Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Профессия мультипликатор: художник или мечтатель?
  • Спар чья компания. История SPAR. SPAR в России
  • Составление и оформление протоколов заседаний, собраний, конференций
  • Специальность "Зоотехния" (бакалавриат) Что делает зоотехник на практике
  • Вертикальная и горизонтальная интеграция - сущность, значение, различия Горизонтальная интеграция
  • Лёгкая промышленность России – состояние и перспективы развития
  • Сточные воды вторичное использование. Вторичное использование сточных вод — реферат

    Сточные воды вторичное использование. Вторичное использование сточных вод — реферат

    Недавно нашла информацию о том, как одна южнокорейская компания разработала шкаф для выращивания зелени в квартире. Этот стеклянный шкаф размером с двухстворчатый холодильник выглядит очень стильно. Растения выращиваются по методу гидропоники, то есть без почвы (за счёт питательных веществ и влаги). Система использует светодиодное освещение, а для полива забирает использованную воду из раковины, так что налицо экономия электроэнергии и воды. Давно и с интересом выискиваю материалы о том, как сконструированы «системы экономии для ленивых». И сегодня с радостью поделюсь своими находками. Не факт, что эти решения нужно сразу пытаться внедрять в собственной квартире – вода у нас пока не настолько дорога. Но, возможно, тем, кто живёт в коттеджах с выгребными ямами и регулярно вынужден платить за их откачку, эти мысли покажутся довольно интересными.

    Идея 1. Из раковины и душа – в резервуар для смыва

    Применяемая в некоторых американских домах система использования частично загрязнённой воды забирает воду из мойки и душа, чтобы организовать смыв в туалете. Одна домохозяйка делилась, что её система использования частично грязной воды из двух баков по 95 литров позволяет экономить по меньшей мере 416 литров в день (в доме живут четыре человека). Такая вода идёт в слив из раковины, душа и ванны в специальные вертикальные баки, а оттуда – в четыре туалета в доме. Система «масштабируется»: при появлении новых членов семьи и увеличении водопотребления можно просто установить дополнительные баки. Используя воду повторно, хозяева экономят ещё и на износе автономной системы обеззараживания воды.

    Вода из ванной и душа проходит через фильтр с хлоркой и попадает в бак, откуда она может закачиваться в туалет. Можно присоединить к системе и кухонную мойку и стиральную машину, но вода из них требует дополнительной фильтрации, а по опыту для туалетов достаточно воды из одной ванной. Самая большая головная боль – мониторинг и контроль уровня хлорки в баке для хранения воды. Если будет мало хлорки, в баке заведутся бактерии, если слишком много – она убьёт бактерии, которые жизненно важны для нашего иммунитета. Проблема решается углеродным фильтром с контролем уровня хлорки: пропуская воду сквозь себя, он не даёт хлорке попадать в бак и туалет, чтобы в ванной комнате не было запаха бассейна. Кстати, подобные системы с баками-накопителями активно используются в офисных небоскрёбах: смыв той водой, которая уже использована в раковинах, даёт существенную экономию эксплуатационных издержек на транспортировку воды внутри здания.

    Идея 2. Eco-urinal

    Существуют разные схемы повторного использования воды

    Дизайнер Yeongwoo Kim совместил туалет с раковиной, получив оригинальную и, вероятно, довольно дешёвую в изготовлении конструкцию из ровных прямоугольников и квадратов толстого стекла. Точнее сказать, он совместил писсуар с раковиной: мужчина может помочиться на наклонную стеклянную поверхность, а затем, помыв руки, смыть с этой поверхности следы своей жизнедеятельности. Вряд ли такая конструкция приживётся в обычных домах, но в офисах и торговых комплексах вполне может использоваться, экономя и место, и воду.

    Идея 3. Раковина – крышка унитаза

    Компания Sinkpositive выпускает пластиковую насадку на крышку бачка унитаза, являющуюся раковиной с краном. Интересен не столько факт стока использованной воды в бачок, сколько сам принцип работы раковины, не требующей отдельного подвода воды. Смыли – и пока набирается вода в бачок, она течёт из крана. Ничего выключать не надо, вода сама остановится, когда бачок заполнится. Самой большой проблемой для продвижения новинки на американском рынке компания-разработчик считает незнание рядовыми американцами принципа действия унитаза и, следовательно, неспособность без помощи профессионалов эту насадку подключить. Особо экономные россияне предлагают не создавать новую насадку из пластика, а использовать уже существующую крышку бачка (например, перевернув её и сделав в ней дополнительное отверстие).

    Идея 4. Воду из ванны – в стиральную машину

    Стандартные японские ново-стройки отличаются от наших домов не менее радикально, чем современные японские машины от продукции АвтоВАЗа. По отзывам очевидцев, желаемую температуру воды в тамошних смесителях можно отрегулировать с точностью до градуса. Ванны обычно «сидячие», и принимать их принято после душа. Таймер налива ванны позовёт вас приятным женским голосом. Возможен подо-

    грев воды в ванне с поддержанием заказанной температуры в течение нескольких часов (это удобно, когда по очереди «греют кости» несколько членов семьи), бывают даже специальные «крышки для ванн», чтобы вода там не остывала. Как и американцы, японцы часто устанавливают раковины на крышках унитазных бачков и повторно используют вытекающую из раковин воду. Но интереснее другое: стандартное подключение стиральной машины позволяет наполнять её как из водопровода, так и той водой, которая вытекает из ванны.

    Идея 5. Из стиралки – в унитаз

    Инновационная стиральная машина WashUP работает по тому же принципу, что и стандартная техника. Свою «водосберегающую сущность» машина проявляет на конечном этапе стирки. Использованная вода сливается в специальный резервуар и позже применяется для смыва унитаза. Особенность конструкции позволяет подвешивать машину прямо над унитазом, что, помимо воды, существенно экономит ещё и пространство ванной.

    Грамотно организованная поможет успешно разрешить множество проблем и кризисных ситуаций, возникающих в регионах, где запасы водных ресурсов ограничены. В нашей стране есть немало регионов, испытывающих серьезные проблемы с водоснабжением, так как у них недостаточно водных источников для пополнения свежей водой. Следовательно, использование водосберегающих технологий и систем использованной воды становится очень актуальным.

    Варианты экономии водных запасов

    Для экономии природных водных ресурсов и внесения значительного вклада в решение проблемы, можно задействовать следующие методы:

    • стимулировать потребителей на сокращение потребления воды;
    • по возможности осуществлять регенерацию использованной воды (очистку);
    • пытаться повторно использовать дождевую воду и сточную, но в данном случае потребуется ее дополнительная обработка.

    Например, система для вторичной утилизации и очистки сточной и использованной воды позволяет сократить загрязнение подземных природных массивов. Сбор дождевой воды в специальных резервуарах и ее последующее использование снижает нагрузку на канализационную сеть. Но повторное использование такой воды для бытовых нужд связано с определенными сложностями, поскольку имеются определенные санитарно-гигиенические требования к ее качеству. В зависимости от того, какое качество воды необходимо получить, выбирают и системы очистки, которые могут быть разного уровня сложности.

    В каждом конкретном случае могут использоваться различные методики и системы очистки использованных вод – во многом это зависит от состояния исходного продукта и от требуемых параметров конечного.

    Варианты обработки

    • Предварительная очистка – заключается в пропускании через , чтобы удалить крупные механические загрязнения, песка. Также это необходимо для извлечения масляных частиц. Выполняется предварительная аэрация, просеивание и другие действия.
    • Первичная очистка посредством седиментации – в ваннах сепарируется большая часть осаждающихся твердых загрязнений. Процесс можно ускорить, если использовать химические добавки – флоакулянты. В этом случае выпадаемость твердых частиц ускоряется.
    • Вторичная очистка – осуществляется с использованием аэробных бактерий, способствующих биологическому разрушению органических загрязнителей. В таких системах очистки происходят процессы, когда загрязнения постоянно перемешиваются и усиливается воздействие обеззараживающих бактерий.
    • Очистка третьего уровня – осуществляется только после окончания первичной и вторичной и тогда, когда из использованной воды необходимо удалить все питательные вещества – фосфаты и нитраты.
    • Финишная дезинфекция – осуществляется в случаях, когда необходимо обеспечить максимальную санитарно-гигиеническую безопасность использованной воды. В этом случае используются реагенты на основе хлора, системы ультрафиолетового излучения.

    Методы естественной очистки

    Кроме вышеперечисленных вариантов существуют еще несколько способов естественной очистки использованной воды, их можно задействовать как второй и третий уровень. Это системы водоочистки – фитоочистка и лагунирование (биологическое отстаивание) - данные варианты очистки применяются в небольших системах водоочистки или в местах, где можно использовать обширную территорию. Принцип фитоочистки состоит в том, что использованную воду медленно заливают в каналы или ванны, поверхность которых находится под открытым небом, а находящееся все время под водой дно служит основой для роста корней растений особого вида. Задача таких растений – создать микросреду, пригодную для образования и роста микробной флоры, которая и осуществляет биологическую очистку. После такой очистки вода пригодна для повторного употребления.

    Хорошая система очистки использованной воды работает настолько эффективно, что очищенная вода пригодна для употребления не только в промышленной сфере, но и для бытовых нужд. Это могут быть отопительные и охлаждающие системы, котельные и т.д.

    ВОДО И ЭНЕРГОСБЕРЕЖЕНИЕ В ГОРОДСКОМ ХОЗЯЙСТВЕ
    ПРИМЕНЕНИЕ СОВРЕМЕННЫХ МЕМБРАННЫХ ТЕХНОЛОГИЙ

    Проблема энергоресурсосбережения в жилищно-коммунальном хозяйстве - сегодня одна из самых обсуждаемых. Инженерная инфраструктура и, в частности, водное хозяйство города несет в себе большой потенциал энергоресурсосбережения, что уже достаточно хорошо освещено в литературе . В нашей статье мы хотели бы рассмотреть ряд направлений, непосредственно связанных с использованием сточной воды и ее энергетического потенциала, ее очисткой и повторным использованием.

    Настоящим источником энергии являются сточные воды. По данным профессора Калифорнийского университета Джорджа Чобаноглуса, из 1 м 3 сточной воды можно получить почти 42 МДж тепловой энергии при снижении ее температуры на 10 °C, а переработка содержащихся в стоках органических веществ - от 3 до 6 МДж на 1 м 3 . Кроме того, в высотных зданиях можно использовать потенциальную энергию текущей вниз воды в канализационных стояках для частичного возмещения затрат электроэнергии на ее подъем, однако это связано с рядом объективных трудностей и пока в настоящее время серьезно не рассматривается.

    Тепловая энергия сточных вод

    Идея извлечения тепловой энергии из сточных вод возникла достаточно давно, однако технологии еще находятся в процессе разра-ботки и апробации. Сточные воды в зависимости от климатических условий и сезона года имеют температуру от 6-12 до 20-30 °C, т. е. являются источником низкопотенциального тепла, и для получения электроэнергии или высокопотенциального тепла для ТЭЦ, систем отопления или горячего водоснабжения требуется дополнительное оборудование - как правило, это тепловые насосы. Полученное тепло наиболее рационально использовать для первичного подогрева воды на тепловых станциях или в системах отопления и горячего водоснабжения зданий.

    Интересно, что теплообменные установки, устраиваемые на бытовой канализации, служат не только для отопления зданий в зимний период, но и для эффективного отвода избыточного тепла от систем кондиционирования в теплые сезоны года (рис. 1).

    В России эта технология в порядке промышленного эксперимента была опробована на районной тепловой станции (РТС) № 3 г. Зеленограда. Тепло, утилизируемое из бытовых сточных вод от главной КНС ПУ «Зеленоградводоканал», использовалось для подогрева водопроводной воды перед паровыми котлами. Для передачи тепла последовательно использовалось два теплоносителя: проме-жуточный - вода и основной (в тепловых насосах) - хладон. Необходимость в промежуточном теплоносителе возникла из-за того, что КНС была расположена в полукилометре от территории РТС-3. Тепловая мощность утилизации составила 1100-1400 кВт при расходе сточных вод 400 м 3 /ч при теоретически возможной мощности около 2000 кВт. Мощность, потребляемая теплонаносной установкой и циркуляционными насосами, составила 550-680 кВт .

    Очевидный путь повышения эффективности теплоутилизационного оборудования за счет максимального сближения источника и потребителя тепла привел к появлению оригинальных решений для частных домов и квартир, использующих местные водонагреватели (рис. 2). Фактически устройство представляет собой теплообменник простой конструкции: гладкую медную трубу-вставку в канализационный трубопровод и навитую на нее тонкую медную трубку, через которую пропускается холодная вода, поступающая к водонагревателю. Очевидно, что вклад в нагрев воды и экономия энергии составят не более 30 %, однако простота конструкции и невысокая стоимость могут заинтересовать потребителей.

    Наибольший успех достигнут в области получения биогаза из осадков сточных вод. Как было отмечено выше, в 1 м 3 сточной жидкости в зависимости от величин БПК и ХПК содержится от 3 до 6 МДж потенциальной тепловой энергии. Для очистки такого же количества сточных вод требуется от 1,2 до 2,4 МДж (аэрация, перекачка и обезвоживание осадков, обогрев метантенков и пр.), следовательно, энергии, содержащейся в стоках в 2-4 раза больше, чем необходимо для ее очистки. Следует заметить, что указанное количество энергии можно извлечь при полном анаэробном разложении всех органических веществ, содержащихся в бытовых стоках. В реальности на канализационных сооружениях весомая доля органики минерализуется в сооружениях биологической очистки, а на «производство» биогаза в метантенки идет осадок из первичных и вторичных отстойников. В метантенках осадок также разлагается лишь частично - минерализуется не более 40-50 % от массы органического вещества, а существенное увеличение степени распада беззольного вещества требует значительных затрат. Поэтому полностью перевести станции аэрации на самообеспечение не удастся.

    В качестве яркого примера внедрения этой технологии в России можно привести теплоэлектростанцию мощностью 10 МВт, работающую на биогазе Курьяновских очистных сооружений (рис. 3). В результате реализации данного проекта 70 млн кВт.ч, или 50 % электро- и теплоэнергии, КОС стали получать за счет собственного ее производства.

    Рис. 3. Мини-ТЭС на Курьяновских очистных сооружениях (Москва)

    Для прямой выработки электроэнергии из сточных вод в последние годы ведутся разработки микробных топливных элементов, в которых для преобразования энергии химических связей органических веществ в электричество используются микроорганизмы. Такие элементы выполняют двойную функцию, т. к. в них одновременно происходит частичная очистка сточных вод от органических загрязнений .

    Повторное использование сточных вод

    Во всем мире следующей ступенью рационального расходования воды является повторное использование бытовых сточных вод. Очищенные сточные воды используются для искусственного восполнения подземных и поверхностных вод, пополнения источников питьевого водоснабжения, для орошения и в сельском хозяйстве, для технического водоснабжения промышленных предприятий, противопожарного и хозяйственного (непитьевого) водоснабжения и даже для питьевого водоснабжения!

    Повторное использование сточных вод можно разделить на несколько категорий (по степени очистки воды и по назначению).

    1. Техническое водоснабжение и орошение.
    Здесь используются городские (бытовые) стоки, прошедшие полную биологическую очистку и упрощенную доочистку. Схема доочистки обычно включает механические решетки с мелкими прозорами, скорые фильтры и обеззараживание. Однако при использовании на основных очистных сооружениях мембранных биореакторов доочистка вообще не требуется.
    Полученная техническая вода может использоваться на предприятии для получения обессоленной воды. В этом случае далее следует стандартная схема, включающая предварительную очистку (глубокое осветление и обеззараживание), одну или две ступени обратного осмоса.

    2. Хозяйственное водоснабжение (уборка, полив, помывка машин, смыв туалетов и т. п.).
    Для этих целей удобно использовать так называемые «серые стоки» - от ванн и умывальников. В этом случае их обработка про-изводится по упрощенной схеме, включающей механическую очистку (удаление сора и осветление) и обеззараживание.
    Для общего бытового стока необходима полная биологическая очистка, дополненная третичной очисткой, описанной в п. 1.

    3. Питьевое водоснабжение.
    Делится в свою очередь на непрямое (пополнение запасов природных вод в источниках питьевого водоснабжения) и прямое. Здесь требуется полная биологическая очистка и глубокая третичная очистка, обычно включающая на последних стадиях обратный осмос.

    Повторное использование сточных вод для непрямого питьевого водоснабжения отчасти мы можем наблюдать на любой крупной реке, где вышерасположенные по течению населенные пункты сбрасывают очищенные сточные воды, которые смешиваются с речной водой и в дальнейшем после доочистки в естественных условиях поступают на водозаборы, расположенные ниже по течению. В нашей статье мы под этим подразумеваем целевое восполнение запасов воды в непроточных источниках водоснабжения - водохранилищах, озерах и подземных горизонтах.

    Что касается прямого питьевого водоснабжения, то здесь большую роль играет психологический фактор, и только серьезные причины могут побудить людей принять тот факт, что они будут пить воду, которая недавно текла по канализации.

    В истории водоснабжения таких примеров немного, большая часть их осталась в рамках проводимых в разные годы за рубежом экспериментов . Вот несколько самых характерных.

    «Классический» пример: г. Виндхоек, Намибия. Первая станция доочистки городских сточных вод для питьевого водоснабжения производительностью 4 800 м 3 /сут. была построена еще в 1968 г., а в 1997-2002 годах была реконструирована с увеличением подачи воды до 21 000 м 3 /сут. Решающим фактором стало отсутствие доступных источников водоснабжения - все возможные ресурсы либо уже эксплуатировались, либо их разработка была экономически невыгодна, включая сбор дождевых вод в этом засушливом и жарком регионе.

    Схема очистки была очень сложной и включала дозирование порошкообразного активированного угля (ПАУ), первичное озониро-вание, дозирование коагулянта и флокулянта, флотацию, дозирование перманганата калия (KMnO4) и едкого натра (NaOH), фильтрова-ние на двухслойной зернистой загрузке, вторичное озонирование, обработку пероксидом водорода (H2O2), биосорбцию на гранулированном активированном угле (ГАУ), сорбцию на ГАУ, ультрафильтрацию и дезинфекцию жидким хлором. Себестоимость очистки воды составляла 0,76 $/м 3 . Полученная вода смешивалась с питьевой водой, полученной из традиционных источников водо-снабжения, непосредственно в распределительной сети города.

    Пример 2. В 1976-1982 годах американская компания Pure Cycle Co. устанавливала в частных домах Колорадо системы полной очистки бытового стока для создания замкнутого цикла и получения питьевой воды. Установка включала сетку для механической очистки, биореактор с иммобилизированной биопленкой, тканевый (мешочный) фильтр, ультрафильтрационные мембраны, ионообменный фильтр, фильтр с ГАУ и бактерицидную лампу. Из-за финансовых трудностей компания вскоре прекратила обслуживание своих установок и их использование было прекращено, однако жители еще некоторое время продолжали их эксплуатировать и требовали от властей штата разрешение на их дальнейшее применение.

    Пример 3. Международная космическая станция. В 2009 году на МКС была доставлена новая система для получения питьевой воды из мочи и конденсированной из атмосферы станции влаги (пар и пот, выделяемые человеком). Схема обработки урины включает многоступенчатую фильтрацию, дистилляцию, каталитическое окисление и ионный обмен.

    Масштабы повторного использования сточных вод хорошо характеризуют следующие примеры:

    • г. Вульпен, Бельгия. 6850 м 3 /сут., доочистка городских сточных вод для восполнения запасов подземных вод, используемых для питьевого водоснабжения, схема включает микрофильтрацию, обратный осмос и обработку ультрафиолетом;
    • г. Ипсвич, Австралия. 230 000 м 3 /сут., доочистка городских сточных вод для охлаждения оборудования ТЭС, схема включает микрофильтрацию и обратный осмос;
    • г. Оранж, США. 265 000 м 3 /сут., доочистка городских сточных вод для восполнения подземных вод, схема включает микрофильтрацию, обратный осмос и обработку ультрафиолетом и пероксидом водорода;
    • Сингапур, проект «NEWater». 5 станций с суммарной производительностью около 450 000 м 3 /сут., доочистка городских сточных вод для восполнения водоисточников, используемых для питьевого водоснабжения, использования в промышленности и в качестве воды для непитьевых целей, схема включает микрофильтрацию и обратный осмос;
    • г. Сулаибия, Кувейт. Крупнейшая в мире станция по доочистке сточных вод 311 250 м 3 /сут. (по очищенной воде), схема включает сетчатые фильтры, ультрафильтрацию (8704 аппаратов X-Flow, Norit), обратный осмос (21000 аппаратов Toray), отдувку СО 2 , хлорирование. Очищенная вода используется для промышленных нужд, а концентрат обратного осмоса сбрасывается в Персидский залив. Качество очищенной воды: взвешенные вещества, БПК, азот аммонийный, нитраты (по N) - менее 1 мг/л, фосфаты (по РО4) - 2 мг/л, нефтепродукты - менее 0,5 мг/л, общее солесодержание - 100 мг/л.

    Можно сделать вывод, что в настоящее время ключевой технологией повторного использования сточных вод является мембранная технология - в абсолютном большинстве случаев схемы доочистки включают одну или несколько ступеней мембранного разделения: микро- или ультрафильтрацию и обратный осмос. Можно сказать иначе: без обратного осмоса и ультрафильтрации такое масштабное применение сточных вод в водном хозяйстве было бы невозможно.

    Вот уже более 10 лет во всем мире успешно развивается технология мембранного биореактора для очистки сточных вод. Изначально применение ультрафильтрации вместо вторичного отстаивания позволяло сократить размеры сооружений, повысить эффективность и стабильность очистки. Теперь мы можем рассматривать мембранные биореакторы и как технологическое решение, позволяющее сразу, в основной технологической цепочке получить воду технического качества для орошения, промышленности, хозяйственных нужд.

    Интересно отметить, что три крупнейшие станции очистки сточных вод с мембранными биореакторами находятся в Китае.

    Хорошим примером системного рационального использования сточных вод может служить Австралия - страна с ограниченными ресурсами пресной воды. Один из крупных проектов реализован в районе Сиднея, где параллельно хозяйственно-питьевому водопроводу проложен второй, непитьевой водопровод для хозяйственных нужд. Система обеспечивает водой более 60 тыс. человек и ее подача составляет 13000 м 3 /сут.

    Технологическая цепочка состоит из следующих сооружений:

    • основные сооружения: решетка, песколовка, первичный отстойник, биореактор (аэротенк), вторичный отстойник;
    • сооружения доочистки: коагуляция сульфатом алюминия, отстойник (третичный), скорый фильтр. После скорых фильтров часть воды обеззараживается и выпускается на болотистые территории, а другая часть поступает на мембранную микрофильтрацию (0,2 мкм) и после обеззараживания направляется в распределительную сеть.

    Плата за пользование доочищенной сточной водой в Сиднее составляет примерно 2,068 $/м 3 , при том, что стоимость водопроводной воды лишь немногим выше - 2,168 $/м 3 . Существует еще годовая фиксированная плата в размере $125 за подключение к городскому водопроводу и $34 за подключение к непитьевому водопроводу.

    Водопровод, по которому течет дочищенная сточная вода, трубопроводы и арматура, маркируются сиреневой краской; водо-разборные точки оснащаются табличками с предупреждающими надписями: «повторно использованная вода, не пейте», «вода не питьевого качества» и т. п. (рис. 4). Аналогичная маркировка применяется в США, где системы непитьевого хозяйственного водоснабжения на основе доочищенных стоков получили широкое распространение.

    Системы повторного использования воды могут абсолютно разного масштаба - от целого города до одного здания и собственной квартиры. В квартирах могут найти применение такие системы, как например AQUS Grey Water Recycling System (рис. 5) или Aqua2use Greywater System (рис. 6), которые представляют небольшой сборный резервуар с маломощным насосом и простейшей системой механической очистки. Возможная экономия воды при использовании таких установок составляет до 30 %.

    Бывают и почти курьезные конструкции (рис. 7).

    При повторном водоснабжении воду после использования в каком-либо технологическом процессе сохранившую достаточно качественные показатели, без промежуточной обработки подают для повторного применения (рис.2, а) в систему водоснабжения . Например, тару для марочных продуктов (контейнеры, фляги и т.д.) после мойки повторной водой ополаскивают еще и питьевой. Эту воду можно повторно применять для первого ополаскивания, мойки полов, наружного обмыва автомашин, полива территории и т.д.

    В оборотных системах водоснабжения (рис.2, б) воду используют многократно после соответствующей обработки (очистки, охлаждения, подогрева и т.д.).

    Рис.2. Схемы систем повторного и оборотного водоснабжения

    • а – повторного использования воды с установкой накопителя и насоса:
    • 1 – технологическое оборудование для использования водопроводной воды;
    • 2 – технологическое оборудование для использования отработанной воды;
    • 3 – накопитель;
    • 4 – насос;
    • 5 – водопровод; v
    • 6 – трубопровод, подающий отработанную воду в накопитель;
    • 7 – трубопровод, подающий отработанную воду для повторного использования;
    • 8 – трубопровод для сброса избытков отработанной воды;
    • 9 – трубопровод для сброса использованной воды в канализацию;
    • б – схема оборотного водоснабжения для мойки (промывки) сырья, полуфабриката и готового продукта:
    • 1 – промыватель на необоротной воде;
    • 2 – поток промываемого вещества;
    • 3 – промыватель на водопроводной воде;
    • 4 – поток промытого вещества;
    • 5 – аппарат для очистки оборотной воды, например отстойник;
    • 6 – насос;
    • 7 – трубопровод, подающий очищенную воду;
    • 8 – трубопровод, подающий загрязненную воду;
    • 9 – водопровод;
    • 10 – канализация.

    Если при первом использовании вода в системе водоснабжения загрязняется, ее подают в очистные сооружения, после чего очищенную воду с помощью насосов вновь направляют для участия в технологическом цикле. В канализацию уходит небольшая часть воды с загрязнениями. Потери восстанавливают свежей водой. В системах оборотного водоснабжения можно использовать даже сточные воды после их биологической очистки.

    Пример оборотного использования воды – охлаждающая вода в холодильных агрегатах. Нагревшуюся в конденсаторах агрегатов воду охлаждают в градирных или брызгальных бассейнах и снова подают в конденсаторы. На предприятиях молочной промышленности повторно используют воду в пластинчатых пастеризационно-охладительных линиях.

    Оборотное водоснабжение позволяет уменьшить расход свежей воды в десятки раз. Экономия свежей воды способствует сохранению водных ресурсов. При повторном и оборотном водоснабжении резко уменьшается количество сточных вод, тем самым меньше загрязняются водоемы.

    На предприятиях нужно добиваться сокращения водопотребления свежей воды и водоотвода. Для этого необходимо внедрять безотходные технологические процессы и системы водоснабжения с повторным и оборотным использованием воды по замкнутому циклу с полной ее регенерацией.

    Продажа и монтаж в загородном дома или коттедже.

    ПЕРЕРАБОТКА И УТИЛИЗАЦИЯ БЫТОВЫХ СТОКОВ

    Бытовые стоки в городах - одна из главных экологических и экономических проблем. В экодоме применяется автономная система переработки и утилизации стоков, использующая биоинтенсивные методы переработки органики, содержащейся в бытовых стоках.

    Система переработки стоков может основываться на переработке смешанных стоков или раздельной переработке из разных источников. Стоки, содержащие органику: кухонные, серые (ванная, стирка), черные (туалет) могут предварительно раздельно перерабатываться внутри дома и/или поступать в единую систему сбора и переработки на участке с последующим дренированием жидкой части. Накапливающаяся твердая часть в виде биологического ила перерабатывается на участке по мере накопления, совместно с твердыми органическими отходами, методом компостирования.

    Выбор варианта системы определяется особенностями естественного ландшафта и пожеланиями хозяина экодома.

    12.1. Простейшая система накопительного типа

    Простейшая система утилизации всех типов стоков осуществляется в специальной подземной емкости достаточного объема. Система представляет собой гидроизолированный (дно и стенки) котлован на приусадебном участке, заполненный гравием и песком. Сверху он засыпан грунтом, аналогично любой другой дренажной системе, в которую сливаются все стоки. В грунт над этой дренажной зоной высаживается растительность, способная за вегетационный период выкачать из него воду. Эта система используется для слива только зимой. Летом стоки отводятся в почвенные фильтры, которые будут описаны ниже. Чтобы система не забивалась, стоки предварительно направляются в отстойник для отделения грубой фракции.

    Рис. 12.1. Простейшая система накопительного типа с утилизацией смешанных стоков.

    12.2. Система раздельной очистки бытовых сточных вод
    с использованием компостирующего биотуалета

    В этой системе используется безводный биотуалет и для обработки остаются только стоки из кухни, постирочной, ванной и бидэ. Стоки из этих источников объединяются в усовершенствованном септике (объединение септика и биофильтра-усреднителя) с последующим пропуском воды через фильтрующие траншеи, расположенные ниже зоны промерзания. Затем они направляются в накопительный резервуар (пруд), если рельеф позволяет его построить. Септик необходимо располагать в обогреваемом техническом подполье.

    Рис. 12.2. Система раздельной очистки бытовых сточных вод с использованием компостирующего биотуалета.

    12.3. Система раздельной очистки бытовых сточных вод с использованием смывного туалета

    В отличие от системы с безводным компостирующим биотуалетом, здесь применяется смывной туалет с малым расходом воды. Слив из туалета осуществляется в биофильтр-отстойник, где оседает и подвергается переработке большая часть органических частиц. Сюда же попадают пищевые отходы с кухни. Один раз в 2-3 года биофильтр нужно чистить от переработанного ила. Ил перемешивается с компостом и вносится в почву под непищевые культуры. (Биофильтр -отстойник можно заменить фильтрующей камерой со сменными контейнерами (см. п. 11.3.), но чистят ее чаще.) Еще одним дополнением системы является то, что стоки из ванной, душа пропускаются через механический песчаный фильтр и направляются в бачок смывного унитаза для повторного использования.

    Рис. 12.3 Система раздельной очистки бытовых сточных вод с использованием смывного туалета.

    12.4. Основные элементы систем переработки
    и утилизации стоков

    Система для повторного использования воды

    Количество воды, используемое в смывных туалетах на одного человека немного меньше, чем он использует в ванной и душе (23 % и 18 %). Поэтому целесообразно вторичное использование для туалета воды из ванной и душа. Это приводит к снижению потребления воды на 18 %. Система состоит из двух емкостей - буферного накопителя, куда стоки из ванной попадают самотеком с предварительной очисткой через механический песчаный фильтр, и сливного бачка унитаза, в который стоки закачиваются с помощью насоса. Бачок делается существенно больше, чем обычный, а слив дозируется.

    Замечание. Система должна быть так устроена, чтобы стоки не застаивались. Эта конструкция должна быть удобна для промывки и профилактики.

    Рис. 12.4. Варианты системы вторичного использования воды из ванной для смывных туалетов.

    Жироуловитель

    В бытовых стоках содержится много жиров. Поэтому, чтобы в трубах и других элементах конструкции системы переработки стоков на стенках не откладывался жир на, входе в систему устанавливается жироуловитель. Как правило, он устанавливается перед септиком и предназначен для отделения жиров из сточных вод. Жироуловитель - это устройство, имеющее простую и удобную для профилактической очистки конструкцию (Рис. 12.5.). Устройство состоит из грязеуловителя и собственно жироуловителя.

    Рис. 12.5. Жироуловитель.

    Фильтр для стоков от стиральной машины

    Фильтр для стоков стиральной машины предназначен для отделения частиц одежды, жиров, пыли и др. компонентов при стирке грязной одежды. Фильтр должен быть простой, быстрозаменяемый. Песок из фильтра утилизируется на биоботанической площадке.

    Рис. 12.6. Фильтр для стоков от стиральной машины.

    Эффективный септик, совмещенный с фильтром

    Главным элементом двух последних систем очистки стоков является трехкамерный септик, совмещенный с фильтром, расположенный в техническом подполье. Септик обеспечивает накопление стоков и медленное их движение и эффективную очистку. Для каждого расхода стоков, подбирается объем септика (3-5 м. куб.). Температура в септике должна быть такой, чтобы обеспечивать стабильную работу микрофауны и максимально возможную очистку. Целесообразно дополнить септик на выходе камерой с отсорбирующим материалом (например, цеолит или другие аналогичные материалы), чтобы в дренажную систему попадали максимально очищенные стоки. Летом роль фильтра выполняет почва.

    Замечание. Если система используется для очистки только серых стоков, то ее размеры могут быть уменьшены на 30 - 40 %. Компостирующий биотуалет существенно упрощает обработку бытовых стоков. Также, как и биотуалет, септик лучше всего располагать в отапливаемом техническом подполье. С этой целью в проекте экодома предусматривается солнечный обогрев септика. Септик должен быть удобно расположен для обслуживания, которое сводится к очистке и удалению осадков.

    Рис. 12.7. Эффективный трехкамерный септик.

    Фильтрующая траншея

    Когда стоки обработались в септике и прошли через фильтр, они направляются в фильтрующую траншею. Траншея устраивается так, чтобы после прохождения через нее вода выходила в накопительный объем (пруд). Устройство фильтрующей траншеи традиционно (Рис. 12.8). Для экодома устраиваются две траншеи: зимняя и летняя. В зимнем варианте дренажная траншея закладывается ниже глубины промерзания грунта. Летняя траншея - поверхностная и может сочетаться с почвенным фильтром. Если стоки направить в почвенный фильтр без обработки в септике и фильтре, то в почвенном фильтре будут возникать специфические запахи.

    Рис. 12.8. Фильтрующая траншея.

    Фильтрующая кассета

    Фильтрующая кассета представляет собой подземную воздушную полость, накрытую сверху ребристой железобетонной плитой, в которую вставлены вытяжные трубы, обеспечивающие вентиляцию полости, чтобы в ней протекал аэробный процесс (Рис. 12.9.). В нижней части полости, на границе с грунтом, укладывается сначала песок, а над ним гравий. Такие системы используются на слабофильтрующих грунтах. Объем фильтрующей кассеты рассчитывается под объемы стоков от дома. Для экодома фильтрующая кассета применяется для сброса стоков в зимнее время.

    Рис. 12.9. Фильтрующая кассета.

    Механический фильтр после душа и ванной

    Вода после ванной, душа, полоскания белья (кроме постирочной воды с моющими веществами) содержат достаточно мало разных органических взвесей и поэтому, после простого фильтрования, ее можно использовать вторично в смывных туалетах, а летом ее избыток может использоваться для полива. Это устройство входит в состав системы обработки и утилизации стоков, в которой используется смывной туалет. Устройство механического фильтра простое, с легко заменяемым песчаным фильтром (Рис. 12.4).

    Замечание. Фильтр делается небольшого размера. Его задача - отделить органическую часть стоков и обеспечить необходимое количество воды для смывных бачков в туалетах.

    Почвенно-песчаный фильтр

    Летом для утилизации воды можно, в качестве предварительного очистного сооружения пред накопительным прудом, использовать песчано-почвенный фильтр (Рис. 12.10). Сточные воды фильтруется не в траншее, а в специально насыпанном слое песка на поверхности почвы, внутрь которого подается сточная вода. Профильтрованная вода просачивается через песок в почву и, просачиваясь через почвенный слой, доочищается в нем.

    Рис. 12.10. Почвенно-песчаный фильтр.

    Ботаническая площадка

    Сточная вода из септика попадает в фильтрующие траншеи и, проходя через них, попадает в пруд. Для повышения качества очистки стоков ее предварительно можно пропустить через ботаническую площадку (Рис. 12.11). Устройство ботанической площадки на любом типе грунта включают гидроизоляцию, гравий, трубу для подвода сточной воды, сбор очищенной воды и направление ее в накопительный пруд.

    Рис. 12.11. Ботаническая площадка.

    Накопительный пруд

    Летние стоки обычно больше, чем зимние. Кроме того, очищенную и профильтрованную воду можно доочищать в накопительных прудах (или, если не будет хватать стоков, в заболоченном месте). Кроме сточных вод в этот пруд будут отводиться поверхностные стоки, а весной источником воды будет снег. В этом небольшом пруду может оставаться вода, сохранившаяся с предыдущего года.

    Очистка стоков в биопруде будет осуществляться путем естественного развития растительности и за счет высаживания водных гиацинтов. Осенью пруд очищается от растительности, которая используется на производство компоста. Для создания пруда необходимо использовать рельеф и строить его в низких местах, рассчитывая объем этого искусственного водоема с тем, чтобы стоки сохранялись в нем (примерно 100 м 3). Для исключения загнивания воды в пруде необходимо устроить небольшой фонтан, работающий от солнечной батареи (аналогично системе вентиляции в воздушной системе солнечного обогрева).