Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Статическая устойчивость системы. Динамическая устойчивость энергосистемы

    Статическая устойчивость системы.  Динамическая устойчивость энергосистемы

    Под динамической устойчивостью понимается способность энергосистемы сохранять синхронную параллельную работу генераторов при значительных внезапных возмущениях, возникающих в энергосистеме (КЗ, аварийное отключение генераторов, линийу трансформаторов).

    Для оценки динамической устойчивости применяется метод площадей. В качестве примера рассмотрим режим работы двухцепной электропередачи, связывающей электростанцию с энергосистемой, при КЗ на одной из линий с отключением поврежденной линии и ее успешным АПВ (рис. 10.3,а).

    Исходный режим электропередачи характеризуется точкой 1, расположенной на угловой характеристике I, которая соответствует исходной схеме электропередачи (рис. 10.3,б).

    Рис. 10.3. Качественный анализ динамической устойчивости при К3 на линии электропередачи: а - схема электропередачи; б - угловые характеристики электропередачи; в - изменение угла во времени

    При К3 в точке К1 на линии W2 угловая характеристика электропередачи занимает положение II. Снижение амплитуды характеристики II вызвано значительным увеличением результирующего сопротивления между точками приложения . В момент К3 происходит сброс электрической мощности на величину за счет снижения напряжения на шинах станции (точка 2 на рис. 10.3,б). Сброс электрической мощности зависит от вида К3 и его места. В предельном случае при трехфазном К3 на шинах станции происходит сброс мощности до нуля. Под действием избытка механической мощности турбин над электрической мощностью роторы генераторов станции начинают ускоряться, а угол увеличивается. Процесс изменения мощности идет по характеристике II. Точка 3 соответствует моменту отключения поврежденной линии с двух сторон устройствами релейной защиты РЗ. После отключения линии режим электропередачи характеризуется точкой 4, расположенной на характеристике , которая соответствует схеме электропередачи с одной отключенной линией. За время изменения угла от до роторы генераторов станции приобретают дополнительную кинетическую энергию. Эта энергия пропорциональна площади, ограниченной линией , характеристикой II и ординатами в точках 1 и 3. Эта площадь получила название площадки ускорения . В точке 4 начинается процесс торможения роторов, так как электрическая мощность больше мощности турбин. Но процесс торможения происходит с увеличением угла . Увеличение угла будет продолжаться до тех пор, пока вся запасенная кинетическая энергия не перейдет в потенциальную.

    Потенциальная энергия пропорциональна площади, ограниченной линией и угловыми характеристиками послеаварийного режима. Эта площадь получила название площадки торможения . В точке 5 по истечении некоторой паузы после отключения линии W2 срабатывает устройство АПВ (предполагается использование трехфазного быстродействующего АПВ с малой паузой). При успешном АПВ процесс увеличения угла будет продолжаться по характеристике (точка 6), соответствующей исходной схеме электропередачи. Увеличение угла прекратится в точке 7, которая характеризуется равенством площадок . В точке 7 переходный процесс не останавливается: вследствие того что электрическая мощность превышает мощность турбин, будет продолжаться процесс торможения по характеристике , но только с уменьшением, угла. Процесс установится в точке 1 после нескольких колебаний около этой точки. Характер изменения угла 5 во времени показан на рис. 10.3,в.

    С целью упрощения анализа мощность турбин во время переходного процесса принята неизменной. В действительности она несколько меняется вследствие действия регуляторов частоты вращения турбин.

    Таким образом, анализ показал, что в условиях данного примера сохраняется устойчивость параллельной работы. Необходимым условием динамической устойчивости является выполнение условий статической устойчивости в послеаварийном режиме. В рассмотренном примере это условие выполняется, так как мощность турбин не превышает предела статической устойчивости.

    Устойчивость параллельной работы была бы нарушена, если бы в переходном процессе угол перешел значение, соответствующее точке 8. Точка 8 ограничивает справа максимальную площадку торможения. Угол, соответствующий точке 8, получил название критического . При переходе этой границы наблюдается лавинное увеличение угла , т.е. выпадение генераторов из синхронизма.

    Запас динамической устойчивости оценивается коэффициентом, равным отношению максимально возможной площадки торможения к площадке ускорения:

    При режим устойчив, при происходит нарушение устойчивости.

    В случае неуспешного АПВ (включения линии на неустранившееся К3) процесс из точки 5 перейдет на характеристику II. Нетрудно убедиться, что в условиях данного примера устойчивость после повторного К3 и последующего отключения линии не сохраняется.

    Для выяснения принципиальных положений анализа динамической устойчивости рассмотрим явления, возникающие при внезапном отключении одной из двух параллельных цепей линии электропередачи одномашинной энергосистемы (рис. 2.1, а).

    Рис. 2.1. Одномашинная энергосистема (а) и ее схемы замещения: для нормального режима (б) и режима с отключенной цепью (в)

    Взаимное реактивное сопротивление схемы замещения (рис. 2.1, б), равное

    определяет максимум fj M угловой характеристики мощности генератора Р ] (б) в исходном режиме:

    После отключения одной из цепей линии электропередачи (рис. 2.1,) будет получено новое, большее по значению, сопротивление

    Максимум новой угловой характеристики /J|(5) составит, соответственно, меньшую величину (рис. 2.2):

    Рис. 2.2.

    Точке пересечения а характеристики мощности турбины /т(5) = const и угловой характеристики генератора /j(5) = Ры sin 6 в нормальном режиме соответствуют угол 6 0 , мощность Р () и скорость (частота) Ь. В результате нарушается баланс мощностей (моментов) на валу ротора генератора и турбины за счет уменьшения тормозящего момента, обусловленного электрической нагрузкой. Угол 8 0 и относительная скорость

    сохраняют свои значения в момент отключения цепи в силу инерции ротора генератора. В дальнейшем под действием избыточного ускоряющего момента относительная скорость и нарастает и при значении угла 8 С становится наибольшей.

    Рис. 2.3.

    В точке с ускоряющий и тормозящий моменты уравновешиваются, но ротор по инерции, за счет дополнительной кинетической энергии, накопленной на участке Ьс, будет продолжать относительное движение. Однако это движение будет происходить с замедлением, поскольку справа от точки с ускоряющий момент турбины меньше, чем тормозящий электромагнитный момент генератора. Увеличение угла прекратится при значении 8,„, когда дополнительная кинетическая энергия, приобретенная ротором на участке Ьс, компенсируется равной по величине потенциальной энергией на участке cm. Очевидно, что при значении угла 6,„ режим не установится, поскольку в этом состоянии тормозящий момент генератора выше ускоряющего момента турбины. Под действием избыточного тормозящего момента от точки т ротор будет возвращаться к углу 8 С и снова по инерции его пройдет. Однако к начальному углу 6 0 ротор нс возвратится вследствие потерь на трение и действия демпфирующих моментов. Амплитуда изменения угла при дальнейших качаниях ротора будет уменьшаться (рис. 2.2, б), и окончательно режим системы установится в новой точке устойчивого равновесия - точке с.

    Однако возможен и другой исход процесса. Если угол достигнет критической величины 8 кр, соответствующей точке/(рис. 2.3, а), прежде, чем относительная скорость и примет нулевое значение, то избыточный момент на валу ротора генератора становится вновь ускоряющим. Относительная скорость и ротора опять начинает возрастать до выпадения генератора из синхронизма. Такой характер нарушения устойчивости называется динамическим.

    Основной причиной динамических нарушений устойчивости энергосистем являются короткие замыкания, приводящие к резким изменениям электромагнитных моментов синхронных машин.

    1.1. Понятие статической и динамической устойчивости в электроэнергетических системах

    Под устойчивостьюсостояния электрической системы понимается ее способность восстанавливать исходный режим (или достаточно близкий к нему) после воздействия какого-либо возмущения («большого» или «малого»). Процесс нарушения устойчивости в электрических системах всегда связан с ограниченной пропускной способностью ее отдельных элементов - линий связи, трансформаторов и.т.п. Естественно, что при неизменных параметрах электрической системы предел передаваемой мощности зависит от уровней напряжений и потерь передаваемой мощности на сопротивлениях элементов. Нарушения устойчивости в электрических системах происходят в результате воздействия на ее работу возмущающих факторов, которые могут быть «большими» и «малыми». Протекание процесса при этом одинаково и сопровождается в любом случае резким снижением напряжения в узлах системы (возникновением «лавины» напряжения), увеличением тока в ее ветвях, изменением скорости вращения электрических машин. Нарушение устойчивости всегда заканчивается появлением асинхронного хода, связанного с неограниченным изменением скоростей вращения синхронных машин, и часто приводит к «развалу» системы - отключению нагрузки, генераторов станций, к делению системы на несинхронно работающие части. «Малые» возмущения опасны для работы электрических систем в тяжелых режимах, когда по ее элементам протекают потоки мощности, близкие к предельным. Тогда как «большие» возмущения могут вызвать нарушение устойчивости в нормальных режимах. В зависимости от причины, которая привела к нарушению устойчивости, выделяются три се вида: - статическая устойчивость - способность системы сохранять (восстанавливать) исходный (или близкий к нему) режим при действии «малых» возмущений. - динамическая устойчивость - способность системы восстанавливать длительно существующий установившийся режим при «больших» возмущениях. - результирующая устойчивость - способность системы возвращаться в длительно существующий установившийся режим после кратковременного нарушения устойчивости.

    Статическая устойчивость синхронного генератора

    Оценка статической устойчивости синхронного генератора, включенного на шины энергосистемы (рис.1), может быть выполнена при помощи второго закона Ньютона для вращающегося тела

    где M в - вращающий момент на валу энергетического двигателя, кг.м; М с - момент сопротивления (тормозной момент) на валу генератора, кг.м; ω - угловая частота вращения вала агрегата, с -1 ;

    Момент инерции, кг.м.с 2 ; GD 2 - маховые массы вращающихся частей, присоединенные к валам энергетического двигателя и генератора, кг.м 2 ; g = 9,81 м/с 2 -ускорение земного притяжения.

    1. Схема электропередачи мощности от синхронного генератора в энергосистему и ее схема замещения: Т - турбина; Г - генератор; Т1 - трансформатор подстанции; Л1, Л2 - линии электропередачи; Т2 - трансформатор связи с энергосистемой; ЭС – энергосистема.

    Статическая устойчивость синхронного агрегата оценивается при постоянной синхронной частоте вращения, при которой мощности на валу энергетического двигателя и синхронного генератора пропорциональны моментам, а в относительных единицах равны, т. е.

    Статическая устойчивость оценивается при относительном движении ротора агрегата, т. е. при перемещении ротора относительно вектора вращающегося электромагнитного поля статора генератора (рис.2), при изменении угла вылета ротора. Скорость его изменения соответствует производной (1.1.2)

    При относительном движении ротора генератора уравнение движения (1.1.1) можно представиться в следующем виде:

    (1.1.3)


    Рис. 2. Принципиальные конструктивные схемы синхронных генераторов: а - неявнополюсный; б - явнополюсный

    Это уравнение - уравнение динамического равновесия, ибо при равенстве Р т = Р г угол вылета ротора 0 имеет постоянную величину. Если равенства мощностей нет, то имеет место либо ускорение агрегата при P т > P г , либо замедление при Р т < Р г, т. е. по знаку разности мощностей можно судить о характере движения вала агрегата. Поэтому целесообразно уравнение (1.1.3) использовать в таком виде

    (1.1.4)

    где ∆Р - избыточная мощность.Характеристика мощности энергетического двигателя в координатах Р, является прямой линией, так как мощность, развиваемая двигателем, не зависит от угла вылета ротора.

    Характеристика мощности синхронного генератора в координатах Р, представляется синусоидальной угловой характеристикой (рис. 3), получаемой из векторной диаграммы:

    для неявнополюсной машины (турбогенератора)

    (1.1.5)

    для явнополюсной машины (гидрогенератора)

    (1.1.6)

    где сопротивления генераторов в продольной и в поперечной осях с учетом сопротивлений схемы замещения (см. рис. 1)

    Па рис. 3 показаны характеристики турбины и генератора. Характеристики имеют две точки взаимного пересечения 1 и 2. В соответствии с положением теоретической механики в точках

    Статическая устойчивость электроэнергетических систем..

    Статическая устойчивость – это способность системы восстанавливать исходное или близкое к исходному состояние после его возмущения.

    Динамическая устойчивость – это способность системы восстанавливать исходное или близкое к исходному состояние после большого возмущения.

    Исходя из определения статической устойчивости системы можно заключить, что существует такой режим, при котором очень малое увеличение нагрузок вызывает нарушение его устойчивости. Такой режим называют предельным, а нагрузки системы - максимальными или предельными нагрузками по условиям статической устойчивости.

    Электроэнергетическая система должна работать так, чтобы некоторые изменения (ухудшения) режима не приводили к нарушению устойчивости ее работы. Простейшая оценка ее запаса устойчивости основывается на сопоставлении показателей проверяемого (исходного) режима и показателей, характеризующих режим, предельный по устойчивости.

    Статическая устойчивость работы ЭЭС в послеаварийных режимах обеспечивается, как правило, за счет мероприятий, не требующих дополнительных капитальных вложений:

    – кратковременного повышения напряжения на зажимах генераторов;

    – быстрого снижения нагрузки электропередачи путем отключения части генераторов на электростанциях и т. п.

    – Кроме того, существуют мероприятия, повышающие статическую устойчивость, но требующие некоторых капитальных вложений:

    – применение быстродействующей системы возбуждения генераторов;

    – использование синхронных компенсаторов на промежуточных подстанциях;

    – использование статических тиристорных компенсаторов;

    – продольная емкостная компенсация индуктивного сопротивления электропередачи с помощью статических конденсаторов и т. п.

    – Практически все эти мероприятия позволяют повысить и динамическую устойчивость.

    В эксплуатации, в тех случаях, когда это необходимо для предотвращения ограничения потребителей или потери гидроресурсов, допускается длительная работа электропередачи в нормальном режиме с запасом статической устойчивости, уменьшенным до 5-10 % в зависимости от роли электропередачи в энергосистеме и последствий возможного нарушения устойчивости.

    Точный ответ на вопрос об устойчивости (или неустойчивости) системы можно получить, вычислив все корни характеристического уравнения. Однако процедура вычисления корней для уравнений высокого порядка относится к разря ду чрезвычайно трудоемких, поэтому разработан ряд специальных математических условий, позволяющих без вычисления корней характеристического уравнения определить их местоположение на комплексной плоскости и таким образом точно ответить на вопрос об устойчивости или неустойчивости системы. Эти математические условия называются критериями устойчивости. Различают алгебраические и частотные критерии устойчивости. Алгебраические критерии содержат группу условий (группу неравенств), составленных по определенным правилам из коэффициентов характеристического уравнения, при соблюдении которых имеет место устойчивость. Если же хотя бы одно из них нарушено, то имеет место неустойчивость. Для проведения анализа с помощью алгебраических критериев необходимо, очевидно, предварительно вычислить коэффициенты полинома в левой части характеристического уравнения. Необходимые и достаточные условия устойчивости линейной однородной системы дифференциальных уравнений в виде алгебраических неравенств были установлены английским ученым Раусом и швейцарским математиком Гурвицем.

    Алгебраические критерии устойчивости:

    o Критерий Гурвица

    Система неравенств Гурвица строится следующим образом. Из коэффициентов характеристического многочлена составляется квадратная матрица Гурвица. Необходимые и достаточные условия устойчивости заключаются в том, что все n диагональных миноров должны быть положительными.

    o Критерий Рауса

    Он более удобен для систем высокого порядка численно заданными коэффициентами характеристического уравнения. Из коэффициентов характеристического многочлена составляется таблица Рауса, каждый элемент которой вычисляется через четыре элемента двух предшествующих строк. Алгоритм вычисления хорошо виден из таблицы. Всего в таблице оказывается (n+1) строка. Требования устойчивости по Раусу формулируются так: для устойчивости системы необходимо и достаточно, чтобы все коэффициенты первого столбца были положительными.

    Частотные критерии устойчивости.

    В практике исследования устойчивости систем бывают слу чаи, когда трудно не только вычислить корни характеристического уравнения, но и получить само уравнение в виде характеристического полинома в левой части. В таких случаях

    более удобными оказываются частотные критерии, которые,

    как и алгебраические критерии, позволяют определить наличие или отсутствие корней характеристического уравнения в правой полуплоскости на плоскости корней. Частотные критерии базируются на известном в высшей математике принципе аргумента. .

    Статическая устойчивость -способность сист. восстанавливать исходный р-м после малого его возмущения. Предельный р-м -р-м,при котором очень малое увеличение нагрузок вызывает нарушение его устойчивости. Пропускной способностью элемента системы называют наибольшую мощность, кот. можно передать через элемент с учетом всех ограничивающих факторов. Позиционная система -такая система, в кот. пар-ры р-ма зависят от текущего состояния, взаимного положения независимо от того как было достигнуто это состояние. При этом реальные динамич.хар-ки эл-ов сист. заменяются статическими. Статические хар-ки -это связи параметров р-ма системы, представленные аналитически или графически не зависящие от времени. Динамические хар-ки –связи пар-ов,полученных при условии,что они зависят от времени. Запас по напряжению: k u =. Запас по мощности: k р =

    Допущения,принимаемые при анализе устойчивости : 1.Скорость вращения роторов синхр.машин при протекании электромеханич. ПП изменяется в небольших пределах(2-3%)синхронной скорости. 2.Напряжение и токи статора и ротора генератора изменяются мгновенно. 3.Нелинейность пар-ов сист.обычно не учитывается. Нелинейность же пар-ов р-ма-учитывается. Когда от такого учета отказываются,это оговаривают и сист.называется линеаризованной. 4.Перейти от одного р-ма эл.сист. к др. можно,изменив собственные и взаимные сопротивл.схемы, ЭДС генераторов и двигателей. 5.Исследование динамич.устойчивости при несимметричных возмущениях производится в схеме прямой послед-ти.

    Задачи расчета устойчивости эл.системы: 1.Расчет параметров предельных р-ов(предельной передаваемой мощ-ти по линиям эн.сист.,критического U узловых точек сист.,питающих нагрузку) 2.Определение значений коэф-ов запаса.Наряду с приведенными формулами расчета коэф-ми запаса по напряжению и мощности могут вычисляться коэф-ты запаса по настроечным параметрам АРВ: S k = где kmax и kmin – максим.и мин.значения пар-ов,соответвствующих границе области статической устойчивости. 3.Выбор мероприятий по повышению статической устойчивости энергосист.или обеспечению заданной пропускной способности передачи. 4. Разаработка требований,направленных на улучшение устойчивости сист.Выбирается настройка АРВ,обеспечивающая требуемую точность поддержания напряж.

    Статическая устойчивость простейшей системы.

    Статическая устойчивость СЭС – это устойчивость при малых возмущениях режима. В установившемся режиме между энергией источника W r , и энергией, расходуемой покрытие потерь, имеется баланс. При изменении параметра режима П на ΔП, этот баланс нарушается. Если в системе энергия W=W H +после возмущения расходуется интенсивнее, чем приобретается от внешнего источника, то новый режим не может быть обеспечен энергией и в системе должен восстановиться прежний установившийся. Такая система устойчива. Из определения устойчивости следует, что условием сохранения устойчивости системы (критерием устойчивости) является соотношениеили в дифференциальной форме. Величинуназывают избыточной энергией. Эта энергия положительна, если дополнительная генерируемая энергия возрастет интенсивнее, чем нагрузка системы с учётом потерь в ней. При этом условии критерий устойчивости запишется в видеДля обеспечения устойчивости системы значение имеет запас её статической устойчивости, харак-ся углами сдвига роторов генераторов и напряжениями в узловых точках системы. Чтобы проверить статическую устойчивость системы, нужно составить диф. уравнения малых колебаний для всех элементов, а затем исследовать корни характеристического уравнения на устойчивость.

    Математическое описание СЭС для исследования устойчивости основывается на теории диф. уравнений. Анализ устойчивости режимов реальных СЭС сводится к исследованию устойчивости решений систем диф. уравнений. В общем виде СЭС описываются системами уравнений высокого 60.1. порядка. Для практических расчётов порядок системы уравнений обычно не превышает шести. Для оценки устойчивости применяют линеаризацию систем диф. уравнений и понижение их порядка с целью получения простых универсальных методов и алгоритмов расчёта. В линейных системах уравнений и системах с несущественной нелинейностью устойчивость анализируется методом малых колебаний. Для больших возмущений при анализе устойчивости используется второй метод Ляпунова или численное интегрирование. Понижение порядка систем уравнений, описывающих исследуемые процессы, может быть достигнуто их упрощением: 1) разделением процессов на быстрые и медленные с обособленным их рассмотрением; 2) заменой групп источников или двигателей одним эквивалентным; 3)представлением нагрузки обобщенными характеристиками; 4) линеаризацией характеристик элементов СЭС; 5) разделением сложной системы на простые подсистемы, которые можно рассматривать независимо.

    Статическая устойчивость нагрузки (действительный предел мощности, статическая устойчивость двигателей нагрузки). Нагрузка электрической системы оказывает влияние на устойчивость синхронных генераторов. Если мощность приёмной системы соизмерима с мощностью электропередачи, то напряжение на шинах нагрузки изменяется при изменении режима работы электропередачи. В этом случае предел передаваемой мощности (называемый действительным пределом) существенно ниже предела при постоянстве напряжения на шинах нагрузки.

    Действительный предел мощности. Рассмотрим электропередачу, в которой приёмная система представлена нагрузкой и местной электростанцией. рис. а - принципиальная схема; б - характеристики мощности при и н = 1.0, 0.9, 0.8, 0.7 (кривые 1-4 соответственно, действительная характеристика мощности - жирная кривая). Мощность последней соизмерима с мощностью передающей станции, поэтому при увеличении передаваемой от электростанции G 1 активной мощности напряжение нашинах нагрузки и н будет уменьшаться. Построив семейство характеристик мощности для различных значений напряжения и н, можно получить действительную характеристику мощности. Для этого необходимо при увеличении угла перемещать рабочую точку с одной характеристики на другую в соответствии с уменьшением напряженияи н. Максимум действительной характеристики мощности, который называют действительным пределом мощности, достигается при угле меньше 90°. Величина максимума ниже предела мощности при условии и н = const . Следовательно, снижение напряжения и н ухудшает статическую устойчивость. Влияние нагрузки на напряжение и н определяется регулирующим эффектом нагрузки, т.е. степенью снижения активной и реактивной мощностей нагрузки с уменьшением напряжения на её шинах. Регулирующий эффект оказывает значительное влияние на действительный предел мощности, и с ним приходится считаться в практических расчётах устойчивости.