Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Закупка продуктов питания: пошаговая инструкция
  • Личностные компетенции сотрудников: условия формирования и развития Примерами влияния через компетентность являются
  • Исполнительный директор. Обязанности и права. Обязанности исполнительного директора. Образец должностной инструкции Должностная инструкция исполнительного директора образец
  • Порядок применения дисциплинарных взысканий
  • Квантовая передача. Канал связи квантовый. Возможные проблемы квантовой связи

    Квантовая передача. Канал связи квантовый. Возможные проблемы квантовой связи

    Несмотря на то, что это явление описывается теориями квантовой механики и доказывается экспериментально, многие учёные относятся к нему скептически. Этот раскол в научном мире произошёл ещё с момента спора Альберта Эйнштейна и Нильса Бора. Эйнштейн говорил, что квантовая запутанность — идея слишком абсурдная и не имеет ничего общего с реальностью и наблюдениями. Он называл это "призрачным взаимодействием" (spooky action ), поскольку данная теория шла вразрез с его утверждением о непреодолимости скорости света.

    Сегодня учёные из Израиля экспериментально доказали, что возможно создать пару фотонов, имеющих квантовую связь, даже если они не существуют в одно и то же время. То есть, к тому удивительному факту, что подобная связь работает даже на большом расстоянии (хоть все 13,8 миллиардов световых лет), добавляется ещё и временное разделение. Получается, что взаимосвязь двух частиц настолько сильна, что их может разделять и время, и пространство, а квантовая связь всё равно будет действовать.

    Квант света, он же фотон (который одновременно представляет собой и частицу, и волну) может быть поляризован и, по сути, может принимать два состояния: вертикальной и горизонтальной поляризации. Запутанность возникает, если имеются парные фотоны, каждый из которых может быть либо горизонтально, либо вертикально поляризованным. Их квантовая связь проявляется следующим образом: если измерить состояние одного фотона, то можно с уверенностью сказать, что состояние его пары будет противоположным. То есть, если частица, свойства которой мы можем узнать, поляризована вертикально, то парная частица, находящаяся хоть на другом конце Вселенной, будет поляризована горизонтально, и наоборот.

    Специалист по квантовой оптике Эли Мегидиш (Eli Megidish) и его коллега Хагай Айзенберг (Hagai Eisenberg) из Еврейского университета в Иерусалиме создали квантовую связь между двумя фотонами, которые не существовали одновременно.

    Они начали со схемы, известной как "обмен запутанностями" (entanglement swapping ). Для этого они дважды направили луч лазера на специальный кристалл, чтобы получить две пары фотонов. Полученные частицы обозначили цифрами: пара 1 и 2, пара 3 и 4. Первоначально частицы 1 и 4 не имели квантовой связи, но она должна была появиться, как только учёные установили бы запутанность между фотонами 2 и 3.

    "Проекционное измерение" свойств одной из частиц вызывает появление определённого её состояния, а также изменение состояния парной частицы на противоположное, как в случае с вертикальной и горизонтальной поляризацией. Таким образом, даже если фотоны 2 и 3 не были изначально запутаны, путём измерений физики придали одному из них одно состояние из двух, а его "напарнику" — противоположное.

    Любое измерение вызывает запутанность фотонов, даже если при этом происходит разрушение одного из них. Итак, если рассматривать только тот случай, при котором частицы 2 и 3 оказываются в одном и том же состоянии, то фотоны 1 и 4 автоматически оказываются запутанными после измерений. Для наилучшего понимания можно привести простой пример: если у вас есть цепь из четырёх звеньев, то при соединении её крайних звеньев, серединные также оказываются связанными.

    Чтобы создать квантовую запутанность между фотонами 1 и 4, которые даже не существовали в один и тот же момент, Айзенберг и его коллеги для начала запутали фотоны из пары 1 и 2, а затем измерили поляризацию фотона 1 обычным способом. Затем уже физики "связали" частицы 3 и 4 и произвели "проекционные измерения". Последним этапом исследователи измерили поляризацию фотона 4. И даже при условии того, что фотоны 1 и 4 никогда не сосуществовали, квантовая запутанность всё равно проявлялась между ними, сообщают учёные в препринте статьи на сайте arXiv.org.

    Айзенберг говорит, что даже в условиях теории относительности, где два наблюдателя, движущиеся с разной скоростью, по-разному воспринимают последовательность событий во времени, ни один из них не скажет, что частицы 1 и 4 из его эксперимента когда-то существовали одновременно.

    "Наш эксперимент показывает, что не совсем логично считать квантовую запутанность каким-то реальным физическим явлением. Поскольку два фотона никогда не существовали одновременно, невозможно утверждать, что между ними существовала связь в какой-либо момент времени", — рассказывает Айзенберг.

    Физик из Венского университета Антон Цайлингер (Anton Zeilinger) считает, что эксперимент его израильских коллег в очередной раз доказывает, как неустойчивы концепции квантовой механики. "Квантовые эффекты имеют мало общего с тем, что мы наблюдаем в реальной жизни каждый день", — говорит он.

    И всё же прогресс в области квантовой механики может в корне изменить привычную для нас жизнь. К примеру, на основе исследования Айзенберга и его коллег можно будет создать неразрывную скрытую связь между двумя пользователями, находящимися на большом расстоянии друг от друга. Пользователю на другом конце "провода" не нужно будет ждать, пока передаётся информация: изменение состояния противоположного фотона мгновенно вызовет изменение и его пары. Цайленгер также надеется, что такие эксперименты смогут вдохновить создателей квантовых компьютеров на усовершенствование технологий.

    Квантовая физика предлагает абсолютно новый способ защиты информации. Зачем он нужен, разве сейчас нельзя проложить защищенный канал связи? Безусловно, можно. Но уже созданы и в тот момент, когда они станут распространены повсеместно, современные будут бесполезны, так как эти мощные компьютеры смогут взламывать их за доли секунды. Квантовая связь позволяет шифровать информацию при помощи фотонов — элементарных частиц.

    Такие компьютеры, получив доступ к квантовому каналу, так или иначе изменят настоящее состояние фотонов. И попытка получить информацию приведет к ее повреждению. Скорость передачи информации, конечно, ниже, по сравнению с другими, ныне существующими каналами, например, с телефонной связью. Но квантовая связь обеспечивает гораздо больший уровень секретности. Это, естественно, очень большой плюс. Особенно в современном мире, когда киберпреступность растет с каждым днем.

    Квантовая связь для "чайников"

    Когда-то голубиная почта была вытеснена телеграфом, в свою очередь, телеграф вытеснило радио. Конечно, оно сегодня, но появились другие современные технологии. Всего десять лет назад Интернет не был распространен так, как сегодня и доступ к нему было получить достаточно сложно — приходилось ехать в интернет-клубы, покупать весьма дорогие карточки и т. д. Сегодня без Интернета мы не проживаем ни часа, и с нетерпением ждем 5G.

    Но очередной новый стандарт связи не решит задачи, которые стоят сейчас перед организацией обмена данными при помощи Интернета, получения данных со спутников из поселений на других планетах и т. п. Все эти данные должны быть надежно защищены. А организовывать это можно при помощи так называемой квантовой запутанности.

    Что же такое квантовая связь? Для "чайников" объясняют это явление как связь разных квантовых характеристик. Она сохраняется даже тогда, когда частицы разнесены друг от друга на большое расстояние. Зашифрованный и переданный при помощи квантовой запутанности ключ, не предоставит никакой ценной информации взломщикам, которые попытаются его перехватить. Все, что они получат — это другие цифры, так как состояние системы, при внешнем вмешательстве, будет изменено.

    Но создать всемирную систему передачи данных не удавалось, так как уже через несколько десятков километров сигнал затухал. Спутник, запущенный в 2016 г., поможет реализовать схему квантовой передачи ключей на расстояния больше 7 тыс. км.

    Первые успешные попытки использования новой связи

    Самый первый протокол квантовой криптографии был получен в 1984 г. Сегодня эта технология успешно используется в банковской сфере. Известные компании предлагают созданные ими криптосистемы.

    Квантовая линия связи осуществляется на стандартном оптоволоконном кабеле. В России первый защищенный канал был проложен между отделениями "Газпромабанка" в Новых Черемушках и на Коровьем валу. Общая длина равняется 30,6 км, ошибки при передаче ключа возникают, но их процент минимален — всего 5%.

    Китай запустил спутник квантовой связи

    Первый в мире подобный спутник был запущен в Китае. Ракета Long March-2D стартовала 16 августа 2016 г. с космодрома Цзю-Цюань. Спутник весом 600 кг будет 2 года летать по солнечно-синхронной орбите, высотой 310 миль (или 500 км) в рамках программы "Квантовые эксперименты в космическом масштабе". Период обращения аппарата вокруг Земли равняется полутора часам.

    Спутник квантовой связи называется Micius, или "Мо-Цзы", в честь философа, который жил в V в.н.э. и, как принято считать, первым проводил оптические эксперименты. Ученые собираются изучить механизм и провести между спутником и лабораторией в Тибете.

    Последняя передает квантовое состояние частицы на заданное расстояние. Для реализации этого процесса нужна пара запутанных (иначе говоря, сцепленных) частиц, находящихся на расстоянии друг от друга. Согласно квантовой физике, они способны улавливать информацию о состоянии партнера, даже находясь далеко друг от друга. То есть можно оказывать воздействие на частицу, которая находится в далеком космосе, воздействуя на ее партнера, который находится рядом, в лаборатории.

    Спутник будет создавать два запутанных фотона и отправлять их на Землю. Если опыт будет удачным, он ознаменует собой начало новой эры. Десятки подобных спутников смогут не только обеспечить повсеместное распространение квантового интернета, но и квантовую связь в космосе для будущих поселений на Марсе и на Луне.

    Зачем нужны такие спутники

    Но зачем вообще нужен спутник квантовой связи? Разве уже существующих обычных спутников не достаточно? Дело в том, что эти спутники не будут заменять обычные. Принцип квантовой связи состоит в кодировании и защите существующих обычных каналов передачи данных. С ее помощью, например, уже обеспечивалась безопасность во время проведения парламентских выборов в 2007 году в Швейцарии.

    Некоммерческая исследовательская организация Баттельский мемориальный институт, проводит обмен информацией между отделениями в США (штат Огайо) и в Ирландии (Дублин) используя квантовую запутанность. Принцип ее основан на поведении фотонов — элементарных С их помощью кодируется информация и отправляется адресату. Теоретически, даже самая аккуратная попытка вмешательства, оставит след. Квантовый ключ изменится сразу же, и хакер, предпринявший попытку, получит бессмысленный символьный набор. Поэтому все данные, которые будут передавать через эти каналы связи, невозможно перехватить или скопировать.

    Спутник поможет ученым тестировать распределение ключа между наземными станциями и самим спутником.

    Квантовая связь в Китае будет реализована благодаря оптоволоконным кабелям, общей протяженностью 2 тыс. км и объединяющих 4 города от Шанхая до Пекина. Серии фотонов бесконечно передаваться не могут, и чем больше расстояние между станциями, тем выше шанс того, что информация будет повреждена.

    Пройдя какое-то расстояние, сигнал затухает, и ученым, для того чтобы поддерживать корректную передачу информации, нужен способ обновления сигнала спустя каждые 100 км. В кабелях это достигается с помощью проверенных узлов, в которых ключ анализируется, копируется новыми фотонами и идет дальше.

    Немного истории

    В 1984 г. Брассард Ж. из Монреальского университета и Беннет Ч. из IBM предположили, что фотоны можно использовать в криптографии для получения защищенного фундаментального канала. Ими была предложена простая схема квантового перераспределения шифровальных ключей, которая была названа ВВ84.

    Схема эта использует квантовый канал, по которому информация между двумя пользователями передается в виде поляризованных квантовых состояний. Подслушивающий их хакер может попытаться измерить эти фотоны, но он не может это сделать, как сказано выше, не внеся в них искажения. В 1989 г. в Исследовательском центре IBM Брассард и Беннет создали первую в мире работающую квантово-криптографическую систему.

    Из чего состоит квантово-оптическая криптографическая система (КОКС)

    Основные теххарактеристики КОКС (коэффициент ошибок, скорость передачи данных и т.п.) определены параметрами образующих канал элементов, которые формируют, передают и измеряют квантовые состояния. Обычно КОКС состоит из приемной и передающей частей, которые связаны каналом передачи.

    Источники излучения разделяются на 3 класса:

    • лазеры;
    • микролазеры;
    • светоизлучающие диоды.

    Для передачи оптических сигналов в качестве среды используют волоконно-оптические светодиоды, объединенные в кабели разной конструкции.

    Природа секретности квантовой связи

    Переходя от сигналов, в которых передаваемая информация кодируется импульсами с тысячами фотонов, к сигналам, в которых на один импульс, в среднем, приходится их меньше единицы, в действие вступают квантовые законы. Именно использование этих законов с классической криптографией позволяет достигать секретности.

    Принцип неопределенности Гейзенберга применяется в квантово-криптографических аппаратах и благодаря ему любые попытки изменения в квантовой системе вносят в нее изменения, и формация, полученная в результате подобного измерения, определяется принимаемой стороной как ложная.

    Дает ли квантовая криптография 100% гарантию от взлома?

    Теоретически дает, но технические решения не совсем надежны. Злоумышленники стали использовать лазерный луч, с помощью которого они ослепляют квантовые детекторы, после чего те перестают реагировать на квантовые свойства фотонов. Иногда используются многофотонные источники, и взломщики могут получать возможность пропускать один из них и измерять идентичные.

    Технологический прогресс в области телекоммуникаций не стоит на месте. Вроде только недавно высокоскоростной интернет стал добираться до самых отдаленных уголков нашей планеты, как уже ученные говорят про внедрение квантовой связи.

    Что такое квантовая связь и как работает квантовая связь?

    Квантовая связь – это совокупность методов для передачи закодированной информации в квантовых состояниях из одной точки в другую. Квантовая связь дает возможность передавать информацию в зашифрованном виде.

    Главная идея квантовой криптографии заключается в полной зашифрованности сообщений, что делает невозможным ее перехват третьими лицами. Каждое передаваемое сообщение содержит свой уникальный секретный ключ. Причем абсолютная секретность передаваемой информации обеспечивается не вычислительными и техническими возможностями, а законами природы.

    Сигналы передаются с помощью потока одиночных фотонов. Фотон невозможно разделить, измерить, скопировать или незаметно убрать. Из-за подобных действий фотон просто разрушается и не может дойти до своего получателя.

    Применение квантовой связи: квантовые линии связи, спутник квантовой связи, квантовая телефонная связь

    Сегодня связь на основе квантовой запутанности находит применение именно в тех сферах, где требуются особые условия безопасности, как например, в банковской сфере.

    В России в 2016 году у нас была проложена первая в стране линия квантовой связи. Эта линия соединила 2 филиала Газпрома в Москве. А общая протяженность этой квантовой линии связи немного превысила 30 км.

    А недавно была запущена и первая междугородная линия в Ленинградской области. Ее протяженность уже составила 60 км.

    Но такая наземная связь не имеет глобальных масштабов. Расширить границы применения квантовой связи позволит спутник, на который возлагаются очень большие надежды. За счет применения спутника квантовой связи ученые рассчитывают увеличить реализацию схемы квантового распределения ключа до 7 тыс. км. А если подобных спутников будет множество, они смогут не только обеспечить глобальное распространение квантового интернета, но и квантовую связь в космосе.

    Первый подобный спутник был запущен Китаем в 2016 году. Основной целью запуска китайского квантового спутника связи являлось изучение распределения квантовой связи по маршруту «Спутник-Земля». И уже были проведены успешные эксперименты, в рамках которых сигнал от Micius прошел через атмосферу и был принят двумя наземными станциями. В 2017 году было завершено тестирования спутника квантовой связи в Китае. Спутник введен в эксплуатацию.

    А в 2017 году в МГУ был протестирован первый квантовый телефон. Помимо защищенности связи, ученные сообщают о том, что квантовому телефону абсолютно не страшны ни расстояния, ни погодные условия. В разработке такого телефона достигнута полная помехозащищенность.

    Активно развивается квантовая связь и в Корее. Уже сейчас в Южной Корее готовятся к выпуску городских кроссоверов, снабженных такими телефонами. Считается, что квантовая телефонная связь вполне может вытеснить привычные нам сотовые телефоны.

    Возможные проблемы квантовой связи

    Квантовая связь только начинает свое развитие. А поэтому ученным и разработчикам приходится сталкиваться с некоторыми проблемами.

    Основная проблема – это финансирование. Изучение и развитие линий квантовой связи требует больших вложений. Причем пока сеть до конца не изучена, отдачи от этих вложений практически не происходит. Но правительства стран прекрасно понимают, какие перспективы открывает квантовая связь, а поэтому не жалеют финансов на ее развитие.

    Еще одной проблемой выступает тот факт, что бит может копироваться лишь один раз. А это значит, что информацию по квантовому каналу связи можно только передать. А дальше с ней уже не получится что-либо сделать. В данный момент ученные пытаются разрешить эту проблему. Так, сейчас пытаются, используя квантовые технологии связи, создавать перепутанные пары фотонов. С их помощью можно будет посылать в два конца из одной точки и связывать между собой две удаленные точки. Если создать множество таких узлов, то можно будет организовать линию связи на бесконечно большие расстояния. Но для реализации задумки также требуется квантовая память. А ее создание находится только в процессе разработки.

    Развитие экспериментальной квантовой физики в последние десятилетия привело к интересным результатам. Абстрактные идеи постепенно находят практическое применение. В области квантовой оптики это, прежде всего, создание квантового компьютера и телекоммуникаций на основе квантовой криптографии - технология, наиболее близкая к реализации.

    Современные оптические линии связи не гарантируют конфиденциальность передаваемой информации, поскольку по оптоволоконным линиям движутся миллионы фотонов, во многом дублирующих друг друга, и часть из них можно перехватить незаметно для адресата.

    Квантовая криптография использует в качестве носителя информации одиночные фотоны, поэтому при их перехвате они не дойдут до адресата, что сразу же станет сигналом о происходящем шпионаже.

    Чтобы скрыть перехват, шпион должен измерить квантовое состояние фотона (поляризацию или фазу) и послать адресату «дубликат». Но согласно законам квантовой механики это невозможно, поскольку любое произведенное измерение изменяет состояние фотона, то есть не дает возможности создать его «клон».

    Это обстоятельство гарантирует полную секретность передачи данных, поэтому подобные системы постепенно начинают использоваться в мире секретными службами и банковскими сетями.

    Первый протокол квантовой криптографии изобрели американские ученые Чарльз Беннет и Джил Брассард в 1984 году, поэтому его называют ВВ84. Спустя пять лет они создали такую систему в исследовательском центре IBM, разместив передатчик и приемник в светонепроницаемом кожухе на расстоянии всего 30 см друг от друга. Система управлялась с персонального компьютера и позволяла обмениваться по воздушному каналу (без кабеля) секретным ключом со скоростью 10 бит/с.

    Очень медленно и совсем недалеко, но это был первый шаг.

    Суть протокола ВВ84 в передаче фотонов с поляризацией в четырех возможных направлениях. Два направления вертикально-горизонтальных и два диагональных (под углами плюс-минус 45 градусов). Отправитель и получатель договариваются, что, допустим, вертикальная поляризация и поляризация под углом плюс 45 градусов соответствуют логическому нулю, а горизонтальная и минус 45 градусов - единице. Затем отправитель посылает адресату последовательность одиночных фотонов, поляризованных в одном из этих направлений случайным образом, а адресат по открытому каналу связи сообщает, в какой системе координат (поляризаций) он измерил полученные лучи, но не сообщает результат своих измерений. Поскольку каждый фотон может быть как нулем, так и единицей, для перехватчика эта открытая информация бесполезна. Отправитель сообщает, верно ли выбрана система координат для каждого фотона. Затем они записывают совпавшую последовательность, которая и становится для них готовым двоичным кодом - секретным ключом расшифровки данных. Теперь все зашифрованные данные можно передавать по открытым сетям.

    Изобретение вызвало огромный интерес во всем мире.

    Кодирование фотонов по поляризациям используется в экспериментальных атмосферных линиях связи, поскольку при распространении излучения через атмосферу поляризация излучения изменится незначительно, а для подавления солнечного или лунного света применяют спектральные, пространственные и временные фильтры. В первой экспериментальной установке в 1992 году расстояние между передатчиком и приемником (длина квантового канала) было всего 30 см, в 2001 году — уже почти 2 км. Еще через год за рубежом продемонстрировали передачу ключа на расстояния, превышающие эффективную толщину атмосферы, - 10 км и 23 км. В 2007-м ключ передали на 144 км, а в 2008-м отраженный однофотонный сигнал от лазерного импульса со спутника был зарегистрирован на Земле.

    Для генерации одиночных фотонов используется сильно ослабленное излучение полупроводниковых лазеров. Но можно применить и источники одиночных фотонов - однофотонные излучатели на квантовых точках, разработанные в Институте физики полупроводников им. А. В. Ржанова СО РАН. Это полупроводниковые структуры, позволяющие выделять излучение только одной квантовой точки. Поскольку для секретности передачи нужно не более одного фотона в каждом лазерном импульсе, то к фотодетекторам приемного узла предъявляются высокие требования. Они должны обладать достаточно высокой вероятностью регистрации (более 10%), малыми шумами и высокой скоростью счета.

    Однофотонными детекторами могут служить лавинные фотодиоды, которые отличаются от обычных усилением электрических импульсов: в обычных фотодиодах на один падающий фотон рождается не больше одного электрона, а в лавинных фотодиодах - тысячи. При напряжении на фотодиоде свыше некоторого порогового и попадании на него фотона происходит лавинное размножение носителей заряда. Чем выше напряжение над порогом, тем больше вероятность регистрации фотона, но и сильнее шумы.

    Чтобы снять эти шумы, их (детекторы) необходимо охлаждать до минус 50 градусов Цельсия специальным полупроводниковым микрохолодильником.

    Но можно применять и сверхпроводящие детекторы из набора нанопроволок толщиной около 50 нм. Такие структуры находятся в переходном режиме от проводящего к сверхпроводящему. Прохождения одного фотона через этот детектор и его поглощения достаточно, чтобы разогреть нанопроволоки и изменить ток через них. По изменению тока регистрируется пришедший фотон. Сверхпроводящие детекторы гораздо меньше «шумят», чем лавинные фотодиоды. Зарубежные эксперименты со сверхпроводящими детекторами продемонстрировали максимальную дальность передачи квантового ключа — 250 км по сравнению со 150 км при использовании лавинных фотодиодов. Основной сдерживающий фактор для серийного применения сверхпроводящих детекторов - необходимость их глубокого охлаждения с помощью дорогостоящих гелиевых криостатов.

    Дальность и скорость передачи информации ограничены возможностями оптоволоконных линий связи, эффективностью детекторов и уровнем их шумов.

    Максимальная дальность передачи информации с помощью технологии квантовой криптографии по оптоволокну около 150 километров, но при таком расстоянии скорость передачи будет всего около 10 бит в секунду, а на пятидесяти километрах — примерно 10 кбит в секунду.

    Поэтому квантовые линии связи имеют высокую ценность только для передачи конфиденциальных данных.

    Для оптоволоконных линий связи применяются различные способы кодирования квантовых состояний фотонов. Одни из первых криптосистем работали на основе поляризационного кодирования, так же как для протокола ВВ84. Однако в обычном оптоволокне сильно искажается поляризация фотонов, так что наиболее популярно фазовое кодирование.

    Современные коммерческие квантовые оптоволоконные криптосистемы используют двухпроходную оптическую схему и фазовое кодирование фотонов. Впервые эта система применена швейцарскими учеными в 2002 году. В ее схеме фотоны дважды проходят квантовый канал (оптоволокно длиной в десятки километров) — сначала в виде многофотонного лазерного импульса от приемника к передатчику, а затем на стороне передатчика они отражаются от так называемого зеркала Фарадея, ослабляются до уровня одиночных фотонов и отправляются обратно через квантовый канал к приемнику. Зеркало Фарадея «поворачивает» поляризацию (направление) отраженных фотонов на 90 градусов за счет эффекта Фарадея (поворот поляризации) в специальном магнитооптическом стекле, помещенном в магнитное поле. А на обратном пути к приемнику все поляризационные и фазовые искажения фотонов в квантовом канале претерпевают обратные изменения, то есть автоматически компенсируются. Технология не требует настройки квантового канала и позволяет работать со стандартными оптоволоконными линиями связи.

    Сегодня именно такая экспериментальная линия связи в России создана в новосибирском Институте физики полупроводников, где сейчас проходит тестирование и доводку с квантовым каналом длиной 25 км (предполагается увеличить его длину до 100 км).

    Особенность созданной системы - применение специально разработанных быстродействующих контроллеров, которые управляют ее настройкой и работой в автоматическом режиме. Этих систем разработано всего несколько в мире, причем, технология их реализации не раскрывается, так что единственный путь внедрения квантовых линий связи в нашей стране - это собственная отечественная разработка.

    Подготовила Мария Роговая (Новосибирск )

    Российский и чешско-словацкий физики предложили метод сохранения квантовой запутанности фотонов при прохождении усилителя или передаче на большое расстояние.

    Квантовая запутанность или сцепленность частиц – явление связи их квантовых характеристик. Она может возникать при рождении частиц в одном событии или их взаимодействии. Эта связь может сохраняться, даже если частицы расходятся на большое расстояние, что позволяет передавать с их помощью информацию. Дело в том, что если измерить квантовые характеристики одной из связанных частиц, то автоматически становятся известны и характеристики второй. Эффект не имеет аналогов в классической физике. Он был экспериментально доказан в 1970 – 80-х годах, и его активно изучают в последние несколько десятилетий. В перспективе он может стать основой целого ряда информационных технологий будущего.

    Забавную житейскую аналогию этого явления придумал один из его исследователей, физик-теоретик Джон Белл. Его коллега Рейнгольд Бертлман страдал рассеянностью и часто приходил на работу в носках разного цвета. Предсказать эти цвета было невозможно, но Белл шутил, что достаточно увидеть розовый носок на левой ноге Бертлмана, чтобы сделать вывод, что на правой ноге у него носок другого цвета, даже не видя его.

    Одна из проблем практического использования явления квантовой запутанности заключается в нарушении связи при взаимодействии частиц с окружающим миром. Такое может произойти при усилении сигнала или при его передаче на большое расстояние. Эти два фактора могут действовать и вместе, поскольку для передачи сигнала на большое расстояние его надо усиливать. Поэтому фотоны после прохождения через многие километры оптоволокна в большинстве случаев перестают быть квантово запутанными и превращаются в обычные, не связанные между собой кванты света. Чтобы избежать разрушения связи в экспериментах по квантовым вычислениям, приходится использовать охлаждение до близких к абсолютному нулю температур.

    Физики Сергей Филиппов (МФТИ и Российский квантовый центр в Сколково) и Марио Зиман (Масариков университет в Брно, Чехия, и Физический институт в Братиславе, Словакия) нашли способ сохранить квантовую запутанность фотонов при прохождении через усилитель или, напротив, при передаче на большое расстояние. Подробности опубликованы в статье (см. также препринт) для журнала Physical Review A.

    Суть их предложения заключается в том, что для передачи сигналов определенного вида необходимо, чтобы «волновая функция частиц в координатном представлении не должна иметь вид гауссова волнового пакета». В этом случае вероятность разрушения квантовой запутанности становится намного ниже.

    Волновая функция – одно из базовых понятий квантовой механики. Она используется для описания состояния квантовой системы. В частности, явление квантовой запутанности описывается на основе представлений об общем состоянии связанных частиц с определенной волновой функцией. В соответствии с копенгагенской интерпретацией квантовой механики физический смысл волновой функции квантового объекта в координатном представлении заключается в том, что квадрат ее модуля определяет вероятность обнаружить объект в данной точке. С ее помощью можно также получить информацию об импульсе, энергии или еще какой-либо физической величине объекта.

    Гауссова функция - одна из важнейших математических функций, нашедшая применение не только в физике, но и во многих других науках вплоть до социологии и экономики, имеющих дело с вероятностными событиями и использующих статистические методы. Очень многие процессы в природе приводят к этой функции при математической обработке результатов наблюдений. Ее график выглядит как колоколообразная кривая.

    Обычные фотоны, которые используются сейчас в большинстве экспериментов по квантовому запутыванию, тоже описываются гауссовой функцией: вероятность найти фотон в той или иной точке в зависимости от координат точки имеет колоколообразный гауссов вид. Как показали авторы работы, в этом случае переслать запутанность далеко не получится, даже если сигнал очень мощный.

    Использование фотонов, волновая функция которых имеет иную, негауссову, форму, должна существенно повысить число доходящих до адресата запутанных фотонных пар. Однако это не означает, что сигнал можно будет передать через сколь угодно непрозрачную среду или на сколь угодно большое расстояние, – если соотношение сигнал/шум падает ниже некоторого критического порога, то эффект квантовой запутанности исчезает в любом случае.

    Физики уже научились создавать запутанные фотоны, разнесенные на несколько сотен километров, и нашли им несколько очень перспективных применений. Например, для создания квантового компьютера. Это направление представляется многообещающим благодаря высокому быстродействию и низкому энергопотреблению фотонных устройств.

    Другое направление – квантовая криптография, позволяющая создать линии связи, в которых всегда можно обнаружить «прослушивание». Она основана на том, что любое наблюдение за объектом есть воздействие на него. А воздействие на квантовый объект всегда меняет его состояние. Это означает, что попытка перехватить сообщение должна привести к разрушению спутанности, о чем сразу станет известно получателю.

    Кроме того, квантовая запутанность позволяет реализовать так называемую квантовую телепортацию. Ее не надо путать с телепортацией (переносом в пространстве) предметов и людей из фантастических фильмов. В случае квантовой телепортации на расстояние передается не сам объект, а информация о его квантовом состоянии. Все дело в том, что все квантовые объекты (фотоны, элементарные частицы), а вместе с ними и атомы одного вида являются абсолютно одинаковыми. Поэтому, если атом в точке приема приобретает квантовое состояние, идентичное атому в точке передачи, то это эквивалентно созданию копии атома в точке приема. Если бы существовала возможность переноса квантового состояния всех атомов предмета, то в месте приема возникла бы его идеальная копия. С целью передачи информации можно телепортировать кубиты – наименьшие элементы для хранения информации в квантовом компьютере.

    По материалам сайта МФТИ