Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Разработка мероприятий по повышению прибыльности предприятия. Мероприятия по улучшению финансовых результатов деятельности ооо "техком-автоматика" и оценка их эффективности. Чтобы увидеть увеличение прибыли предприятия, необходимо ее правильно рассчитыват

    Разработка мероприятий по повышению прибыльности предприятия. Мероприятия по улучшению финансовых результатов деятельности ооо

    По химическому составу сталь подразделяют на углеродистую и легированную. Углеродистые стали разделяют по содержанию углерода на:

    · малоуглеродистые: менее 0,3 % углерода;

    · среднеуглеродистые: 0,3-0,7 % углерода;

    · -высокоуглеродистые: более 0,7 % углерода.

    Легированные стали разделяют по общему содержанию легирующих элементов на:

    · низколегированные: менее 2,5 %;

    · среднелегированные: 2,5-10,0 %;

    · высокоуглеродистые: более 10,0%.

    Классификация стали по способу производства и качеству (содержанию вредных примесей) К вредным примесям в сталях относят серу S и фосфор P.

    В зависимости от их содержания стали разделяют на:

    · стали обыкновенного качества (рядовые): до 0,06% S, до 0,07% P;

    · качественные стали: до 0,04% S, до 0,035% P;

    · высококачественные стали: до 0,025% S, до 0,025% P;

    · особовысококачественные стали: до 0,015% S, до 0,025% P.

    · Сталь обыкновенного качества (или рядовая сталь) выплавляется чаще всего в больших мартеновских печах, конвертерах и разливается в сравнительно крупные слитки Способ изготовления во многом предопределяет состав, строение и свойства этой стали. Стали высококачественные выплавляются преимущественно в электропечах, Классификация стали по назначению

    · Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, изно-состойкие стали.

    · К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям - их хорошая свариваемость.

    · Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных

    · Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки.

    · Высокопрочные стали - это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях

    · Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости - кремни-ем, марганцем, хромом, вольфрамом, ванадием

    · Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома


    · Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.).

    · Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные

    · Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.

    · Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).

    · Жаростойкие (окалиностойкие) стали обладают стойкостью против химического разрушения поверхности в газовых средах, в том числе серосодержащих, при температурах +550-1200°С в воздухе, печных газах.

    · Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.

    · Стали для режущих инструментов должны быть способными сохранять высокую твердость и режущую способность продолжительное время, том числе и при нагреве. В качестве сталей для режущих инструментов применяют углеродистые, легированные инструментальные, быстрорежущие стали.

    · Штамповые стали обладают высокой твердостью и износостойкостью, прокаливаемостью и теплостойкостью.

    Билет 26 Цветные металлы в чистом виде обычно применяются редко, чаще используют различные сплавы. Из числа сплавов цветных металлов в машиностроении наибольшее значение имеют легкие сплавы – алюминия, магния и титана, а также медь и ее сплавы, сплавы на основе никеля, сплавы для подшипников (баббиты), материалы для полупроводников и высокопрочные сплавы на основе тугоплавких металлов.

    АЛЮМИНИЙ Для алюминия и его сплавов характерна большая удельная прочность, близкая к значениям для среднелегированных сталей. алюминий и его сплавы хорошо поддаются горячей и холодной деформациям, точечной сварке, а специальные сплавы можно сваривать плавлением и другими видами сварки. Чистый алюминий хорошо сопротивляется коррозии, так как на его поверхности образуется плотная пленка оксидов Al2O3. Добавки железа и кремния повышают прочность алюминия, но снижают пластичность и устойчивость против коррозии. Чистый алюминий применяется для кабелей и электропроводящих деталей, но в основ-ном алюминий используется для изготов-ления сплавов.

    МАГНИЙ Малая плотность магния и его сплавов в сочетании с высокой удельной прочностью и рядом физико-химических свойств делает их ценными для применения в различных областях машиностроения: автомобильной, приборостроении, самолетостроении, космической, радиотехнике и других. В горячем состоянии магниевые сплавы хорошо поддаются различным видам обработки давлением – прессованию, ковке, прокатке.

    ТИТАН Титан обладает высокими механическими свойствами, высокой удельной прочностью при комнатных и криогенных температурах, а также хорошей коррозионной стойкостью Механические свойства титана сильно зависят от содержания примесей. Так небольшие количества кислорода, азота и углерода повышают твердость и прочность, но при этом значительно уменьшаются пластичность и коррозионная стойкость, ухудшается свариваемость и штампуемость. Особенно вреден водород, который образует по границам зерен тонкие пла-стины гидридов, сильно охрупчивающих металл. Для особо ответственных деталей применяют наиболее чистый титан.

    МЕДЬ Наиболее характерными свойствами чистой меди являются высокие значения электропроводности, теплопроводности и стойкость против атмосферной коррозии. В связи с высокой пластичностью чистая медь хорошо деформируется в горячем и холодном состояниях. В процессе холодной деформации медь наклепывается и упрочняется; восстановление пластичности достигается рекристаллизационным отжигом при 500…600ºС в восстановительной атмо-сфере, так как медь легко окисляется при нагреве. Чистая медь применяется для проводников электрического тока, различных теплообменников, водоохлаждаемых изложниц, поддонов, кристаллизаторов. Чистая медь имеет низкую прочность и жидкотекучесть, плохо обрабатывается резанием, поэтому более широкое применение нашли сплавы на ее основе. При сохранении высоких показателей электро- и теплопроводности коррозионной стойкости сплавы меди обладают хорошими механическими, технологическими и антифрикционными свойствами. Для легирования меди в основном применяют цинк, олово, алюминий, бериллий, кремний, марганец и никель. Повышая прочность сплавов, эти легирующие элементы практически не снижают пластичность, цинк, олово, алюминий даже увеличивают ее.

    ЛАТУНЬ Латунями называют медноцинковые сплавы. При дополнительном введении в сплав добавок алюминия, свинца, олова, кремния и других элементов получают специальные латуни. Практическое применение находят латуни, содержание цинка в которых не превышает 49%. При более высокой концентрации цинка значительно ухудшается механические свойства сплава.

    БРОНЗА Хуй знает че с этой бронзой, обозначается он буквами "Бр" вот и все, что можно объяснить доступным языком, а химические формулы и заумные слова тольео похоронят тебя на экзамене. Вот такие дела удачи)

    Билет 35 Пластмассы

    Пластмассы - искусственные материалы. Обязательным компонентом является связка. В качестве связки используются: синтетические смолы; эфиры, целлюлоза. Некоторые пластмассы состоят только из одной связки (полиэтилен, фторопласты, органическое стекло). Вторым компонентом является наполнитель (порошкообразные, волокнистые, сетчатые вещества органического или неорганического происхождения). Наполнители повышают механические свойства, снижают усадку при прессовании полуфабриката, придают материалу необходимые свойства. Для повышения эластичности и облегчения обработки в пластмассу добавляют пластификаторы (олеиновая кислота, стеарин, дибутилфторат...). Исходная композиция может содержать: отвердители (амины); катализаторы (перекиси) процесса отвердения; красители. Основой классификации пластмасс служит химический состав полимера: По характеру связующего вещества, различают термопластичные (термопласты) и термореактивные пластмассы. Термопласты получают на основе термопластичных полимеров. Они удобны для переработки (при нагревании пластифицируются), имеют низкую объемную усадку (не более 4%), отличаются большой упругостью, малой хрупкостью. Термореактивные пластмассы после отверждения и перехода в термостабильное состояние отличаются хрупкостью, могут дать усадку до 15%. Поэтому в состав этих пластмасс вводят усиливающие наполнители.

    По виду наполнителя, различают пластмассы: порошковые (карболиты) - с наполнителем в виде древесной муки, графита, талька... Волокнистые - с наполнителем из: очесов хлопка и льна (волокниты); стеклянных нитей (стекловолокниты); асбеста (асбоволокниты). Слоистые - с листовым наполнителем: бумажные листы (гетинакс); хлопчатобумажные ткани, стеклоткани, асбестовые ткани (текстолит, стеклотекстолит, асботекстолит). Г азонаполненные - с воздушным наполнителем (пенопласты, поропласты). Особенностями пластмасс являются: малая плотность; низкая теплопроводность; большое тепловое расширение; хорошие электроизоляционные свойства; высокая химическая стойкость; хорошие технологические свойства

    Билет 27 Паянием называют процесс, жесткого соединения металлических деталей путем расплавления присадочного материала припоя, имеющего температуру плавления более низкую, чем температура плавления основного металла. Соединение с помощью припоя основано на взаимном растворении и диффузии основного металла и припоя. Такой процесс протекает наиболее благоприятно, если основной металл и припой имеют химическое и физическое сродство. Прочность соединения припоем зависит от величины поверхностей, соединяемых пайкой, чистоты этих поверхностей, зазора между дета-лями, структуры образовавшегося паечного шва, а затем и устойчивости к коррозии основного сплава и припоя.Уменьшение линейных размеров изделия особенно заметно при соединении нескольких деталей, когда суммарная усадка припоя в паечных швах может достигать размеров, при которых конструкция оказывается заметно укороченной и часто непригодной. Поверхность металлов, соединяемых пайкой, необходимо тщательно очистить от окислов и загрязнений, препятствующих процессу диффузии и растворению металлов. Флюс . Он защищает спаиваемые поверхности и очищает их от окислов, препятствующих диффузии припоя в основной металл. Спаиваемый металл с припоем может давать,различные виды соединений: твердый раствор, химическое соединение, механическая смесь. Лучшим видом спайки является такая, при которой формируется структура припоя типа твердого раствора. Она происходит между металлами, обладающими наибольшим физико-химическим сродством. Примером может быть паяние меди латунью, золота- золотыми припоями. Структуры типа химического соединения (паяние меди оловом) и механической смеси (паяние стали золотом) не обеспечивают высокой прочности и антикоррозийной устойчивости.

    ПОСЛЕДОВАТЕЛЬНОСТЬ ПЙКИ

    1) Подготовка поверхности (очистка от жиров и прочей хуетни)

    2)Выравнивание (подгонка по поверхности)

    3)Защита места пайки флюсом.

    4) Лужение (покрытие тонким слоем частей спаиваемых)

    5) Прогревание до плавления

    6) Фиксация

    7) Охлаждение

    8) Очистка пайного шва от излишковприпоя флюса и др.

    Твердая плавка(медь железо) очень близки к латунным Для пайки твердого припоя с температурой плавления 1000градусов используют гранники (пояльники с открытым пламенем) Флюсы применяют на основе борной кислоты и ее соли

    Билет 28 28 . Мартеновский способ производства стали

    Мартеновское производство возникло в 1864 г., когда П.Мартен построил первую регенеративную (использующую теплоту отходящих газов) печь, давшую годную литую сталь из твердой шихты. В России первая мартеновская печь была построена в 1869 г. А.А.Износковым на Сормовском заводе. Вплоть до 90-х годов мартеновские печи использовались для производства стали лишь с завалкой твердой шихты и работали по так называемому скрап-процессу. Разработка технологии рудного процесса на жидком чугуне была осуществлена в Украине братьями А.М. и Ю.М.Горяиновыми; они же внедрили плавку по этой технологии в 1894 г. на Александровском заводе в Екатеринославле (ныне Днепропетровский завод им. Г. И. Петровского). В мартеновской печи осуществляется передел загруженной в нее шихты: твердого или жидкого чугуна, стального и чугунного лома с использованием железной руды, окалины, кислорода, флюсов и ферросплавов - в сталь заданного состава, при этом получается побочный продукт плавки - мартеновский шлак. Мартеновская печь

    Верхняя часть мартеновской печи (рис. 1) состоит из рабочего пространства (ограниченного ванной4, передней стеной 9, задней стеной 8, сводом 5) и головок, расположенных с обоих концов рабочего пространства. В передней стене находятся загрузочные окна 6, через которые с рабочей площадки загружается шихта, берутся пробы и ведется наблюдение за плавкой. Подина печи имеет наклон к задней стене, в которой находится отверстие для выпуска готовой стали, разделываемое перед выпуском. Через каналы 1, 2, 3 и 7 головок подается газ (топливо) и окислительное дутье и отводятся продукты горения. Нижняя часть печи состоит из двух пар шлаковиков, двух пар регенераторов, подземных каналов с перекидными клапанами и дымового борова, соединенного с дымовой трубой или котлом - утилизатором. Шлаковики и регенераторы расположены попарно и симметрично по обе стороны печи. Сечение через воздушный шлаковик 11 и газовый шлаковик 10 сделано в одной плоскости с сечением рабочего пространства, а сечение через воздушный регенератор 12 и газовый регенератор 13 - в другой плоскости: шлаковики находятся под головками, а регенераторы под рабочей площадкой. Регенераторы служат для нагрева воздуха и горючего газа, поступающих в рабочее пространство при температуре 1000-1150°. Необходимость нагрева вызвана тем, что в рабочем пространстве должна быть обеспечена температура до 1700° и более, если же предварительного нагрева дутья и газа не производить, то температура в печи будет недостаточна для нагрева и последующего плавления мягкой стали. Камеры регенераторов заполнены насадкой в виде решетчатой кладки из огнеупорного кирпича. Регенераторы работают попарно и попеременно: в то время как одна пара нагревает дутье и газ, другая аккумулирует (запасает) теплоту отходящих продуктов горения; по охлаждении регенераторов до нижнего предела либо по достижении верхнего предела нагрева регенераторов, аккумулирующих теплоту, происходит перемена направления движения газов посредством перекидки клапанов. Шлаковики расположены между головками и регенераторами; они служат для собирания пыли и капель шлака, которые выносятся продуктами горения. Для нагрева мартеновских печей, работающих на машиностроительных заводах, применяется также жидкое топливо (мазут). Мазут в рабочее пространство вводится с помощью форсунки и распыляется струей воздуха или пара под давлением 5-8ати. Печи, работающие на мазуте, оборудуются только двумя регенераторами (и соответственно двумя шлаковиками) для подогрева окислительного дутья по одному с каждой стороны. Мартеновские процессы и печи разделяют на основные и кислые в зависимости от характера процесса и, соответственно, материала футеровки подины и стен. Плавка стали на шихте, содержащей фосфор и серу в количестве, превышающем допустимое в готовой стали, производится основным процессом, т.е. под основным шлаком и в печах с основной футеровкой. Ванна основных печей футеруется обожженным доломитом или магнезитом. Для кладки свода рабочего пространства, головок и стен шлаковиков применяют магнезитохромитовый кирпич, имеющий высокую стойкость. В небольших печах, а также при отсутствии магнезитохромитового кирпича, свод печей делается из динасового кирпича. Для плавки стали под кислым шлаком применяются кислые печи с футеровкой из динасового кирпича и кварцевого песка. Помимо стационарных мартеновских печей, применяются также качающиеся мартеновские печи. Верхняя часть качающейся печи опирается на систему роликов. Между торцовыми стенками рабочего пространства и головками имеются небольшие щели, обеспечивающие возможность поворота корпуса печи. Посредством поворотного механизма осуществляется наклон до 15° в сторону рабочей площадки для скачивания шлака, или на 30-33° в сторону выпускного отверстия для выпуска стали. Продолжительность службы мартеновской печи (ее кампания) определяется числом плавок, выдерживаемых сводом рабочего пространства; она составляет обычно для печей с динасовым сводом 250- 300 плавок (при большой емкости) или 400-500 плавок (при малой и средней емкости), а для печей с хромомагнезитовым сводом 700 и более плавок. В мартеновских печах выплавляют углеродистую конструкционную сталь, а также легированную сталь различных марок.

    По прочностным свойствам стали условно делят на три груп­пы: обычной прочности (s y < 29 кН/см 2); повышенной прочности (29 кН/см 2 ≤ s y < 40 кН/см 2); высокой прочности (s y ≥ 40 кН/см 2). Повышение прочности стали достигается легированием и терми­ческой обработкой.

    Стали обычной прочности (s y < 29 кН/см 2). К этой группе отно­сят низкоуглеродистые стали (С235...С285) различной степени раскисления, поставляемые в горячекатаном состоянии. Обладая отно­сительно небольшой прочностью, эти стали очень пластичны: протяженность площадки текучести составляет 2,5 % и более, соотношения s y / s u 0,6...0,7. Хорошая свариваемость обес­печивается низким содержанием углерода (не более 0,22 %) и крем­ния. Коррозионная стойкость - средняя, поэтому конструкции, вы­полненные из сталей обычной прочности, следует защищать с по­мощью лакокрасочных и других покрытий. Однако благодаря невысокой стоимости и хорошим технологическим свойствам стали обычной прочности очень широко применяют для строительных ме­таллических конструкций. Потребление этих сталей составляет свы­ше 50% от общего объема. Недостатком низкоуглеродистых сталей является склонность к хрупкому разрушению при низких температу­рах (особенно для кипящей стали С235), поэтому их применение в конструкциях, эксплуатирующихся при низких отрицательных тем­пературах, ограничено.

    Стали повышенной прочности (29 кН/см 2 ≤ s y < 40 кН/см 2). Ста­ли повышенной прочности (С345...С390) получают либо введением при выплавке стали легирующих добавок (в основном марганца и кремния, реже никеля и хрома), либо термоупрочнением низкоуглеродистой стали (С345Т). Пластичность стали при этом несколько снижается и протяженность площадки текучести уменьшается до 1...1,5%.

    Стали повышенной прочности хуже свариваются (особенно стали с высоким содержанием кремния) и требуют иногда использования специальных технологических мероприятий для пре­дотвращения образования горячих трещин.

    По коррозионной стойкости большинство сталей этой группы близки к малоуглеродистым сталям. Более высокой коррозионной стойкостью обладают стали с повышенным содержанием меди (С345Д, С375Д, С390Д).

    Высокое значение ударной вязкости сохраняется при температу­ре -40°С и ниже, что позволяет использовать эти стали для конст­рукций, эксплуатируемых в северных районах. За счет более высоких прочностных свойств применение сталей повышенной прочности приводит к экономии металла до 20...25%.

    Стали высокой прочности (s y ≥ 40 кН/см 2). Прокат из стали вы­сокой прочности (С440...С590) получают леги­рованием и термической обработкой. Для легирования используют нитридообразующие элементы, способствующие образованию мел­козернистой структуры.

    Стали высокой прочности могут не иметь площадки текучести (при s y ≥ 50 кН/см 2), и их пластичность (относительное удлинение) снижается до 14% и ниже. Отношение s y / s u увеличивается до 0,8...0,9, что не позволяет учитывать при расчете конструкций из этих сталей пластические деформации.

    Подбирая химический состав и режим термообработки, можно значительно повысить сопротивление хрупкому разрушению и обеспечить высокую ударную вязкость при температурах до - 70°С. Однако высокая прочность и низкая пластичность сталей требуют более мощного оборудования для резки, правки, сверления и других операций.

    При сварке термообработанных сталей вследствие неравномер­ного нагрева и быстрого охлаждения в разных зонах сварного соеди­нения происходят различные структурные превращения. На одних участках образуются закалочные структуры, обладающие повышенной прочностью и хрупкостью (жесткие прослойки), на других ме­талл подвергается высокому отпуску и имеет пониженную прочность и высокую пластичность (мягкие прослойки).

    Разупрочнение стали в околошовной зоне может достигать 5...30 %, что необходимо учитывать при проектировании сварных конструкций из термообработанных сталей. Эффект разупрочнения снижает введение в состав стали некоторых карбидообразующих элемен­тов (молибден, ванадий).

    Применение сталей высокой прочности приводит к экономии металла до 25...30 % по сравнению с конструкциями из низкоуглеро­дистых сталей и особенно целесообразно в большепролетных и мощных конструкциях.

    Атмосферостойкие стали. Для повышения коррозионной стойко­сти металлических конструкций применяют низколегированные ста­ли, содержащие в небольшом количестве (доли процента) такие эле­менты, как хром, никель и медь.

    В конструкциях, подвергающихся атмосферным воздействиям, весьма эффективны стали с добавкой фосфора (например, сталь С345К). На поверхности таких сталей образуется тонкая оксидная пленка, обладающая достаточной прочностью и защищающая металл от развития коррозии. Однако свариваемость стали при наличии фосфора ухудшается. Кроме того, в прокате больших толщин металл обладает пониженной хладостойкостью, поэтому применение стали С345К рекомендуют при толщинах не более 10 мм.

    В конструкциях, совмещающих несущие и ограждающие функ­ции (например, мембранные покрытия), широко используют тонко­листовой прокат. Для повышения долговечности таких конструкций целесообразно применение нержавеющей хромистой стали марки ОХ18Т1Ф2, не содержащей никеля. В больших толщинах прокат из хромистых сталей обладает повышенной хруп­костью, однако свойства тонколистового проката (особенно толщи­ной до 2 мм) позволяют применять его в конструкции при расчет­ных температурах до -40°С.

    По химическому составу стали подразделяют на углеродистые и легированные.Углеродистые стали состоят из железа и углерода с некоторой добавкой кремния (или алюминия) и марганца. Прочие добавки (медь, хром и т.д.) специально не вво­дятся и могут попасть в сталь из руды.

    Углерод , повышая прочность стали, снижает ее пластичность и ухудшает свариваемость, поэтому для строительных металлических конструкций применяют только малоуглеродистые стали с содер­жанием углерода не более 0,22 %.

    В состав легированных сталей помимо железа и углерода входят специальные добавки, улучшающие их качество. Поскольку боль­шинство добавок в той или иной степени ухудшают свариваемость стали, а также удорожают ее, в строительстве в основном применяют низколегированные стали с суммарным содержанием легирующих добавок не более 5 %.

    В зависимости отвида поставки стали подразделяются на:

    Горячека­таные;

    Термообработанные (нормализованные или термически улучшенные).

    В горячекатаном состоянии сталь далеко не всегда об­ладает оптимальным комплексом свойств. При нормализации из­мельчается структура стали, повышается ее однородность, увеличи­вается вязкость, однако существенного повышения прочности не происходит. Термическое улучшение (закалка в воде и высокотемпе­ратурный отпуск) позволяют получить стали высокой прочности, хорошо сопротивляющиеся хрупкому разрушению.

    По степени раскисления стали могут быть кипящими , полуспокой­ными, спокойными.

    Нераскисленные стали кипят при разливке вследствие выделения газов: такая сталь носит название кипящей и оказывается более за­соренной газами и менее однородной.

    Степень раскисления обозначается буквами: кп - кипящая; сп - спокойная; пс - полуспокойная.

    Кипящие стали, имея достаточно хорошие показатели по пределу текучести и временному сопротивлению, ху­же сопротивляются хрупкому разрушению и старению.

    Чтобы повысить качество низкоуглеродистой стали, ее раскисляют добавками кремния от 0,12 до 0,3 % или алюминия до 0,1 %. Кремний (или алюминий), соединяясь с растворенным кислородом, уменьшает его вредное влияние. Кроме того, при соединении с ки­слородом раскислители образуют силикаты и алюминаты, которые увеличивают число очагов кристаллизации и способствуют образо­ванию мелкозернистой структуры стали, что ведет к повышению ее качества и механических свойств. Раскисленные стали не кипят при разливке в изложницы, поэтому их называют спокойными . Спокойная сталь более однородна, лучше сва­ривается, лучше сопротивляется динамическим воздействиям и хрупкому разрушению. Ее применяют при изготовлении ответствен­ных конструкций, подвергающихся статическим и динамическим воздействиям.

    Спокойные стали примерно на 12 % дороже кипящих, что несколько ограничивает их применение.

    Полуспокойная сталь по качеству является промежуточной меж­ду кипящей и спокойной. Ее раскисляют меньшим количеством кремния – 0,05...0,15 % (редко алюминием). По стоимости полуспокойные стали также занимают промежуточное положение. Низколегированные стали поставляют в основном спо­койной (редко полуспокойной) модификации.

    8.7. Нормирование сталей .

    Основным стандартом, регла­ментирующим характеристики сталей для строительных металличе­ских конструкций, является ГОСТ 27772 - 88. Согласно ГОСТу, фа­сонный прокат изготовляют из сталей С235, С245, С255, С275, С285, С345, С345к, С375, для листового и универсального проката и гну­тых профилей используются также стали С390, С390К, С440 и С590К. Стали С345, С375, С390 и С440 могут поставляться с повы­шенным содержанием меди (для улучшения коррозионной стойко­сти) при этом к обозначению стали добавляют букву Д.

    Буква С в наименовании означает сталь строительную, цифра показывает значе­ние предела текучести в МПа, буква К - вариант химического состава.

    Прокат поставляют как в горячекатаном, так и в термообработанном состоянии. Выбор варианта химического состава и вида тер­мообработки определяется заводом. Например, листовой прокат стали С345 может изготовляться из стали с химическим составом С245 с термическим улучшением. В этом случае к обозначению стали добавляют букву Т, например С345Т;

    В зависимости от температуры эксплуатации конструкций и сте­пени опасности хрупкого разрушения испытания на ударную вяз­кость для сталей С345 и С375 проводятся при разных температурах, поэтому они поставляются четырех категорий, а к обозначению ста­ли добавляют номер категории, например С345-1, С375-2.

    Оценку свариваемости стали проводят по углеродному эквива­ленту (%):

    где С, Mn, Si, Cr, Ni, Си, V и Р - массовая доля углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора, %.

    Если С э < 0,4%, то сварка стали не вызывает затруднений, при 0,4%<Сэ<0,55% сварка возможна, но требует принятия специальных мер по предотвращению возникновения трещин. При Сэ > 0,55% опасность появления трещин резко возрастает.

    Отличительной особенностью ГОСТ 27772 - 88 является использование для некоторых сталей (С275, С285, С375) статистических методов контроля, что гарантирует обеспеченность нормативных значений предела текучести и временного сопротивления.

    Строительные металлические конструкции изготовляют также из сталей, поставляемых по ГОСТ 380 - 88* "Сталь углеродистая обык­новенного качества", ГОСТ 19281 - 89 " Прокат из стали повышен­ной прочности. Общие технические условия." и другим стандартам.

    Различий между свойствами стали, имеющими одинаковый химический состав, но поставляемым по разным стандартам, нет. Разница в способах контроля и обозначениях. Так, по ГОСТ 380-88* в обозначении марки стали

    указываются группа по­ставки, способ раскисления и категория.

    При поставке по группе А завод гарантирует механические свойства, по группе Б - химический состав, по группе В - механические свойства и химический состав.

    Для малоуглеродистых сталей в зависимости от вида испытаний на ударную вязкость установлено 6 категорий: категории 1 ,2 - испы­тания на ударную вязкость не проводят, 3 - проводят при t = +20°С, 4 - при -20°С, 5 - при -20°С и после механического старения, 6 - по­сле механического старения.

    Все эти факторы указывают в марке стали. Так, например, ВСтЗпсб - это сталь 3, полуспокойная, с гарантией в пределах вели­чин, установленных стандартом для этой стали, механических харак­теристик, химического состава и ударной вязкости после механиче­ского старения. В строительстве в основном используют стали марок ВСтЗкп2, ВСтЗпсб и ВСтЗсп5, а также сталь с повышенным содер­жанием марганца ВСтЗГпс5.

    Стали, поставляемые по разным стандартам, взаимозаменяемы. Так, сталь С235 соответствует стали ВСтЗкп2, сталь С245 - ВСтЗпсб, сталь С255 - ВСтЗсп5. Рекомендации по такой замене приведены в нормах проектирования.

    Сталь представляет собой ковкий и деформируемый сплав железа и углерода (в качестве постоянной примеси). Также содержит другие легирующие элементы и другие вредные примеси. Содержание углерода при этом не должно превышать 2,14%. Изменяя химический состав этого сплава с помощью концентрации углерода и добавляя легирующие элементы, можно получать широкий спектр различных марок этого металла, которые будут обладать различными свойствами. Именно это и позволяет использовать этот материал в большинстве отраслей промышленности.

    Принципы классификации стали

    Классификация и маркировка стали происходит по следующим параметрам:

    По химическому составу

    В зависимости от химического состава этот металл разделяют на два типа: углеродистые и легированные. В свою очередь, углеродистые делят на:

    • низкоуглеродистые (содержание углерода ниже 0,2%);
    • среднеуглеродистые (содержание углерода в пределах 0,2% - 0,45%);
    • высокоуглеродистые (содержание углерода выше 0,5%).

    Легированные стали классифицируют по общему суммарному количеству легирующих элементов (при этом содержание углерода не суммируют, марганец начинает считаться легирующим элементом при его содержании в сплаве более 1%, кремний - более 0,8%). Различают такие:

    • низколегированные (ниже 2,5%);
    • среднелегированные (в пределах 2,5% - 10%);
    • высоколегированные (более 10%).

    По структуре

    Такой классификационный признак, как структура материала считается менее устойчивым, так как имеет зависимость от скорости охлаждения, легирования, способа термообработки и некоторых других непостоянных факторов. Однако структура у готового материала все же позволяет провести объективную оценку его качества. Классификацию стали по структуре в состояниях отжига и нормализации. В состоянии отжига различают такие:

    После процесса нормализации стали разделяют на такие классы:

    • перлитные - содержат низкое количество элементов легирования, структура после нормализации: перлит, перлит + феррит, перлит + заэвтектоидный карбид;
    • мартенситные - содержат высокое количество легирующих элементов, а также относительно низкую критическую скорость закалки;
    • аустенитные - отличаются повышенным содержанием легирующих элементов, структура: аустенит, аустенит + карбид.

    По назначению

    По такому признаку, как назначение стали разделяются на конструкционные, инструментальные и специального назначения (имеющие специальные свойства).

    Конструкционные используются для изготовления всевозможных деталей в устройствах, в машинах, элементах строительных конструкций. Между собой делятся на:

    • обыкновенного качества;
    • улучшаемые;
    • цементируемые;
    • автоматные;
    • высокопрочные;
    • рессорно-пружинные.

    Инструментальные используются для изготовления режущих, измерительных и других инструментов. Подразделяются на такие группы:

    • для изготовления режущего инструмента;
    • для изготовления измерительного инструмента;
    • для изготовления штампово-прессовой оснастки.

    Специального назначения - это сплавы имеющие особые физические и/или механические свойства. Различают:

    По качеству и способу производства

    В этом случаи под качеством понимают всю совокупность свойств металла, которые определяются металлургическим процессом его изготовления. Качество стали определяется присутствием в ней вредных примесей. В первую очередь - это химические элементы сера и фосфор. В зависимости от их содержание разделяют на:

    • обыкновенного качества - содержащие до 0,06% серы и 0,07% фосфора;
    • качественные - до 0,035% серы и 0,035% фосфора;
    • высококачественные - не более 0,025% серы и 0,025% фосфора.
    • особо высококачественные - не более 0,015% серы и 0,025% фосфора.

    По степени раскисления

    Раскислением называется процесс удаления кислорода из жидкого сплава. Нераскисленная сталь имеет относительно малую пластичность и сильнее подвержена хрупкому разрушению при термической обработке давлением. По степени раскисления разделяют на:

    • спокойные;
    • полуспокойные;
    • кипящие.

    Процесс раскисления спокойных сталей в плавильной печи/или ковше с помощью марганца, алюминия и кремния. Затвердевание в изложнице происходит спокойно, без газовыделения. В верхней части слитков образуется усадочная раковина. Данный тип обладает анизотропией, то есть механические свойства различны и зависят от направления - пластические свойства в поперечном направлении (по направлению прокатки) значительно ниже, чем в продольном направлении. Кроме того, в верхней части слитка содержание серы, фосфора и углерода повышенное, а в нижней части - пониженное. Это значительно ухудшает свойства изделия, иногда даже до отбраковки.

    Раскисление в кипящих происходит только за счет марганца. Избыточное количество кислорода при затвердевании частично реагирует с углеродом, выделяясь в виде газовых пузырей (окись углерода). Отсюда и создается впечатление «кипения». В этом типе практически отсутствуют неметаллические включения, возникающие из продуктов раскисления. Является низкоуглеродистым сплавом, с минимальным содержанием кремния и большим содержанием газообразных примесей. Используется при изготовлении деталей кузовов автомобилей и т. п. Обладает хорошей штампуемостью в холодном состоянии.

    Полуспокойные стали занимают срединное положение между спокойными и кипящими сталями. Раскисление производят в два этапа: частично в плавильной печи и ковше, заключительно - в изложнице. В изложнице раскисление происходит засчет углерода, который содержится в металле.

    Расшифровка сталей в материаловедении

    Принадлежит к классу: конструкционные углеродистые качественные. Химический состав: углерод - 0,17−0,24%; кремний - 0,17−0,37%; марганец - 0,35−0,65%; сера - до 0,04%; фосфор - до 0,04%. Широко применяется в котлостроении, для труб и нагревательных трубопроводов различного назначения, кроме того, промышленность выпускает пруток, лист.

    ХВГ расшифровка

    Принадлежит к классу: инструментальные легированные. Применяется для изготовления измерительного и режущего инструмента, метчиков, протяжек.

    Сталь является самым распространенным сплавом. Разнообразие областей применения обуславливает большое количество разновидностей с различными требованиями, как по механическим, так и химическим характеристикам стали. Различные марки стали подразумевают не только разнообразие химического состава, но и технологию изготовления.

    В основе многообразия сплавов лежит именно химический состав металла, поскольку легирующие компоненты определяют конечный результат, а технология изготовления и обработки лишь подчеркивает и выделяет отдельные характеристики. Некоторые элементы, входящие в состав, могут ухудшать характеристики, поэтому отдельные элементы маркировки могут указывать на отсутствие или низкое содержание подобных веществ.

    Расшифровка маркировки позволяет определить содержание основных элементов сплава и, отчасти, технологию производства, а также оценить технические характеристики, а с ними и область возможного применения.

    Кроме различий в составе и обработке, подразделяют также категории стали по механической прочности. Насчитывается 5 категорий, которые различаются методикой испытаний на соответствие механической прочности. Испытания проводятся на растяжение и ударную вязкость контрольных образцов.

    Виды сталей и особенности их маркировки

    Различные области применения сталей требуют наличие у нее строго определенных свойств – физических, химических. В одном случае требуется максимально высокая износоустойчивость, в других – повышенная устойчивость против коррозии, в третьих внимание уделяется магнитным свойствам.

    Видов стали много. Основная масса выплавляемого металла идет в производство конструкционной стали, в которую входят такие виды:

    При расшифровке обозначений нужно учитывать, что каждому из видов соответствует строго определенная буква в маркировке.

    Классификация по химическому составу

    Основными легирующими добавками являются металлы. Варьируя количественный состав добавок и их массовую долю, получают большое разнообразие марок стали. Само по себе чистое железо имеет невысокие технические свойства. Малая механическая прочность, сильная подверженность коррозии, требуют введения в состав сплава дополнительных веществ, которые направлены на улучшение одного из качеств, либо сразу нескольких.

    Нередко улучшение одних характеристик влечет за собой ухудшение иных. Так, высоколегированные нержавеющие стали могут иметь низкую механическую прочность, а качественные углеродистые вместе с высокой прочностью получают ослабленные коррозионные свойства.

    Как уже говорилось выше, одной из классификаций марок стали является ее химический состав. Основными компонентами всех без исключения сталей являются железо и углерод, содержание которого не должно превышать 2,14 %. В зависимости от количества и пропорций добавок, содержание железа в композиции должно составлять не менее 50 %.

    По количеству содержащегося углерода классифицируют три группы сталей:

    • Малоуглеродистые – содержание углерода менее 0,25 %;
    • Среднеуглеродистые – 0,25-0,6 % углерода;
    • Высокоуглеродистые, с содержанием углерода более 0,6 %.

    Увеличение процентного содержания углерода повышает твердость металла, но, вместе с тем, снижается его прочность.

    Для улучшения эксплуатационных качеств, в состав сплава вводят определенное количество химических элементов. Такие стали называют легированными. Для легированных сталей также существует деление на три группы:

    • Низколегированные, с содержанием добавок до 2,5 %;
    • Среднелегированные, которые содержат от 2,5 до 10 % легирующих элементов;
    • Высоколегированные. Содержание легирующих примесей варьируется от 10 до 50 %.

    Маркировка сталей отражает наличие и процентное содержание легирующих добавок. При расшифровке каждому элементу соответствует определенная буква, рядом с которой находится цифра, соответствующая его содержанию в процентах. Отсутствие чисел говорит о том, что добавка присутствует в сплаве в количестве менее 1-1,5%. Наличие углерода в составе не отражается, поскольку он входит во все композиции, но его содержание обозначается в самом начале маркировки.

    Маркировка может говорить и о назначении сплава. Поскольку в данной классификации также используются буквенные обозначения, то регламентируется порядок их расположения – в начале, середине и конце маркировки.

    Классификация по назначению

    Выше уже были приведена классификация видов сталей по назначению. Маркировка конструкционных сталей включает в себя такие обозначения:

    • Строительная – обозначается буквой С и цифрами, характеризующими предел текучести.
    • Подшипниковая – обозначается буквой Ш. Далее идет обозначение и содержание легирующих добавок, в основном, хрома.
    • Инструментальная нелегированная – обозначается буквой У и содержанием углерода в десятых долях процента.
    • Быстрорежущая – обозначается буквой Р и символами легирующих компонентов.
    • Нелегированная конструкционная сталь имеет в обозначении символы Сп и число, показывающее содержание углерода в десятых или сотых долях процента.

    Остальные разновидности, в том числе и инструментальные марки из легированных сталей, не имеют специальных обозначений, кроме химического состава, поэтому расшифровку и назначение отдельных видов можно определить только по справочной литературе.

    Классификация по структуре

    Под структурой стали подразумевается внутреннее строение металла, которое может существенно меняться в зависимости от условий термообработки, механических воздействий. Форма и размер зерен зависят от состава и соотношения легирующих добавок, технологии производства.

    Основу зерен стали составляет кристаллическая решетка железа, в которую включены атомы примесей – углерода, металлов. Углерод может образовывать твердые растворы в кристаллической решетке, а может создавать с железом химические соединения, карбиды.

    Добавки металлов существуют в виде растворов, и многие из них влияют на состояние раствора углерода.

    Структура стали меняется при изменениях температуры. Эти изменения называются фазами. Каждая фаза существует в определенном температурном диапазоне, но легирующие добавки могут существенно смещать границы перехода одной фазы в другую.

    Насчитывают такие основные фазы состояния металла:

    • Аустенит. Атомы углерода находятся внутри кристаллической решетки железа. Данная фаза существует в диапазоне 1400-700 °С. При наличии в составе от 8 до 10% никеля, аустенитная фаза может сохраняться и при комнатной температуре.
    • Феррит. Твердый раствор углерода в железе.
    • Мартенсит. Пересыщенный раствор углерода. Данная фаза свойственна закаленной стали.
    • Бейнит. Фаза образуется при быстром охлаждении аустенита до температуры 200-500 °С. Характеризуется смесью феррита и карбида железа.
    • Перлит. Равновесная смесь феррита и карбида. Образуется при медленном охлаждении аустенита до температуры 727 °С.

    Фазы строения металла характеризуют его физические свойства, в зависимости от которых определяется класс стали – конструкционная, литейная и так далее.

    Классификация по качеству

    Легированная и нелегированная сталь в пределах каждой марки отличается качеством, которое зависит от технологии производства и качества исходных материалов.

    На качество стали особо влияют примеси, которые остаются в ней при восстановлении железа из рудных концентратов. В основном негативно влияют на качество стали фосфор и сера. По их содержанию классифицируют стали обыкновенного качества и высококачественную, в конце обозначения которой присутствует буква А. Содержание фосфора в высококачественной стали не превышает 0,025 %.

    Классификация по способу раскисления

    При выплавке стали в ней остается некоторое количество кислорода в составе окислов железа. Для снижения количества кислорода и восстановления железа из окислов применяется реакция раскисления, при которой в расплавленный металл добавляют соединения, более активные по взаимодействию с кислородом, чем железо. Во время реакции высвободившийся кислород также реагирует с углеродом, в результате чего образуется углекислый газ, который выделяется в виде пузырьков.

    В зависимости от количества раскислителей и продолжительности процесса можно выделить три вида итогового сплава:

    • Кипящая сталь. В результате минимального использования присадок и времени реакции увеличен выход готовой продукции, которая, при этом отличается низким качеством;
    • Спокойная сталь. Металл, в котором полностью прошли процессы раскисления. Отличается высоким качеством, но дорога в производстве в связи с высокой стоимостью реагентов и сниженным выходом продукта;
    • Полуспокойная сталь. Промежуточный вариант с оптимальным сочетанием качества и стоимости.

    При изготовлении ассортимента марок стали из металла разной степени раскисления применяется специальная маркировка материалов, соответственно символами «сп», «кп» и «пс».

    Маркировка сталей по российским стандартам

    Маркировка сталей по российским стандартам позволяет определить состав металла и, частично, принадлежность к определенному виду.

    При наличии углерода в стали более 1 %, его количество в маркировке не указывается. Марка стали включает буквенные обозначения легирующих добавок с указанием их количества в десятых и сотых долях процента, но если содержание компонента менее 1,5 %, то в маркировке присутствует только буквенное обозначение.

    Кроме химического состава, маркировка содержит символы, характеризующие назначение стали, степень ее качества.

    Маркировка сталей по американской и европейской системам

    Маркировка сталей отечественного производства и на постсоветском пространстве позволяет приблизительно определить состав, назначение и характеристики, не прибегая к справочной литературе. В американских и европейских стандартах такая расшифровка, по большей части, отсутствует. Это связано с большим количеством организаций, занимающихся стандартизацией металлопродукции.

    По большей части обозначение стали по американским и европейским стандартам не содержит указаний на химический состав. Виды стали по назначению характеризуются буквенным или цифровым кодом, который можно расшифровать при помощи справочной литературы.

    Только в европейском стандарте EN10027 существует вариант маркировки сплавов по химическому составу, который имеет близкое сходство с отечественными обозначениями.

    Обозначения легирующих элементов

    Для того чтобы по маркировке стали узнать качественный и количественный состав, для легирующих элементов используют буквенные обозначения. В основном, русские буквы соответствуют названиям элементов, хотя встречаются исключения, поскольку есть элементы, которые начинаются с одинаковых букв. Таблица легирующих элементов выглядит следующим образом.

    Как видно из таблицы, в ней присутствуют два неметалла – кремний и азот, а углерода нет. Наличие углерода подразумевается в составе любой стали, поэтому в обозначении указывается лишь его содержание

    Цветовая маркировка

    Цветовая маркировка сталей применяется для обозначения проката. Это удобно при хранении материалов на складах, транспортировке. Обозначение сталей производится метками в виде точек или полос, выполненных несмываемой краской. Цвет обозначений выбирается из таблицы согласно назначениям стали. При этом группа стали и степень ее раскисления не учитываются.

    Примеры расшифровки маркировки

    Для того чтобы расшифровка была понятнее, следует привести некоторые, наиболее яркие примеры маркировки. На основании примеров, определение марки стали в сравнении с уже известными, будет являться несложной задачей. Вот некоторые виды стали с расшифровкой условных обозначений:

    • 30ХГСА – расшифровка марки стали говорит о том, что в сплаве содержится 0,3 % углерода, о чем свидетельствует цифра в начале обозначения. Сталь содержит хром (Х), марганец (Г), кремний (С), но их содержание менее 1,5 %. Символ «А» в конце обозначения говорит о том, что сталь высококачественная.
    • У8ГА – инструментальная сталь с содержанием углерода 0,8 %. Высококачественная с добавлением марганца.
    • Р6М5Ф2К8 – быстрорежущая сталь. Содержит 5 % молибдена, 2 % ванадия, 8 % кобальта. Хром содержится во всех быстрорежущих сталях в количестве около 4 %, поэтому в обозначение не входит. Вольфрам также всегда присутствует, но его содержание может изменяться, поэтому в данной марке его количество составляет 6 %.
    • Ст3сп5 – сталь конструкционная нелегированная, полностью раскисленная – спокойная, 5-й категории, то есть может применяться для изготовления несущих сварных конструкций.
    • ХВГ – сталь ХВГ имеет в составе хром, вольфрам и марганец в количестве около 1 % и дополнительные легирующие элементы, но их содержание меньше 0,5 %.

    Стали, используемые в сварных металлоконстукциях, различаются по ряду признаков, отражающих их изготовление, служебные свойства и область применения. Важнейшими из этих признаков являются:

    · способ выплавки и разливки стали;

    · степень раскисленности;

    · химический состав;

    · состояние поставки;

    · уровень (класс) прочности;

    По способу выплавки применяемую в сварных металлоконструкциях сталь можно разделить на мартеновскую, кислородно-конверторную и электросталь.

    До 1960 г. для металлоконструкций использовали почти исключительно сталь, выплавленную в мартеновских печах. В последующие периоды во всем мире получил большое распространение наиболее производительный способ выплавки в кислородных конверторах с использованием для продувки через расплавленный металл кислорода высокой чистоты не менее 99,5% О 2 . Качество кислородно-конверторной стали не уступает качеству мартеновской, и с 1971 г. эти виды стали не разделяются.

    С пуском крупных электродуговых печей, имеющих массу плавки 100-250 т и более, увеличилась выплавка стали в электропечах. Эта сталь отличается повышенной чистотой по содержанию вредных примесей - серы и фосфора.

    В процессе электрошлакового переплава исходные заготовки (слябы) из стали мартеновской, кислородно-конвертерной или электростали переплавляются с нагревом электрическим током под слоем расплавленной шлаковой смеси специального химического состава. При этом содержание серы и кислорода уменьшается в 2-3 раза. Неметаллические включения, еще остающиеся в слитке, имеют малые размеры и равномерно распределены по объему.

    По степени раскисленности сталь разделяется:

    ·кипящая (кп);

    ·полуспокойная (пс);

    ·спокойная (сп).

    При выплавке стали в мартене или конвертере из передельного чугуна, содержащего 3-4 % углерода, окисление углерода (до содержания 0,06-0,25%С в стали) связано с образованием газообразных продуктов СО и СО 2 , вызывающих кипение металлической ванны. Если не проводить раскисления, то кипение продолжается после выпуска плавки в ковш и после разливки ее в изложницы до затвердевания слитка. Такая сталь называется кипящей .

    Выделение газообразных продуктов при кристаллизации слитка кипящей стали приводит к резкому усилению его неоднородности по содержанию С, S и P, называемой ликвацией. Головная (верхняя) часть и сердцевина слитка обогащены примесями. Зона максимального содержания ликвирующих элементов в слитке кипящей стали расположена на расстоянии 5-15 % высоты слитка от его верха, ликвация по углероду достигает 400 % и по сере 900% среднего содержания этих элементов в плавке.

    Идущая в отход при прокатке головная часть слитка (обрезь) кипящей стали составляет 4-10 % его массы. Но и в оставшейся части слитка после его прокатки имеются обширные зоны ликвации с содержанием С до 0,3-0,4% и серы до 0,15% при среднеплавочном содержании С = 0,12-0,22 % и S <= 0,05%. В результате разные листы и профили, входящие в одну партию (плавку) кипящей стали, но изготовленные из разных частей слитка (головной, средней или донной), неодинаковы по содержанию C, S и P.

    Спокойная сталь раскисляется в сталеплавильном агрегате, а также в ковше при выпуске из печи. При этом в жидкий металл вводятся энергичные раскислители: марганец, кремний. алюминий, иногда кальций или титан. Эти элементы обладают значительно большим сродством к кислороду, чем углерод, поэтому окисление углерода прекращается, и сталь перестает кипеть. Благодаря этому слитки спокойной стали гораздо однороднее по химическому составу, чем кипящей. Ликвация по углероду лишь на 60%, а по сере на 110% превышает среднеплавочное содержание этих элементов.

    Вместе с тем затвердевание слитка спокойной стали связано с образованием большой усадочной раковины. Для получения бездефектного тела слитка сталь разливают в изложницы с теплоизолирующими прибыльными надставками. Усадочная раковина образуется в верхней утепленной части слитка, которую перед прокаткой удаляют. Обрезь составляет 12-16% массы слитка. Поэтому выход годного проката из слитков спокойной стали меньше, чем из слитков кипящей. Вследствие этого, а также из-за большей продолжительности плавки за счет операции раскисления, дополнительного расхода ферросплавов и алюминия спокойная сталь дороже кипящей.

    Низкое качество кипящей стали и небольшая технико-экономическая эффективность спокойной стали послужили стимулом к разработке варианта с промежуточной степенью раскисления – полуспокойной стали. Она выплавляется, как кипящая, но в ковше или при разливке в изложницы обрабатывается небольшим количеством раскислителей, гораздо меньшим, чем при выплавке спокойных сталей. Обычно применяют комплексное раскисление ферросилицием и алюминием. Быстрое прекращение кипения и затвердевание головной части слитка предотвращает развитие большой химической неоднородности. При этом для ликвации в слитках полуспокойной стали характерно превышение среднеплавочного содержания углерода на 80% и серы на 150%. Расстояние осевой ликвационной зоны от верха слитка составляет 15-30% его высоты; головная обрезь - 3-5% массы слитка.

    Производство полуспокойных сталей характеризуется высокой технико-экономической эффективностью. В сравнении с производством спокойной стали выход годного проката из слитков выше на 8-10%, расход ферросилиция на раскисление снижен в 2-5 раз, алюминия в 5 раз, существенно уменьшается количество изложниц. Себестоимость и цена проката из полуспокойной стали на 2-9% ниже, чем из спокойной. Вместе с тем по качеству в части однородности химического состава, микроструктуры и механических свойств, сопротивления хрупкому разрушению и показателям прочности прокат полуспокойной стали уступает прокату спокойной стали, занимая промежуточное положение.

    Химический состав стали - главная ее характеристика. Он определяет ее марку. При этом содержание химических элементов для данной марки стали задается не дискретно, а некоторым интервалом, в пределах которого изменение хим. состава не должно сопровождаться выведением свойств за границы гарантируемых уровней. Ширина интервала связана с возможностью сталеплавильного производства соблюдать заданную композицию.

    Стали, в которых отсутствуют специальные добавки легирующих элементов или имеется лишь небольшое их количество, обусловленное технологией выплавки, называются углеродистыми.

    - низкоуглеродистые (до 0,25 % С);

    - среднеуглеродистые (0,3-0,6 % С);

    - высокоуглеродистые (свыше 0,6 % С).

    Для сварных металлоконструкций используются преимущественно стали с низким содержанием углерода. Они поставляются по ГОСТ 380-88, ГОСТ 14637-89 и ГОСТ 27772-88, а также сталь по ГОСТ 1050-88 главным образом в виде труб.

    Стали, в которые специально вводятся добавки легирующих элементов для обеспечения требуемых свойств, называются легированными . Они могут содержать один, два, три и более легирующих элемента. Так, различают марганцовистую, хромистую, кремнемарганцовистую, хромоникелевую, хромоникельмолибденовую и другие легированные стали.

    Легированные стали с небольшим содержанием легирующих элементов, обычно в сумме не превышающем 2-3 % по массе, и с низким содержанием углерода, используемые в строительстве, машиностроении, судостроении для изготовления сварных металлоконструкций, выделены в особую группу, их называют низколегированными . Прокат низколегированных сталей для металлоконструкций поставляется по ГОСТ 19281-89 (сортовой и фасонный), ГОСТ 19282-73 (листы и широкие полосы), ГОСТ 6713-91, ГОСТ 27772-88 и другим ТУ.

    Стали с общим содержанием легирующих элементов от 3 до 10% - среднелегированные .

    Марки стали

    Маркировка всех легированных сталей однотипная: первые две цифры обозначают содержание углерода в сотых долях процента; буквы - условное обозначение легирующих элементов; цифра после буквы - примерное содержание легирующего элемента (единица и меньшее значение не ставятся); буква «А» в конце марки показывает, что сталь высококачественная и имеет пониженное содержание серы и фосфора.