Первый, ответив на вопрос инженеров о возможности выбора ширины дороги относительно европейского или американского параметра. Решение императора было быстрым, кратким и лаконичным: «Шире американской не надо - дорого, меньше европейского стандарта не следует, рассчитывайте на размер русской телеги.» Что и было создано, в обличии русского стандарта, равного - 1524 мм. Несмотря на то, что это всего лишь легенда, но она родилась на реальных событиях. Ширину колеи российского стандарта применяют В Монголии и по сегодняшний день в Финляндии. Начиная с мая 1970 года, на железной дороге России применяется рельсовая колея с шириной, равная - 1520 мм. Поскольку разница с предыдущим стандартом является незначительной, всего четыре миллиметра, то подвижной состав не подвергался переоборудованию. Однако уже в то время начавшийся переходный период показал, что наши железные дороги сталкивались с серьёзными проблемами, поскольку на подвижном составе, у колёсных пар начался резкий рост износа. До сегодняшнего учёные так и не определили точной взаимосвязи колёсного гребня колёсной пары и рельсовой шириной железной дороги.

    Узкая колея

    Железная дорога с узкой колеёй может обладать следующими параметрами, например, декавилевскую колею создали во Франции, её ширина равна значению - 500 мм, строилась она первоначально в сельских районах. Проект создавался французским инженером Полем Декавилем. Поскольку он был выходцем из сельской местности, то и приложил свои руки для облегчения крестьянского труда. Основу такой дороги составляли рельсошпальные решётки с металлическими элементами. В вагонетках по таким путям перевозили вручную урожай свёклы. В последующем система модернизировалась и имела широкое применение на полях сражений, во внутренних помещениях оборонительных сооружений доставлялись снаряды непосредственно к орудиям. Горная промышленность Европы тоже использовала подобную колею, перевозя добытую руду. Тяговая сила таких дорог начинала свою модернизацию с гужевой тяги. В Российской империи возможности применения декавилевской колеи было опробовано инженером путей сообщения М. С. Волковым.

    Возможности узкоколейных дорог с шириной - 600 мм или 1200 мм нашли своё применение на гражданских или военных объектах. Российские узкоколейные железные дороги имели ширину путей, равную - 750 мм. Все республики Прибалтики тоже применяли подобную ширину колеи на своих предприятиях и сооружениях. Эстония стала использовать такую колею с 1896 года, первый путь соединил города Валга и Пярну. В начале двадцатого столетия ветка с узкой колеёй появилась и в таллиннском порту. В последующем были налажены сообщения с районами Украины и СССР. В Эстонии и по сей день функционирует депо, которое обслуживало составы, работающие на дорогах с узкой колеёй. Сегодня это предприятие обслуживает дизельные составы и обычные локомотивы.

    Трамвайная

    Трамвайные пути в различных российских городах имеют и разную ширину. Так, в Ростове-на-Дону ширина трамвайных путей равна размеру стандарта европейских железнодорожных путей - 1435 мм. Такие города, как Пятигорск или Калининград применяют трамвайные пути с шириной – 1067 мм. Такая же ширина путей в эстонском Таллине. В германском городе Лейпциге ширина трамвайной колеи равна – 1458 мм, а в Дрездене – 1458 мм. Сегодня на российской территории сохранена пятигорская и калининградская система.

    Метро

    В российском метрополитене используется такая же ширина путевой колеи, как и на железной дороге в нашем государстве.

    Ширина колеи в разных странах

    В 1830 году открывается железная дорога по маршруту Манчестер – Ливерпуль, одним из авторов проекта являлся английский инженер Джордж Стефенсон. Размер ширины рельсовой колеи был равен - 1435 мм, что составляло в английских мерах: четыре фута и восемь с половиной дюймов. По истечению шестнадцати лет, указанная ширина колеи становится европейским стандартом. Эта же колея была установлена на железных дорогах в США, в 60 % части европейских стран и в Китае.

    Сверхширокая колея

    В тридцатых годах девятнадцатого столетия была завершена стройка Большой западной дороги. Ширина её рельсовой колеи была равна значению – 2135 мм. Английским инженером Изамбартом Брунелем, жившему в то бурное время, были сделаны предложения о строительстве сверх широкой колеи. Но его прожектам не суждено было сбыться. В 1945 году разногласиям относительно размеров ширины рельсовой колеи был положен конец английским законодательным органом.

    Согласно решению английского парламента, обоснованного по результатам работы специальной парламентской комиссии, эталоном размера ширины рельсовых путей на территории Великобритании становится показатель, равный значению - 1435 мм, и с той поры должен устанавливаться на всех строящихся железнодорожных путях. Дороги, которые не соответствовали принятому стандарту подлежали реконструкции. Интересен и тот факт, что нарушители того принятого закона, полежали штрафу в размере десяти фунтов стерлингов за каждый день существования, каждой обнаруженной сухопутной мили нестандартной дороги.

    На этом история создания сверх широкой рельсовой колеи не заканчивается. В 30-х годах. 20 столетия, специалистами третьего рейха была предпринята попытка по разработке сверх ширококолейной скоростной железной дороги, носящей название «Breitspurbahn», ширина её колеи равнялась - 3000 мм. Строительство данной сети дорог планировалось на европейском и в последующем на азиатском континенте. Замысел авторов проекта заключался в связывании территорий Индии и Японии со всей Европой. Для наглядной демонстрации был построен небольшой участок дороги. Инженеры трудились над созданием принципиально нового типа вагонов, тепловозов и паровозов. Осуществить проект не удалось.

    В 2001 году в виде горной фуникулёрной дороги для осуществления подъёма горных лыжников была создана «Cairngorm Mountain Railway», её ширина равна – 2000 мм. В Нидерландах такая дорога имела колею, равную - 1945 мм. В Англии максимальное значение ширины достигло - 1880 мм. Максимальная ширина колеи первой российской Царскосельской железной дороги составила - 1829 мм, на территории Франции данный показатель достиг значения – 1750 мм.

    История рельсовой колеи

    Рельсы и паровозы

    В нашем обществе сложилось несколько утилитарное представление о том, что рельсовый транспорт как таковой появился в середине XVIII века с изобретением паровых колёсных машин. При этом в истории остались такие имена гениальных конструкторов как Иван Иванович Ползунов, Джеймс Уатт и Ричард Тревитик. Однако перемещение больших грузов по рельсам имеет более древнюю историю и традиции. Не менее древнюю, чем такое понятие как колея железной дороги.

    Немного теории

    Для того, чтобы немного более правильно воспринимать необходимость возникновения рельсового транспорта и такого параметра как колея железной дороги стоит немного вспомнить курс физики из той же начальной школы. Из него мы где-то можем вспомнить, что давление на ту или иную поверхность распределяется прямо пропорционально площади, на которую мы воздействуем. В данном случае вполне приемлем пример, когда усилием нашей руки мы не можем отверстие в той же ткани или древесине, но вооружившись иголкой, при той же силе воздействия мы это делаем без особого труда. В несколько ином примере ступая по снегу, мы запросто проваливаемся под свежевыпавший наст. Но если мы наденем на ноги лыжи или иные приспособления, то данная проблема будет решена.

    Рельс – слово произошло от многочисленного числа английского слова «rails» - от латинского «regula», что означает прямая палка. Такое техническое решение было изобретено древними римлянами, и начальная ширина между рельсами составляла 143,5 см., что несколько меньше современного значения такого параметра как колея железной дороги для большегрузного рельсового железнодорожного транспорта.

    Аналогичная проблема возникала и у наших предков, при транспортировке больших тяжёлых грузов. Грузы просто застревали в том же грунте или песке. С учётом именно этой особенности и обстоятельств наши предки начали располагать сам груз, на какой либо подложке, которая и распределяла общую нагрузку на более большую площадь, чем площадь самого груза, и делала возможность перемещения груза более приемлемой.

    Именно таким образом поступили древние греки, когда у них появилась необходимость транспортировать свои морские корабли через Коринфский перешеек. Выложив весь маршрут из каменных плит, смазанных жиром, греки с наименьшими затратами перемещали свои суда в нужном направлении. И здесь возможно впервые стоит упомянуть такое понятие как колея железной дороги, хотя более корректно это необходимо было бы назвать как колея каменной дороги, но сущность понятия и параметра от этого не меняется. В данном случае это был желоб, выдолбленный в каменных плитах по которым и перемещали сами корабли. Правда, в отличие от современных аналогов в качестве движущей силы применяли не паровые локомотивы или упряжки лошадей тяжеловозов, корабли тащили рабы, и если верить древнегреческим историкам это им удавалось довольно не плохо.

    Колея железной дороги это строго установленное расстояние между внутренними сторонами уложенного рельса, и являющееся неизменным на всём протяжении данного пути.

    Рельсовый транспорт в Европе

    Многовековой опыт древних греков и римлян по перемещению больших грузов при помощи рельсов не канул в лету и успешно был реализован в горнорудной промышленности Германии и Англии XVI – XVIII веков. Так в частности на шахтах германской Тюрингии для транспортировки добытой руды, предприниматели начали применять деревянные рельсы, по которым перемещались вагонетки. Особенностью этого проекта являлось то обстоятельство, что отличие от иных аналогичных разработок конструкция колёс вагонеток имели так называемые реборды.

    Реборда - от французского слова «reborde» - «гребень», несколько выступающая часть конструкции колеса или шкива, предназначенная для удержания движения колеса или троса в заданном направлении. Расстояние между наружными кромками реборды у железнодорожных колёсных пар соответствует такому параметру как колея железной дороги.

    В то же время предприниматели предприятий расположенных на поверхности не стали отставать от своих коллег занимавшихся шахтным бизнесом. И уже в 1603 году для транспортировки добытого угля к потребителям вблизи Ноттигема появляется первая наземная «Уоллатонская вагонная дорога». На ней тоже применялись деревянные рельсы, у которых колея железной дороги была аналогичной той, которая применялась в шахтах, а её протяженность по тем временам была просто колоссальной, целых три с половиной километра. Просуществовала «Уоллатонская вагонная дорога» так же довольно продолжительное время вплоть до закрытия в 1620 году самой шахты.

    Отечественный рельсовый транспорт

    Не отставали от своих европейских коллег и отечественные изобретатели и бизнесмены. Так в 1755 году на Алтайском горнодобывающем предприятии была построена одна из первых в России узкоколейных рельсовых дорог. Колея железной дороги составляла значительно меньшие размеры, чем это было принято в Европе, и имела всего 650 миллиметров между внутренним расстоянием деревянных рельс. В данном случае такая колея железной дороги была обусловлена шириной, как самой шахтной выработки, так и применением несколько иного метода транспортировки груза.

    Так в частности, если на европейских шахтных выработках для транспортировки вагонеток использовались или сами шахтёры или лошади, то на алтайских шахтах вагонетки перемещались при помощи троса протянутого вдоль всего маршрута. При этом сам трос был выполнен в виде замкнутого кольца закреплённого на двух шкивах, вращение которых приводило к перемещению всего троса вдоль всего маршрута. Сами же вагонетки можно было зацепить специальными крючками за кольца, расположенные на тросе с определённым шагом. Шкивы, как и сам трос, приводились в движение парой или тройкой лошадей. Такое решение однозначно давало возможность применения не только меньшей величины такого параметра как колея железной дороги, но и возможность осуществлять торможение вагонетки и изменение направления её движения при непрерывном движении троса.

    С отечественный историей железнодорожного транспорта можно ознакомится в .

    Чугунный колесопровод

    Не менее примечательным моментом в истории отечественных железных дорог является строительство в 1788 году в Пертрозаводстке, на Олонецких горных заводах Чарльза Гаскойна первой в царской России железной дороги. В отличие от многих существовавших в то время в России рельсовых дорог, эта рельсовая дорога была полностью выполнена из чугуна, из-за этого в народе, она была прозвана «Чугунным колесопроводом». Колея железной дороги, по примеру европейских производителей подвижного состава, была установлена в пределах 800 миллиметров. В данном случае этого было вполне достаточно для устойчивой транспортировки руды и отливок из сталеплавильного цеха в сверлильный, где дополнительно обрабатывались отливки стволов пушек. При этом на всём протяжении этой дороги в качестве тягловой силы использовались рабочие.

    Эта узкоколейная железная дорога в том или ином виде просуществовала до 1956 года, когда Онежский сталелитейный завод был перепрофилирован в тракторный. А отдельные фрагменты данной дороги были демонтированы и выставлены в Карельском краеведческом музее.

    Первые паровозы

    Хотя, по мнению многих историков, пальма первенства в изобретении и постройке первого парового локомотива принадлежит англичанину Ричарду Тревитику, однако его проект 1804 года к сожалению не получил должного распространения. И основная проблема была не в самой конструкции парового локомотива, а в конструкции и материале из которого изготавливались рельсы. И если такой параметр железнодорожного полотна как колея железной дороги удалось определить более или менее объективно в 1435 миллиметров, что обеспечивало вполне надёжную устойчивость движения состава, однако проблема возникла с качеством рельс. Так как, на то время основным материалом для их изготовления использовали чугун, то такие чугунные рельсы не всегда выдерживали те нагрузки, которые развивали, как сам паровой локомотив, так и перемещаемые им нагруженные вагоны.

    С учётом этого наиболее удачная модель парового локомотива появилась только в 1812 году с лёгкой руки англичанина Джорджа Стеферсона. Его паровой локомотив «Ракета» была настолько удачной конструкции, что выиграл специальные соревнования на участке Манчестер – Ливерпуль, что послужило толчком для многих шахтовладельцев выделить средства на строительство железной дороги Дарлингтон – Стоктоун. При этом рельсы начали изготавливать из стали, а колея железной дороги стала практически стандартом и составила 1435 миллиметров.

    Не менее интересным моментом является и то обстоятельство, что именно с этого периода деревянные шпалы под рельсы, начали укладывать не вдоль расположения рельс, а в поперечном, более привычном для нас положении. При этом такая конструкция крепления рельс давала более жёсткое их расположение одной рельсы относительно другой, тем самым колея железной дороги на всём протяжении пути имела меньший разброс этого параметра.

    Типы рельс

    Рельсы деревянные

    Если первые рельсы, изготовленные из дерева, имели один и существенный недостаток это износостойкость, то для его устранения или минимизации, некоторые конструкторы начали покрывать поверхность деревянной рельсы полосами металла. Но более перспективным предложением стало применение вместо металлических полос, уголков изготовленных из железа. В данном случае вертикальная направляющая железного уголка являются направляющими при движении, как парового локомотива, так и самих вагонеток. При этом впервые в практике рельсового транспорта колёса катились по внешней стороне вертикальной полки уголка, а расстояние между этими элементами рельса есть не что иное, как колея железной дороги.

    Рельсы чугунные

    Приблизительно в 1790 году английский изобретатель Джордж Утрам предложил изготавливать рельсы в виде чугунных пластин с двойными направляющими. Где колея железной дороги уже по самой конструкции рельса, была неизменной и составляла уже знакомую нам величину в 1435 миллиметров, что в свою очередь определяло неизменность такого параметра как колея железной дороги на всём протяжении уложенной колеи. Такие рельсы довольно легко монтировались в цельный путепровод и при необходимости могли с минимальными трудозатратами быть демонтированы и перенесены в иное место по необходимости. Не менее примечательным моментом такой конструкции было и то обстоятельство, что возможность изготовления таких плит методом литья решала и такую проблему как их взаимозаменяемость и стандартизация данной конструкции. В связи с этим данный тип рельс получил довольно большое распространение как на угольных шахтах и открытых рудниках, так и на промышленных предприятиях в качестве транспортного средства перемещения сырья и материалов внутри производственных помещений.

    Головчатые рельсы Джессона

    Однако более революционным изобретением этого периода стала работа английского инженера-механика Стивена Джессона, работавшего на угольных рудниках Лоуберроу. Немного разбираясь в теоретической механике и такой научно-технической дисциплине как сопротивлении материалов, Джессон предложил практически современную конструкцию рельса, головчатого типа, где колея железной дороги определялась так же по расстоянию между внутренними сторонами головки рельса.

    При этом такая конструкция обеспечивала не только приемлемую технологичность изготовления и монтажа этого типа рельс, но и давала довольно существенную экономию самого металла. Так в частности в конструкции Джессона, направляющая реборда, располагалась не по всей длине рельса, а только на колёсной паре парового локомотива или грузопассажирского вагона. При этом сама форма рельса вместо чисто прямоугольной формы, имеет форму «двутавра», что существенно снижает не только вес самого рельса, но и снижает расход металла на его изготовление. Но не зависимо от этого колея железной дороги осталась не изменой величиной в 1435 миллиметров, так как при помощи специальных зажимов, так называемых «глухарей», обе рельсы довольно жёстко крепились к набору уложенных шпал.

    Металлургия

    По мнению многих историков, именно разработка и широкое применение рельса конструкции Джессона дало существенный толчок развитию металлургии. Ведь перед её специалистами были поставлены задачи не только по увеличению объёмов производства стали, но и получения соответствующего профиля. С учётом этого уже к середине XVIII века сталь начали производить наиболее прогрессивными методами, такими как бессемеровский, мартеновский и конверторный. А само производство стальных рельс, освоили на прокатных станах. Что в свою очередь давало более стабильные значения как самой геометрии рельса, так и такого параметра, как колея железной дороги. При этом первый прокатный стан, для масштабного промышленного производства рельс был сконструирован ещё в 1828 году английским инженером Нилом Беркиншау. На первой конструкции этого прокатного стана, было возможно получение стальных рельс, длинной в 4.5 метра. Однако после соответствующей его модернизации этот показатель на прокатном стане был доведен до 7.25 метра, что давало существенное сокращение трудозатрат при монтаже рельсового пути или при проведении ремонтных работ. И здесь не следует забывать, что при более длинной базе единицы рельсового полотна, такой показатель, как колея железной дороги так же имеет более стабильные показатели допустимого предела отклонений.

    Ещё одной проблемой, которую необходимо было решить металлургам в вопросах производства рельсовой продукции это её прочность и износостойкость. Первые рельсы, изготовленные из углеродистой стали, имели довольно низкие показатели этих параметров, которые помимо всего прочего существенно влияли и на такой показатель как колея железной дороги.

    Так, что со временем для устранения этих недостатков металлурги разработали специальные легированные сплавы для производства как самих рельс, так и основных элементов подвижного состава. К последним в первую очередь следует отнести колёсные пары подвижного состава, которые в значительной степени влияют на такой параметр как колея железной дороги.

    С учётом этого, металл из которого изготавливают эти изделия, содержат в определённом процентном содержании такие легирующие металлы как марганец, ванадий, титан и цирконий. При этом с технологической точки зрения для получения требуемых параметров металла немаловажную роль играет и термическая обработка готовых изделий. Так в частности по разработанным технологиям глубина термической обработки должна составлять не менее 8 – 10 миллиметров от поверхности изделия, а в самой макроструктуре металла не допускаются микротрещины, пустоты и посторонние включения. Хотя данные показатели химического состава и физических свойств металла существенно не влияют на такой показатель как колея железной дороги, но они в значительной степени определяют качество и надёжность основных элементов подвижного состава.

    Как выбрали стандарт колеи?

    По мнению многих специалистов железнодорожников остаётся определённой загадкой, по какой именно причине в качестве стандарта такого параметра как колея железной дороги был выбран размер именно 4"81/2" или 1435 миллиметров. Существует немало версий появления этого размера, но практически все они не имеют строго научного и документального подтверждения.

    При этом многие из этих специалистов считают, что увеличение такого параметра как колея железной дороги до величины 51/2" или даже до 6", имело бы хоть какое-то экономически целесообразное обоснование. Ведь более широкая колея железной дороги дала бы возможность более рациональное размещение механизмов парового локомотива, в частности при той же его длине можно было существенно увеличить объём парового котла. Не говоря уже о большей устойчивости подвижного состава и реальной возможности увеличения скорости движения, в тех же грузовых или пассажирских вагонах, возможно, было бы большего количества грузов. Здесь достаточно вспомнить довольно амбициозный проект начала 30 - х годов разрабатывавшийся в Германии «Breitspurbahn», где колея железной дороги составляла не много не мало, а 3000 миллиметров. И это были не только фантазии немецких конструкторов по созданию трансконтинентальной железной дороги начинавшейся в столице Третьего рейха и пересекавшей всю Европу и Азию с целью соединить Берлин с Японией и Индией.

    Так, что данный вопрос не является абсолютно праздными и носит под собой существенные как технические, так и экономические проблемы.

    Где-то с аналогичными проблемами, по определению такого параметра как колея железной дороги столкнулись конструкторы скоростных пассажирских поездов. Ведь при тех же габаритах подвижного состава необходимо было решить многие технические проблемы для возможности движения таких поездов со скоростью гораздо более 320 км/час.

    Вопросы стыковки

    Не менее интересной проблемой в развитии отечественной железной дороги является вопрос стыковки европейской железнодорожной колеи с колеёй расположенной на территории России. Ведь европейская колея имеет стандартный размер в 1435 миллиметров, при, том, как российская колея железной дороги имеет размер 1520 миллиметров.

    С целью обеспечения беспрепятственного перемещения грузопассажирских потоков в такие страны как Польша, Словакия, Венгрия и Румыния на приграничной территории были оборудованы так называемые «стыковочные» узлы, где производится перестановка вагонных тележек одного стандарта на иной. В среднем данная операция занимает до двух – двух с половиной часов. При этом на «стыковочных» узлах задействуются мощные домкраты, поднимающие пассажирские и грузовые вагоны на требуемую высоту. При этом на подвижный состав устанавливаются колёсные пары, на которых колея железной дороги соответствует требуемому размеру.