Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Инфракрасный объектив. Проблемы с объективом. Различия между чёрно-белым и инфракрасным изображением

    Инфракрасный объектив. Проблемы с объективом. Различия между чёрно-белым и инфракрасным изображением

    Существует замечательный вид фотографии, которая открывает взгляду иной, «параллельный» мир, скрытый от глаза человека, - инфракрасная фотография. Изображения, полученные при помощи инфракрасных фильтров, позволяют нам попасть в сказку, которая в то же время является неотъемлемой частью нашего повседневного пространства.

    Инфракрасная фотография началась в пленочную эпоху, когда появились специальные пленки, способные к регистрации инфракрасного излучения. Но, поскольку в наше время цифровые зеркальные фотоаппараты гораздо популярнее пленочных и достать специальную пленку стало достаточно тяжело (к тому же, надо заметить, не каждая пленочная зеркалка позволит снимать на ИК-пленку из-за наличия внутри камеры инфракрасного датчика, который будет засвечивать кадры), в этом фотоуроке мы коснемся только аспектов инфракрасной съемки при помощи цифровых зеркальных камер.

    Для начала, чтобы понять процесс получения инфракрасного изображения, необходимо разобраться в теории. Излучение, формирующее цветное изображение, воспринимаемое человеческим глазом, имеет длину волны в пределах от 0,38 мкм (фиолетовый цвет) до 0,74 мкм (красный цвет). Пик чувствительности глаза приходится, как известно, на зеленый цвет, имеющий длину волны примерно 0,55 мкм. Диапазон волн с длиной менее 0,38 мкм называют ультрафиолетовым, а более 0,74 мкм (и до 2000 мкм) - инфракрасным. Источниками инфракрасного излучения являются все нагретые тела.

    Отраженное солнечное ИК-излучение чаще всего формирует картинку на пленке или матрице фотоаппарата. Поскольку самое распространенное применение инфракрасная фотография нашла в пейзажном жанре , необходимо отметить, что лучше всего ИК-излучение отражают трава, листья и хвоя, и поэтому они на снимках получаются белыми. Все тела, поглощающие ИК-излучение, на снимках выходят темными (вода , земля, стволы и ветви деревьев).

    Теперь можно перейти к практической части.

    Начнем с фильтров. Для получения инфракрасного изображения необходимо использовать ИК-фильтры, обрезающие большую часть или все видимое излучение. В магазинах можно найти, например, B+W 092 (пропускает излучение от 0,65 мкм и длиннее), B+W 093 (0,83 мкм и длиннее), Hoya RM-72 (0,74 мкм и длиннее), Tiffen 87 (0,78 мкм и длиннее), Cokin P007 (0,72 мкм и длиннее). Все фильтры, кроме последнего, являются обычными резьбовыми фильтрами, навинчивающимися на объектив. Фильтры французской фирмы Cokin необходимо использовать с фирменным креплением, которое состоит из кольца с резьбой под объектив и держателя фильтров. Особенность такой системы состоит в том, что для объективов с разным диаметром резьбы нужно приобретать только соответствующее кольцо, а сам фильтр и держатель остаются теми же, что получается гораздо дешевле, чем приобретение одинаковых резьбовых фильтров для каждого объектива. Кроме того, в стандартный держатель можно установить до трех фильтров с разными эффектами.

    Поскольку мы рассматриваем ИК-съемку исключительно при помощи цифровых зеркальных фотокамер, нужно отметить, что у разных моделей камер разная способность к регистрации инфракрасного излучения. Сами по себе матрицы фотокамер достаточно хорошо воспринимают ИК-излучение, однако производители устанавливают перед матрицей фильтр (так называемый Hot Mirror Filter), обрезающий большую часть волн инфракрасного диапазона.

    Делается это для минимизации появления нежелательных эффектов на снимках (например, муара). От того, насколько сильно фильтруется ИК-излучение, зависит возможность применения камеры для ИК-съемки. Например, камерой Nikon D70 с фильтром Cokin P007 можно снимать с рук, а для Canon EOS 350D и большинства других камер из-за длинных выдержек всегда потребуется штатив. Некоторые фотографы, увлеченные ИК-фотосъемкой, прибегают к модификации камеры, удаляя инфракрасный фильтр.

    Теперь коснемся обработки снимков в Photoshop. Полученные кадры, в зависимости от установки баланса белого, будут иметь красную или фиолетовую тональность. Для получения классического черно-белого инфракрасного снимка нужно будет обесцветить снимок, например, с использованием карты градиента, предварительно настроив уровни и контраст. Также существует несколько способов получения очень эффектных цветных инфракрасных фотографий. Например, можно воспользоваться инструментом Channel Mixer, установив для начала для красного канала Red - 0%, Blue - 100%, для синего - Red - 100%, Blue - 0%, а затем путем небольших манипуляций с процентным соотношением того или иного цвета в каналах подобрать такие значения, при которых картинка будет выглядеть наиболее привлекательно.

    В заключение отметим основные плюсы инфракрасной фотографии: отсутствие дымки на снимках и всегда хорошо проработанное небо, отсутствие мусора, поскольку он не отражает ИК-лучи, и, конечно, важнее всего то, о чем было сказано в самом начале, - возможность увидеть необычный, неповседневный мир, в котором, помимо сказочного цвета, все движущиеся объекты исчезают или превращаются в «призраков».

    Уяснив требования к системе видеонаблюдения, вы готовы чтобы определиться с ее основными характеристиками: одним из самых важных этапов проектирования системы видеонаблюдения является определение требований с учетом рисков, которые существуют в здании или на территории, на которой будет работать система видеонаблюдения. Если вы планируете установить системы видеонаблюдения, в начале нужно определиться, какие системы это будут - аналоговая или цифровая. В целом можно сказать, что система полностью аналоговая практически не бывает, так как в любом случае видеоматериал записывается цифровым способом. Выбор, однако, остается по-прежнему - аналоговые или цифровые камеры. Аналоговые видеокамеры все еще дешевле по сравнению с IP-камерами и во многих случаях очень подходят для выполнения этой задачи, не уступают более дорогим цифровым системам. Выбор между аналоговыми и цифровыми камерами диктует выбор типа записывающего оборудования. Для аналоговых камер видеонаблюдения часто используют современные цифровые видеорегистраторы, в случае записи видео для цифровых камер будет эквивалентен NVR. Другим аспектом является то, что должна ли она быть локальной системой или для удаленного доступа. Видеонаблюдение представляет собой замкнутую систему так, что никто из посторонних не должен иметь к нему доступ. Такая система должна гарантировать безопасность хранимых данных. С другой стороны, развитие Интернета для широкой доступности дает ему новые возможности для удаленного мониторинга объекта без ограничений по месту. Современные системы мониторинга и видеонаблюдения дают возможность задавать опции изображения, формируемое камерой видеонаблюдения. В зависимости от конфигурации, камера может быть доступна для просмотра в реальном времени и просмотра архива, что позволяет нам резервное копирование данных на внешний носитель, а также управлять записанным материалом. Все эти возможности могут быть доступны или заблокированы на определенных уровнях доступа отдельным паролем. Для владельца, или для удаленного управления компании можно дать полный удаленный доступ ко всем функциям соответствующего доступа безопасности и к журналу регистрации в системе. С другой стороны, можно блокировать любые функции, для тех, кто не зарегистрирован. Пару слов о проблемах, связанных с качеством изображения. Не существует никаких сомнений, что качество изображения играет ключевую роль в идентификации объектов для множества камер видеонаблюдения. Заметим, однако, что это зависит от многих факторов: уровень видимости и план освещения для наблюдения, правильный выбор параметров камеры, качество напряжения питания, качество электроснабжения, качество используемых разъемов, качество провода. Следует помнить, что в экстремальных случаях, отсутствие хотя бы одного из этих пунктов может иметь решающее значение для ухудшения изображение даже при выборе наилучшего оборудования. В очень простых систем видеонаблюдения, которые не должны различать мелкие детали, и будут работать под хорошим светом, не нужно использовать дорогие камеры, будет достаточно использовать стандартную черно-белую или цветную камеру с разрешением 400-500 ТВЛ. Однако, если видеонаблюдения должно позволить идентификацию личности или регистрационный номер автомобиля - следует использовать камеры слежения с высоким разрешением 600-700 ТВЛ. Типы и способ провода. В небольших системах видеонаблюдения, где сигнал передается на расстояние в несколько метров нет необходимости в профессиональном сигнальном кабеле и шнурах питания с увеличенным диаметром. Тем не менее, если камеры расположены на значительном расстоянии от записывающего оборудования должен использоваться кабель лучшего качества. Помехи для системы видеонаблюдения могут возникать из-за шума, который генерируется в длинных сигнальных кабелях. Они вызывают помехи в изображении камеры видеонаблюдения. Помехи могут также возникать, если провода расположены в непосредственной близости от линии электропередачи, радиопередатчиков, генераторов магнитноых волн и трансформаторов. Какие линзы вибрать: регулируемые линзы или фиксированные линзы? Выбор типа объектива тесно связан с тем, что будет наблюдать камера наблюдения. Если план камеры не меняется, для примера, входная дверь, не стоит использовать камеры с зум-объективами. Однако, если камера будет приспосабливаться к модификации окружающей среды, целесообразно рассматривать при выборе камеры с переменным фокусным расстоянием и с ручной регулировкой. Однако, если камера видеонаблюдения будет использоваться для частой смены плана и просмотривать большую площадь, возможно стоит выбрать камеру с моторизированным зум-обьективом. В особых случаях, когда мы хотим быть в состоянии патрулирования местности, отслеживание PTZ камерой могжет быть использовано очень продуктивно. Мониторинг объекта, где оборудование было выбрано правильно и правильно настроено, существенно повышается уровень безопасности, а деньги, вложенные в установку быстро вернутся.

    06:43 am - Инфракрасная фотография

    Что такое инфракрасная фотография?

    Это ещё не тепло, но уже не свет.
    Как получить инфракрасное изображение на обычном фото-аппарате. Как сделать ИК-фильтр из подручных материалов. Специализированные камеры. Сложности при съёмке и как их обойти. Выбор объективов, камер и фильтров.
    Интересные сюжеты в инфракрасном диапазоне.

    На живых примерах инфракрасных снимков попробуем вместе их обработать. Получим готовые решения по обработке снимков и вместе разберём, как эти решения работают.

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

    Представление об инфракрасном, видимом и ультрафиолетовом излучении. Различие инфракрасного и теплового излучения.


    Инфракрасное излучение было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается. Тогда же было доказано, что это излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет.

    Рис.1 Разложение в спектр солнечного излучения


    С противоположной стороны, за фиолетовой полосой спектра находится ультрафиолетовое излучение. Оно так же невидимо, но так же немного нагревает термометр.

    Дальнее инфракрасное излучение (самое длинноволновое) применяют в медицине в физиотерапии. Оно проникает под кожу и нагревает внутренние органы, не обжигая при этом кожу.

    Среднее инфракрасное излучение регистрируется тепловизорами. Наиболее популярное применение тепловизоров – это поиск утечек тепла и бесконтактный контроль температуры.

    Рис. 2. Тепловизор (средняя инфракрасная область)


    Нас же больше всего интересует ближнее (самое коротковолновое) инфракрасное излучение. Это уже не тепловое излучение окружающих предметов комнатной температуры, но ещё не видимый свет.
    В этом диапазоне частот довольно сильно излучают предметы, нагретые до заметного красного свечения. Например, гвоздь, нагретый докрасна на пламени газовой плиты в инфракрасном свете – ярко белый (рис.3) Участки более холодные (покраснение которых незаметно в видимом спектре) остаются тёмными в ИК.

    Рис. 3 Ближний ИК диапазон


    Именно этот диапазон излучения «работает», когда предметы нагреваются на солнце или под лампами накаливания. И это же излучение поглощают «термальные» окна автомобилей и домашние энергосберегающие стеклопакеты.
    Наиболее популярное его применение – это пульты дистанционного управления (рис.4), инфракрасные камеры наблюдения с инфракрасными прожекторами подсветки.
    В своё время была популярна передача данных по стандарту IrDA. Тот самый инфракрасный порт в телефонах и ноутбуках.

    Рис. 4. Пульт дистанционного управления


    В цифровой, как впрочем и плёночной фотографии чувствительность камеры к инфракрасному излучению нежелательна. Она приводит к искажению цвета - черные велюровые пиджаки смотрятся синими, выборочно теряется насыщенность красного.
    Поэтому в современных камерах всячески борются с ней самыми разнообразными методами. Однако остаточная чувствительность всё равно есть, хоть и совсем небольшая.

    Различия между чёрно-белым и инфракрасным изображением.

    В интернете довольно популярны фильтры, делающие из цветной фотографии подобие инфракрасной. Однако они не могут работать корректно, потому что в цветной картинке нет информации об отражающей способности материалов в инфракрасном спектре. Грубо говоря, они не могут различить зелёный автомобиль и зелёную листву и делают все зеленые объекты в кадре белыми. Точно так же всё синее становится чёрным.
    Точно так же не получается инфракрасной фотографии за простым красным фильтром неважно, плёночным или цифровым.

    Как получить инфракрасное изображение

    Для того чтобы получить настоящее инфракрасное изображение нужно, в простейшем случае, не пропустить в объектив видимое излучение, чтобы остаточная чувствительность камеры к инфракрасному излучению сформировала изображение.
    Инфракрасные плёнки
    В случае плёночной фотографии это обеспечивается применением специальных плёнок Kodak High Speed Infrared HIE, Konica Infrared 750 и самой популярной – Ilford SFX 200. Однако плёнки недостаточно, нужно ещё установить фильтр, который отсечёт видимый свет. Иначе плёнка превращается в обычную чёрно-белую панхроматическую плёнку с увеличенным зерном. Совершенно неинтересное сочетание.
    Инфракрасная плёнка очень требовательна к условиям хранения – настоятельно рекомендуется хранить в холодильнике. Заряжать плёнку в фотоаппарат необходимо в полной темноте, потому что хвостик плёнки работает как световод и засвечивает до полвины плёнки. Плюс счётчики кадров в плёночных фотоаппаратах также засвечивают плёнку. Ни в коем случае нельзя засвечивать плёнку при сканировании багажа в аэропорту, а сделать это в современных мерах безопасности практически нереально – служба безопасности встаёт на дыбы и настоятельно просит показать, что в коробочке.
    После экспонирования плёнку нужно проявлять по классическому чёрно-белому процессу в кромешной темноте и желательно в металлическом бачке.
    Итого плёночная инфракрасная фотография это занятие скорее героическое, чем практическое.
    Цифровые камеры
    В цифровой фотографии всё гораздо интереснее. У большинства популярных цифровых фотоаппаратов матрица имеет остаточную чувствительность к инфракрасному диапазону достаточную, чтобы фотографировать на солнце с выдержкой в несколько секунд.

    Рис. 5. Инфракрасная фотография. Canon EOS 40D, F8, 30”. Фильтр из слайдовой плёнки.


    Несмотря на то, что матрица цифровой камеры чувствительна к инфракрасному излучению, их чувствительность к видимому свету в тысячи раз больше, поэтому, чтобы сделать ИК-фотографию, необходимо блокировать видимый свет специальным фильтром.
    Например, камеры Canon EOS 40D и 300D на летнем солнце требовали выдержку 10…15 секунд при диафрагме F5.6 и чувствительности ISO 100. В аналогичных условиях Nikon D70 позволял работать с выдержкой в ½ … 1 секунду (что говорит о значительно более слабом ИК-фильтре в камере).
    Если не бояться длительных выдержек, то вполне можно работать и в таком режиме - просто установить перед объективом инфракрасный фильтр и фотографировать со штатива.
    Минус такого решения не только в длинных выдержках, но и в невозможности кадрировать картинку – в оптическом видоискателе ничего не видно. Приходится всегда пользоваться LiveView, а он есть не у всех камер.
    Камеры с убирающимся инфракрасным фильтром (NightVision)
    В своё время, когда цифровые зеркальные камеры ещё не набрали сегодняшней популярности, среди фотографов пользовались авторитетом камеры Sony DSC-F707/717/828.

    Рис6. Камеры Sony DSC-F717/828/707


    Их особенностью был режим съёмки Night Shot – в нём с матрицы камеры снимался фильтр, поглощающий инфракрасное излучение. Это позволяло установить перед объективом специальный фильтр, пропускающий только инфракрасное излучение и получить честный инфракрасный снимок с относительно короткими выдержками. Пусть и с массой ограничений автоматики, но это позволило фотографировать портреты в ИК-диапазоне.
    Существует легенда, что камеры, предназначенные для астрофотографии, Canon EOS 20Da и Canon EOS 60Da приспособлены к инфракрасной съёмке, однако это не так. У них по-другому устроен Low-Pass фильтр и повышена чувствительность в красном диапазоне. Однако к инфракрасному диапазону они так же нечувствительны.

    Модификация камеры для инфракрасной съёмки.

    Если возможностей обычной камеры с фильтром кажется недостаточно и хочется получать инфракрасные фотографии с короткими выдержками, то можно из камеры убрать фильтр отсекающий инфракрасное излучение (Hot Mirror) и получить камеру с довольно высокой чувствительностью к ИК-диапазону. В обычном видимом свете камера нормально работать перестанет – цвета буду постоянно искажаться, а справиться с этим можно только установив фильтр Hot Mirror уже на объектив. Поэтому для съёмки в ИК-диапазоне часто используют старую камеру, которая уже отслужила своё и её не так жалко сломать.
    А раз уж пошло вмешательство в камеру, то можно прямо инфракрасный фильтр поставить прямо перед матрицей. Плюсы этого решения в том, что в видоискателе снова видна картинка, а перед объективом больше не нужно ставить инфракрасный фильтр. А раз не нужен фильтр, то можно использовать объективы с различным диаметром резьбы под светофильтр.
    В домашних условиях поменять фильтр перед матрицей теоретически можно, но на практике выгоднее отдать камеру на доработку специалисту – результат получится существенно качественнее, а камера не будет сломана. Опять же, знающий человек оттестирует автофокус камеры под инфракрасную съёмку и внесет поправки, если это надо.

    Инфракрасные фильтры

    Для съёмки в инфракрасном диапазоне практически всегда необходимо применение инфракрасных фильтров (Infrared passing filter). Фильтров, которые не пропускают видимый свет, однако прозрачны для инфракрасного излучения.
    И в этом деле самый простой помощник это фотоплёнка: проявленная цветная плёнка прозрачна в ИК-диапазоне. А это значит, что засвеченная и проявленная негативная или просто проявленная слайдовая плёнка окажется чёрной в видимом диапазоне, но прозрачной в инфракрасном.
    Кстати, именно ИК-прозрачностью плёнки пользуются плёночные сканеры с автоматическим удалением пыли. Они делают дополнительный снимок в ИК-диапазоне – пыль остаётся видимой на фоне прозрачной плёнки. А это готовая маска для удаления пыли.

    Рис.7. Слайдовая плёнка


    А раз так, то можно вырезать из подходящей плёнки кружок нужного диаметра и вложить его между защитным фильтром и объективом. Если эффекта окажется недостаточно – можно вложить несколько слоёв плёнки. Картинка немного потеряет контраст и резкость, но инфракрасная составляющая станет очевидна.

    Рис.7A Слайдовая плёнка и ИК излучение


    Так же можно поискать чёрные CD-R диски. Они были популярны для записи музыки, но в последнее время, со снижением популярности компакт-дисков, их стало сложно найти. Если с подобного диска смыть обложку, то получится чёрный диск, прозрачный в ИК-диапазоне.

    Рис.8. Чёрный компакт-диск.


    Производятся множество вариантов готовых фабричных ИК-фильтров. Наиболее популярный в России это фильтр Hoya R72. Он блокирует излучение короче 720 нанометров, а это как раз граница видимого света. Чуть менее популярен фильтр Schneider B+W 093 – он также полностью блокирует видимое излучение.
    Фильтры Schneider B+W 092 и Cokin P007 блокируют видимое излучение не полностью, поэтому картинка получается только слегка окрашенной. Слайдовая фотоплёнка показывает промежуточный результат, поэтому её приходится складывать в несколько слоёв.

    Объективы

    Одного светофильтра для съёмки недостаточно – нужно ещё чем-то сформировать изображение. Сложность инфракрасной фотосъёмки в том, что объектив будет использоваться в ненормальном для него применении. Длина волны света хоть немного, но длиннее видимой, а это значит, что преломление света будет меньше (вспомним призму с рис.1), а это значит, что масштаб картинки изменится. Объектив станет чуть более длиннофокусным. Одновременно с этим возникает и целая россыпь проблем, которые где-то сказываются сильнее, а где – то слабее. Рассмотрим их подробнее
    Фокусировка
    Если объектив навести на бесконечность в видимом свете, то в ИК-диапазоне он окажется наведённым чуть ближе. Появится фронт-фокус. Но есть и хорошая сторона этой ошибки – она стабильная и достаточно просто довернуть кольцо фокусировки на определенный угол. Именно для этого на советских объективах (например на Юпитер-37А, Юпитер-9, Гелиос 44М-8 и некоторых других) стоит дополнительная красная метка R . Для правильной фокусировки в ИК нужно сначала навести резкость в видимом свете, а потом довернуть кольцо фокусировки на метку R .
    У современных объективов эта метка бывает довольно редко и у зум-объективов её положение зависит от фокусного расстояния. Поэтому обычному фазовому автофокусу зеркальных камер особо доверять не стоит. Обойти проблему можно или воспользовавшись Live View и наведясь уже по контрасту или сфокусироваться вручную, контролируя резкость по экрану. Если у камеры нет Live View, то можно просто задиафрагмировать объектив посильнее и тем самым спрятать ошибку фокусировки в глубине резкости.

    Рис.9 Инфракрасная метка на шкале фокусировки.


    На объективах с постоянным фокусным расстоянием эту метку можно установить самостоятельно, сделав несколько снимков и выбрав положение с максимальной резкостью. Положение этой метки не зависит от дистанции фокусировки и диафрагмы, поэтому её достаточно просто один раз нарисовать и в дальнейшем пользоваться этой поправкой.
    Качество просветления
    Просветляющее покрытие на объективах – это несколько слоёв тонких плёнок, на границе которых луч света отражается, интерферирует с основным лучом и значительно снижает интенсивность отражения. То есть каждый слой просветления рассчитан на определенную длину волны. Однако, для инфракрасного излучения своего слоя просветления может и не быть. Поэтому некоторые объективы начинают «ловить зайцев», показывать довольно сильные блики и терять микрорезкость. А некоторые – нормально работают в инфракрасном диапазоне.
    Неравномерность поля, Hot-Spot
    Ещё одна проблема с инфракрасной оптикой – это переотражения на стыках линз в объективе. У особо многолинзовых объективов они иногда складываются настолько неудачно, что в середине полученного изображения появляется яркое пятно засветки – Hot-spot (рис.10). Эффект сильнее сказывается на закрытых диафрагмах, и на коротких фокусных расстояниях. Если вспомнить, что на матрице часто стоит фильтр hot-miror, отражающий инфракрасное излучение обратно в объектив, картинка получается совсем безрадостная.

    Рис.10 Hot-spot


    Обидно, что чаще всего этот эффект возникает у сверхширокоугольных зум-объективов. Именно тех объективов, на которые получаются самые интересные инфракрасные картинки.
    Блики
    Большинство объективов не предназначено для инфракрасной съёмки. Поэтому чернение внутренних поверхностей, защита от переотражений и расположение приводов внутри объектива может приводить к сильным бликам при попадании прямого солнечного света внутрь объектива. Приходится применять глубокие бленды, снимать из тени или делать несколько снимков с разным положением бликов и собирать из них панорамы-мозаики.

    Рис. 11 Блики


    Все перечисленные особенности в больше части зависят от типа объектива и могут незначительно меняться в зависимости от экземпляра или камеры. В Сети есть отзывы по различным объективам, таблицы с описанием пригодности и проблем, которые возникают с объективами. Найти их можно по строке поиска «объективы пригодные для инфракрасной съёмки». Но это не значит, что снимки с другими объективами не получатся совсем. Они могут потребовать какого-то дополнительного внимания – например, прикрыть их от солнца, или чуть по-другому кадрировать. Но на моём опыте не было ни одного объектива, который был бы совсем не пригоден.
    Единственный случай полной непригодности к ИК-съёмке – это камеры с объективом, установленным на гиперфокальное расстояние (камеры без автофокуса). У них в ИК – диапазоне зона резкости уезжает вперёд, а поправить фокусировку просто нечем. Но такие камеры уже практически не встречаются в виде отдельных фотоаппаратов. Их можно встретить только в самых недорогих телефонах или в роли фронтальной камеры на планшетах. Не думаю, что съёмка в ИК-диапазоне на фронтальную камеру планшета может иметь хоть малейший смысл.

    Практическая часть

    Инфракрасная фотография хороша своей необычностью, отличием от обычной фотографии. Тем, что привычные предметы начинают выглядеть иначе. Поэтому есть смысл делать акцент на сюжетах, подчёркивающих это различие.
    В ИК-диапазоне есть возможность получить картинку с очень большим контрастом. Она чем-то напоминает по контрасту чёрно-белую фотографию за насыщенно красным светофильтром К- 8Х, но картинка ещё контрастнее.В основном инфракрасная фотография хороша в пейзажах. Как городских, так и природных пейзажах. С обилием неба, листвы и простора.

    Рис.12 Градиент на небе в контровом свете


    Интересным получается небо. Чистое небо смотрится чёрным, поскольку оно не отражает ИК-излучение. Перистые облака в свою очередь очень хорошо отражают солнечное и рассеянное ИК-излучение, поэтому смотрятся ярко-белыми на фоне чёрного неба. А вот грозовые облака, как содержащие крупные капли дождя и большие объёмы воды, уже поглощают ИК. Поэтому грозовые облака смотрятся чёрными. Картинка получается похожей на небо, снятое сквозь плотный красный светофильтр, но гораздо контрастнее. При этом в ИК-диапазоне видны даже малейшие облачка, практически незаметные в видимом диапазоне.

    Рис.13 Вода и небо в ИК


    В наших широтах практически не бывает сухого и безоблачного неба. Почти всегда есть небольшая дымка в небе и поэтому небо становится очень светлым в контровом свете. Это мешает съёмке круговых панорам, но смотрится вполне естественно на широкоугольных снимках даже с солнцем в кадре, как это показано на рисунках 11 и 12.
    Если же солнце спрятать, например, за деревьями, как это сделано на рисунке 12, то получается избавиться сразу от двух проблем – и от бликов от прямых солнечных лучей, и от градиентов на небе.
    Очень необычно выглядит водная гладь в ИК-диапазоне (рисунок 13). Вода поглощает ИК излучение лучше видимого и выглядит в ИК диапазоне гораздо темнее, чем в видимом. Однако при этом отражающая способность чуть лучше, чем в видимом свете. Эти факторы вместе создают ощущение тёмного зеркала.
    Сильно преображается в ИК-диапазоне листва деревьев и трава. Они становятся очень светлыми, практически белыми. Что, впрочем, вполне логично – листья на солнце не должны нагреваться, а в ИК поступает самое большое количество энергии Солнца. Стволы деревьев и высохшая растительность поглощает ИК-излучение и выглядит значительно темнее. Этой особенностью ИК-снимков пользуются при аэрофотосъёмке для нужд сельского хозяйства, чтобы выделить участки с погибшей растительностью.
    Снимки с обилием листвы становятся похожими на зимние пейзажи. Цветы в ИК могут оказаться как светлыми, так и тёмными.
    Насекомые чаще всего оказываются очень темными - поскольку они не могут поддерживать температуру своего тела, им выгодно максимально хорошо поглощать солнечное тепло.

    Рис. 14 Цветы в ИК


    Городской пейзаж также таит в себе неожиданные повороты – яркость пигментов красок в инфракрасном свете может сильно отличаться от видимого, а тёмные окна зданий оказаться прозрачными (или зеркальные – тёмными, как на фото 13). Всё это в сочетании с контрастным небом и белой листвой делает пейзаж необычным и поэтому интересным.
    С портретами в ИК всё непросто. Губы по яркости уравниваются с кожей лица, бледнеют брови и ресницы. Кожа выглядит значительно светлее, чем в видимом диапазоне. Теряется объём. Глаза же выглядят очень тёмными на фоне посветлевшей кожи.
    У людей со светлой кожей выступают кровеносные сосуды (рис. 15). Добавляет неопределенности и косметика – никогда не получается заранее угадать, тёмной или светлой в ИК окажется помада, тени или тональный крем. Окрашенные волосы тоже становятся непредсказуемыми, но чаще всего становятся тёмными. Неокрашенные же волосы светлеют.
    Недорогие пластиковые темные очки чаще всего становятся прозрачными, а одежда меняет яркость. Всё это делает непредсказуемым результат при съёмке крупных портретов, однако съёмка в рост, да ещё и в сочетании с пейзажем может разнообразить фотосессию. За счёт удаленности фигур лица можно спрятать, а необычный контраст и передача тонов останется.
    Если предстоит портретная инфракрасная фотосессия, то желательно перед визажем проверить все применяемые средства на адекватность – будет очень грустно, если пудра, которую визажист нанесет на лоб и щёчки внезапно окажется насыщенно чёрной в ИК-диапазоне. Если есть возможность уговорить модель не краситься перед ИК-фотосессией, то лучше так и поступить. Проще нарисовать при обработке светотеневой рисунок, чем пытаться исправить все ошибки, проявившиеся в ИК. Но если не повезло и макияж в ИК не работает, то можно ограничиться общими планами, а недостающие крупные портреты сделать в видимом свете.

    Рис. 15 Портрет в ИК.

    Рис.16 Channel mixer


    После этого небо станет не красным, а синим, да и листва перестанет быть синей.
    Остётся выровнять баланс белого, а с этим прекрасно справляется Image -> Auto Color.
    Эти две операции можно записать в отдельный Action и в дальнейшем просто вызывать его, а не искать инструменты по меню.
    Остаётся кривыми и масками довести картинку до идеала и при необходимости перевести в изображение в чёрно-белый режим любым удобным вам способом.

    Рис. 17 Результат замены синего и красного каналов

    Список литературы

    Хеймен Р. Светофильтры. – М.: Мир, 1988. – 216с.
    Соловьев С.М. Фотографирование в инфракрасных лучах. – М.: Искусство, 1957. – 90с.
    Joe Farace Complete Guide to Digital Infrared Photography. – Lark Books, 2008. – 160c.
    Cyrill Harnischmacher Digital Infrared Photography. – Rocky Nook, 2008. – 112с.
    Deborah Sandidge Digital Infrared Photography (Photo Workshop). – Wiley, 2009 – 256c.
    David D. Busch David Busch"s Digital Infrared Pro Secrets. - Course Technology PTR, 2007 – 288c.

    Профессиональный фотограф отличается от любителя наличием денег на фототехнику и подходом: если что-то нужно, причем даже не обязательно, что оно пригодится впоследствии, профи покупает, а любитель начинает изобретать велосипед, придумывая, как бы на фигню не тратиться. Так обстоит дело с инфракрасными фильтрами – будучи нишевым товаром, они нужны далеко не каждому фотографу. Ведь мы не видим ту часть спектра, которая находится левее самого красного (жаль, что мы не крысы), а цифровой фотоаппарат (и некоторые пленки) эту часть фиксировать способен, несмотря на наличие инфракрасного фильтра внутри корпуса (если не верите, в этом можно убедиться, посмотрев через экран фотоаппарата на пульт дистанционного управления, нажав на последнем клавишу), задача лишь в том, чтобы отфильтровать всю видимую часть спектра и оставить часть, соответствующую инфракрасному.

    Фильтры такие существуют, причем, в силу своей специфики, они не из самых дешевых и удобных (даже не навинчиваются на объектив), а наводиться с таким фильтром на стекле вообще мука – в видоискатель ничего не видно. Для компактов вообще решение найти сложно. Поэтому на помощь приходят родные руки.

    Некто Сэм Нойун придумал один очень интересный и эффективный (а самое главное, дешевый) способ сделать такой фильтр, для чего вам понадобятся указанные выше материалы и инструменты: черный маркер, ножницы, засвеченная фотопленка, пластиковый рулон от старого мотка узкого скотча, кусок картона и изолента.

    Лучше всего посмотреть специальное видео от самого автора , но есть ведь люди, которые не понимают по ихнему, потому переведем основные моменты.

    Самое сложное – сделать адаптер для фильтра. Берем старый пластиковый рулончик от скотча – желательно, чтобы он был по внутреннему диаметру больше внешнего диаметра объектива. Вырезаем из картона полоску, по ширине соответствующую рулончику, обматывает её на один виток вокруг рулончика и фиксируем изолентой по кругу, чтобы не разматывалась. Можно сделать пару витков картона – так будет прочнее. Дальше вырезаем кружок, по внешнему диаметру соответствующий внешнему диаметру большого кольца (из картона и изоленты), а по внутреннему – внутреннему диаметру рулончика из-под скотча. Вырезаем, приклеиваем его к картонному колечку, после чего все красим в черный цвет маркером. Рулончик очень хорошо входит во внешнее колечко и держится в нем.

    Вырезаем из засвеченной, черной части фотопленки два кружка диаметром равным или чуть меньшим внешнего диаметра рулончика из-под скотча, складываем их вместе, кладем внутрь внешнего колечка и фиксируем рулончиком. Все, фильтр готов – надеваем его на фотоаппарат и видим только смутные очертания объектов на черном фоне. Фантастика. Не поверите, но это именно то, к чему мы стремились.

    Теперь немного о том, как нужно снимать. Как вы уже поняли, пленка “гасит” практически всю видимую часть спектра, пропуская лишь ИК-лучи. От этого фотоаппарату трудно фокусироваться, так что желательно пользоваться ручным фокусом. Более того, от этого фотоаппарату и плохо видно, так что используйте штатив и самые низкие установки чувствительности (ISO 50, 64, 100 – у кого как).

    Кстати, вы ведь поняли, что фотографии будут красными? Нет? Тогда крутите баланс белого вручную или пользуйтесь raw и потом ковыряйтесь в конвертере. В любом случае, без фотошопа все равно не обойтись, так что на легкую работу не надейтесь. Ну и результат – естественно, он превзойдет все ожидания, так или иначе…

    Примеры фото, снятых в ИК-диапазоне, можно …

    Александра Войтеховича об инфракрасной съёмке. Картинки впечатлили, не впечатлила вероятность того, что куплю я светофильтр, а моя камера окажется совершенно слепой в инфракрасном диапазоне. Потом прошло ещё немного времени, я прочитал где-то статью (не помню где, пытался снова найти - не нашёл) о том, как некий гражданин заказал из Штатов (теперь-то я точно знаю, что ) инфракрасный светофильтр на матрицу и поставил его на свой D50. Но тогда мне свой D50 было жалко, платить 180 баксов злобным капиталистам не хотелось, поэтому желание приобщиться к инфракрасной съёмке стало угасать, а потом и вовсе забылось. И тут внезапно замечательная milaya_o разжилась новой зеркалкой, а мне подарила свой старый Nikon D70s. Камера для опытов появилась, не было светофильтра. И я решил его вырезать из светофильтра, накручивающегося на объектив.

    Ну, хватит общих слов, рассказываю как испортить свой D70. Для умучения нужны:
    - фотоаппарат Nikon, они все устроены примерно одинаково;
    - светофильтр инфракрасный для объектива;
    - маленькая крестовая отвёртка;
    - двусторонний скотч;
    - перчатки;
    - стеклорез;
    - пассатижи;
    - пригодится пинцет.

    Для начала с дна камеры выкручивается куча винтов.

    Потом отстоединяются шлейфы, идущие на экран с кнопками и матрицу. Шлейфы отсоединяются так: серая защёлка ногтями или пицетом поддевается вверх, потом из разъёма вынимается шлейф.

    Выкручиваются два винта с одного бока...

    И с другого. После этого аккуратно снимается кусок корпуса с экраном с кнопками.

    Остоединяется шлейф от блока с матрицей и выкручиваются четыре винта, держащие этот блок. Да, шлейф, идущий на матрицу, надо отключать с обоих сторон, потом будет понятно почему.

    Вынимается блок с матрицей (уже страшно, да?), из неё вынимается разъём с проводами питания.

    С держателя фильтров на матрице вывинчиваются четыре винта.

    И вот оно, сердце камеры в препарированном виде.

    Теперь приступаем к умучению фильтра. По сообщению осведомлённых источников, самым годным фильтром для инфракрасной съёмки является Hoya Infrared R72.

    Сдираем с него оправу. Для этого ножовкой по металлу или напильником подрезаем её, не обязательно до конца. Потом хватаемся пасастижами за обод оправы с одного края от распила, тянем за него, потом за другой край, и, наконец, вынимаем стекло. После этого стекло можно резать.

    Касаемо размеров вырезаемого (или, точнее, выгрызаемого, поскольку стекло неслабо крошится и режется очень неровно) фильтра я порядком ошибся. По глупости, я хотел вырезать фильтр такого же размера, что и снятый антиинфракрасный с матрицы, однако не учёл того, что новый фильтр толще, и в держатель не войдёт. Так что правильно вырезать кусок размером примерно 41х31 мм (размер окна, в котором находится затвор), не боясь ошибиться или криво отрезать. И выглядеть будет аккуратнее, и крепить проще. Ещё будет не лишним потренироваться сначала на старом ненужном или поцарапанном светофильтре. Мне такой предоставил sergey_ershov , за что ему огромное спасибо.

    Снимаем с матрицы резиновую прокладку под фильтр, сдуваем с матрицы и фильтра пыль, лепим двусторонний скотч на края пластины матрицы.

    Надеваем резинку, лепим на неё скотч. Особой крепости не надо, скотч нужен только чтобы при монтаже платы ничего не отвалилось. Потом фильтр будет зажат между резинкой и окном затвора, настолько он толстый.

    Лепим фильтр и собираем фотоаппарат в обратном порядке.

    При сборке следует обратить внимание вот на что: шлейф к матрице нужно сначала вставить из всех сил до упора в разъём блока платы с матрицей, предварительно надев на него ферритовое кольцо, а потом уже пропихивать вниз. Разъём очень тугой, и если сделать наоборот, то шлейф скорее всего не зайдёт до конца. Кстати, если вы собрали фотоаппарат, он щёлкает, но отказывается писать на карту, ссылаясь на то, что "this card cannot be used", то карта скорее всего не при чём, это фотоаппарат не видит матрицу. Проверяйте злощастный шлейф.

    Далее была задумка настроить автофокус. Дело в том, что инфракрасные лучи имеют несколько другой ход, чем те, с которыми мы обычно имеем дело, поэтому на отъюстированный под обычный свет камере при съёмке через инфракрасный фильтр всегда будет порядочный фронт-фокус.

    Внутри байонета на камере находятся два юстировочных винта. Дальний - под автофокус, ближний - под ручную наводку.

    Однако, хода юстировочного винта не хватает, чтобы полностью убрать фронт-фокус. Увы и ах, пока оставил это дело, потом как-нибудь заберусь в камеру поглубже и постараюсь что-нибудь придумать.

    Вот в общем и всё. Нормально потестировать пока не получилось, но аппарат исправно снимает. Самые эффектные кадры обещают быть на природе в тёплое время года, а пока получается вот так:

    Вообще при том, что фотография получается практически монохромная, если бы удалось как-нибудь смыть с матрицы байеровский фильтр, было бы гораздо круче, но это, боюсь, нереально.