Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Спар чья компания. История SPAR. SPAR в России
  • Составление и оформление протоколов заседаний, собраний, конференций
  • Специальность "Зоотехния" (бакалавриат) Что делает зоотехник на практике
  • Вертикальная и горизонтальная интеграция - сущность, значение, различия Горизонтальная интеграция
  • Лёгкая промышленность России – состояние и перспективы развития
  • Жизнь трутня в пчелиной семье
  • Ниобий кристаллическая решетка. Свойства ниобия. Что такое ниобий

    Ниобий кристаллическая решетка. Свойства ниобия. Что такое ниобий

    Приведены физические свойства ниобия Nb в зависимости от температуры в диапазоне от -223 до 2527°С. Рассмотрены следующие свойства твердого и жидкого ниобия:

    Физические свойства ниобия по-разному зависят от температуры. Ее изменение оказывает наибольшее влияние на удельное электрическое сопротивление ниобия. Например, при повышении температуры этого металла с 0°С до точки плавления, его удельное сопротивление увеличивается более чем в 8 раз (до величины 109·10 -8 Ом·м).

    Ниобий представляет собой пластичный тугоплавкий металл с температурой плавления 2477°С и плотностью 8570 кг/м 3 (при 20°С). Температура кипения ниобия равна 4744°С, структура решетки объемно центрированная кубическая с периодом 0,33 нм.

    Плотность ниобия уменьшается при нагревании . Ниобий в расплавленном состоянии имеет плотность существенно ниже, чем в твердом: при температуре 2477°С плотность жидкого ниобия равна 7580 кг/м 3 .

    Удельная теплоемкость ниобия при комнатной температуре равна 268 Дж/(кг·град) и при нагревании увеличивается. Отметим, что при плавлении величина этого физического свойства ниобия изменяется незначительно, а в жидком состоянии его удельная теплоемкость в 1,7 раза больше классического значения 3R.

    Теплопроводность ниобия при 0°С равна 48 Вт/(м·град) , она близка по величине . Температурная зависимость коэффициента теплопроводности ниобия характеризуется пологим минимумом в области комнатных температур и положительным температурным коэффициентом — выше 230°С. При приближении к точке плавления ниобия его теплопроводность возрастает.

    Температуропроводность ниобия также имеет пологий минимум вблизи комнатных температур и далее пологий максимум при 900…1500°С. Коэффициент теплового линейного расширения ниобия относительно имеет довольно низкое значение. Он сравним по значению с коэффициентом расширения таких металлов, как вольфрам, иридий и .

    Физические свойства ниобия таблица
    t, °C d,
    кг/м 3
    C p ,
    Дж/(кг·град)
    a·10 6 ,
    м 2 /с
    λ,
    Вт/(м·град)
    ρ·10 8 ,
    Ом·м
    α·10 6 ,
    K -1
    -223 99 2,27
    -173 202 32,1 4,2 4,77
    -73 254 24,5 32,6 9,71 6,39
    0 265 23,9 48 13,4 6,91
    27 8570 268 23,7 53,5 14,7 7,07
    127 8550 274 23,5 55,1 19,5 7,3
    227 8530 280 23,9 57,1 23,8 7,5
    327 8510 285 23,9 57,9 27,7 7,7
    427 8490 289 23,9 58,6 31,4 7,9
    527 8470 293 24 59,5 34,9 8,09
    627 8450 297 24,2 60,8 38,2 8,25
    727 8430 301 24,5 62,2 41,6 8,41
    927 8380 311 24,7 64,3 47,9 8,71
    1127 8320 322 25 70 54 8,99
    1327 8260 335 25 69,2 60 9,27
    1527 8200 350 25 71,7 65,9 9,55
    1727 8140 366 24,6 73,3 71,8 9,83
    1927 8080 384 24 74,5 77,6 10,11
    2127 8020 404 24 77,8 83,3 10,39
    2327 7960 426 21,7 73,6 89
    2477 7580 450 18 65 109
    2527 450 17,8

    Физические свойства ниобия

    Ниобий -- блестящий серебристо-серый металл.

    Элементарный ниобий - чрезвычайно тугоплавкий (2468°C) и высококипящий (4927°C) металл, очень стойкий во многих агрессивных средах. Все кислоты, за исключением плавиковой, не действуют на него. Кислоты-окислители «пассивируют» ниобий, покрывая его защитной окисной пленкой (№205). Но при высоких температурах химическая активность ниобия повышается. Если при 150...200°C окисляется лишь небольшой поверхностный слой металла, то при 900...1200°C толщина окисной пленки значительно увеличивается.

    Кристаллическая решетка Ниобия объемно центрированная кубическая с параметром а = 3,294A.

    Чистый металл пластичен и может быть прокатан в тонкий лист (до толщины 0, 01 мм.) в холодном состоянии без промежуточного отжига.

    Можно отметить такие свойства ниобия как высокая температура плавления и кипения, более низкая работа выхода электронов по сравнению с другими тугоплавкими металлами -- вольфрамом и молибденом. Последнее свойство характеризует способность к электронной эмиссии (испусканию электронов), что используется для применения ниобия в электровакуумной технике. Ниобий также имеет высокую температуру перехода в состояние сверхпроводимости.

    Плотность 8,57 г/см3 (20 °С); tпл 2500 °С; tкип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м2) 1·10-5 (2194 °С), 1·10-4 (2355 °С), 6·10-4 (при tпл), 1·10-3 (2539 °С).

    При обычной температуре ниобий устойчив на воздухе. Начало окисления (плёнки побежалости) наблюдается при нагревании металла до 200 -- 300°С. Выше 500° происходит быстрое окисление с образованием окисла Nb2O5.

    Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10-8 ом·м (15,22·10-6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

    Чистый Ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м2, то же в кгс/мм234,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого Ниобиы по Бринеллю 450, технического 750-1800 Mн/м2. Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость Ниобия.

    Химические свойства ниобия

    Ниобий особенно ценится за его устойчивость к действию неорганических и органических веществ.

    Есть разница в химическом поведении порошкообразного и кускового металла. Последний более устойчив. Металлы на него не действуют, даже если нагреть их до высоких температур. Жидкие щелочные металлы и их сплавы, висмут, свинец, ртуть, олово могут находиться в контакте с ниобием долго, не меняя его свойств. С ним ничего не могут поделать даже такие сильные окислители, как хлорная кислота, «царская водка», не говоря уж об азотной, серной, соляной и всех прочих. Растворы щелочей на ниобий тоже не действуют.

    Существует, однако, три реагента, которые могут переводить металлический ниобий в химические соединения. Одним из них является расплав гидроксида какого-либо щелочного металла:

    4Nb+4NaOH+5О2 = 4NaNbO3+2H2О

    Двумя другими являются плавиковая кислота (HF) или ее смесь с азотной (HF+HNO). При этом образуются фторидные комплексы, состав которых в значительной степени зависит от условий проведения реакции. Элемент в любом случае входит в состав аниона типа 2- или 2-.

    Если же взять порошкообразный ниобий, то он несколько более активен. Например, в расплавленном нитрате натрия он даже воспламеняется, превращаясь в оксид. Компактный ниобий начинает окисляться при нагревании выше 200°С, а порошок покрывается окисной пленкой уже при 150°С. При этом проявляется одно из чудесных свойств этого металла -- он сохраняет пластичность.

    В виде опилок при нагревании выше 900°С он полностью сгорает до Nb2O5. Энергично сгорает в токе хлора:

    2Nb + 5Cl2 = 2NbCl5

    При нагревании реагирует с серой. С большинством металлов он сплавляется с трудом. Исключение, пожалуй, составляют лишь два: железо, с которым образуются твердые растворы разного отношения, да алюминий, имеющий с ниобием соединение Al2Nb.

    Какие же качества ниобия помогают ему сопротивляться действию сильнейших кислот--окислителей? Оказывается, это относится не к свойствам металла, а к особенностям его оксидов. При соприкосновении с окислителями на поверхности металла возникает тончайший (поэтому он и незаметен), но очень плотный слой оксидов. Этот слой встает неодолимой преградой на пути окислителя к чистой металлической поверхности. Проникнуть сквозь него могут только некоторые химические реагенты, в частности анион фтора. Следовательно, по существу металл окисляется, но практически результатов окисления незаметно из-за присутствия тонкой защитной пленки. Пассивность по отношению к разбавленной серной кислоте используют для создания выпрямителя переменного тока. Устроен он просто: платиновая и ниобиевая пластинки погружены в 0,05 м. раствор серной кислоты. Ниобий в пассивированном состоянии может проводить ток, если является отрицательным электродом -- катодом, т. е. электроны могут проходить сквозь слой оксидов только со стороны металла. Из раствора путь электронам закрыт. Поэтому, когда через такой прибор пропускают переменный ток, то проходит только одна фаза, для которой платина -- анод, а ниобий -- катод.

    ниобий металл галоген

    Ниобий - блестящий серебристо-серый металл. Кристаллическая решетка ниобия объемноцентрированная кубическая с параметром а = 3,294Å. Плотность 8,57 г/см 3 (20 °С); t пл 2500 °С; t кип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м 2) 1·10 -5 (2194 °С), 1·10 -4 (2355 °С), 6·10 -4 (при t пл), 1·10 -3 (2539 °С). Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10 -8 ом·м (15,22·10 -6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

    Чистый ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м 2 , то же в кгс/мм 2 34,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого ниобиы по Бринеллю 450, технического 750-1800 Mн/м 2 .

    Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость ниобия. Этот метал можно прокатать в тонкую фольгу. Но, как и в случае с титаном, танталом и некоторыми другими металлами, пластичным является только металл не содержащий примесей кислорода, азота и других неметаллов. Эти примеси делают ниобий хрупким и ломким.

    На самом деле ниобий, как и все остальные металлы, серый. Однако, используя пассивирующий слой оксида , мы делаем так, что наш металл светится красивейшими цветами . Но ниобий - это не просто металл, приятный глазу. Как и тантал, он устойчив во многих химических веществах и легко поддается формовке даже при низкой температуре.

    Ниобий отличается тем, что высокий уровень коррозионной стойкости сочетается в нем с малым весом . Мы используем этот материал для производства вставок в монеты любых цветов, коррозионностойких выпарительных чаш для использования в технике для нанесения покрытий и формоустойчивых тиглей для выращивания алмазов. Благодаря высокому уровню биологической совместимости ниобий также используется в качестве материала для имплантатов. Высокая температура перехода также делает ниобий идеальным материалов для сверхпроводящих кабелей и магнитов.

    Гарантированная чистота.

    Вы можете быть уверенными в качестве нашей продукции. В качестве исходного материала мы используем только чистейший ниобий. Так мы гарантируем вам чрезвычайно высокую чистоту материала .

    Монеты и алмазы. Сферы применения ниобия.

    Сферы применения нашего ниобия столь же разнообразны, как и свойства самого материала. Ниже мы кратко представим вам две из них:

    Ценная и цветная.

    В самом выгодном свете наш ниобий предстает при производстве монет. В результате анодирования на поверхности ниобия образуется тонкий слой оксида. Из-за преломления света этот слой светится различными цветами. Мы можем влиять на эти цвета, изменяя толщину слоя. От красного до синего: возможны любые цвета.

    Превосходная формуемость и стойкость.

    Высокая коррозионная стойкость и превосходная формуемость делают ниобий идеальным материалом для тиглей, используемых для производства искусственных поликристаллических алмазов (PCD). Наши ниобиевые тигли используются для высокотемпературного синтеза при высоком давлении.

    Чистый ниобий, полученный плавкой.

    Мы поставляем наш ниобий, полученный плавкой, в виде листов, лент или прутков. Мы также можем изготавливать из него продукты сложной геометрии. Наш чистый ниобий обладает следующими свойствами:

    • высокая температура плавления, составляющая 2 468 °C
    • высокая пластичность при комнатной температуре
    • рекристаллизация при температуре от 850 °C до 1 300 °C (в зависимости от степени деформации и чистоты)
    • высокая стойкость в водных растворах и расплавах металлов
    • высокая способность к растворению углерода, кислорода, азота и водорода (риск повышения хрупкости)
    • сверхпроводимость
    • высокий уровень биологической совместимости

    Хорош во всех отношениях: характеристики ниобия.

    Ниобий относится к группе тугоплавких металлов. Тугоплавкие металлы - это металлы, температура плавления которых превышает температуру плавления платины (1 772 °C). В тугоплавких металлах энергия, связывающая отдельные атомы, чрезвычайно высока. Тугоплавкие металлы отличаются высокой температурой плавления в сочетании с низким давлением пара , высоким модулем упругости и высокой термической стабильностью . Тугоплавкие металлы также имеют низкий коэффициент теплового расширения . По сравнению с другими тугоплавкими металлами ниобий имеет относительно низкую плотность, которая составляет всего 8.6 г/см3

    В периодической системе химических элементов ниобий находится в том же периоде, что и молибден. В связи с этим его плотность и температура плавления сравнимы с плотностью и температурой плавления молибдена. Как и тантал, ниобий подвержен водородной хрупкости. По этой причине термическая обработка ниобия выполняется в высоком вакууме, а не в водородной среде. И ниобий, и тантал также обладают высокой коррозионной стойкостью во всех кислотах и хорошей формуемостью.

    Ниобий имеет самую высокую температуру перехода среди всех элементов, и она составляет -263,95 °C . При температуре ниже указанной ниобий является сверхпроводящим. Более того, ниобий обладает рядом крайне специфических свойств:

    Свойства
    Атомное число 41
    Атомная масса 92.91
    Температура плавления 2 468 °C / 2 741 K
    Температура кипения 4 900 °C / 5 173 K
    Атомный объем 1.80 ·  10-29 [м3]
    Давление пара при 1 800 °C
    при 2 200 °C
    5 · 10-6 [Пa] 4 · 10-3 [Пa]
    Плотность при 20 °C (293 K) 8.55 [г/см3]
    Кристаллическая структура объемноцентрированная кубическая
    Постоянная кристаллической решетки 3,294 · 10 –10 [м]
    Твердость при 20 °C (293 K) деформированный рекристаллизованный 110–180
    60–110
    Модуль упругости при 20 °C (293 K) 104 [ГПa]
    Коэффициент Пуассона 0.35
    Коэффициент линейного теплового расширения при 20 °C (293 K) 7,1 · 10 –6 [м/(м·K)]
    Теплопроводность при 20 °C (293 K) 52 [Вт/(м K)]
    Удельная теплоемкость при 20 °C (293 K) 0,27 [Дж/(г K)]
    Электропроводность при 20 °C (293 K) 7 · 10-6
    Удельное электрическое сопротивление при 20 °C (293 K) 0.14 [(Ом·мм2)/м]
    Скорость звука при 20 °C (293 K) Продольная волна
    Поперечная волна
    4 920 [м/с] 2 100 [м/с]
    Работа выхода электрона 4.3 [эВ]
    Сечение захвата тепловых нейтронов 1.15 · 10-28 [м2]
    Температура рекристаллизации (продолжительность отжига: 1 час) 850 - 1 300 [ °C]
    Сверхпроводимость (температура перехода) < -263.95 °C / < 9.2 K

    Теплофизические свойства.

    Как и все тугоплавкие металлы, ниобий имеет высокую температуру плавления и относительно высокую плотность. Теплопроводность ниобия сравнима с теплопроводностью тантала, но ниже, чем у вольфрама. Коэффициент теплового расширения ниобия выше, чем у вольфрама, но все же значительно ниже, чем у железа или алюминия.

    Теплофизические свойства ниобия изменяются при изменении температуры:

    Коэффициент линейного теплового расширения ниобия и тантала

    Удельная теплоемкость ниобия и тантала

    Теплопроводность ниобия и тантала

    Механические свойства.

    Механические свойства ниобия зависят, прежде всего, от его чистоты и, в частности, содержания кислорода, азота, водорода и углерода. Даже малые концентрации этих элементов могут оказывать значительное влияние. К другим факторам, оказывающим воздействие на свойства ниобия, относится технология производства , степень деформации и термическая обработка .

    Как и практически все тугоплавкие металлы, ниобий имеет объемноцентрированную кубическую кристаллическую решетку . Температура хрупко-вязкого перехода ниобия ниже комнатной. По этой причине ниобий крайне легко поддается формовке .

    При комнатной температуре удлинение при разрыве составляет более 20%. При увеличении степени холодной обработки металла повышается его прочность и твердость, но одновременно снижается удлинение при разрыве. Хотя материал теряет пластичность, он не становится хрупким.

    При комнатной температуре модуль упругости ниобия составляет 104 ГПа, что меньше, чем у вольфрама, молибдена или тантала. Модуль упругости снижается при повышении температуры. При температуре 1 800 °C он составляет 50 ГПа.

    Модуль упругости ниобия в сравнении с вольфрамом, молибденом и танталом

    Благодаря высокой пластичности ниобий оптимально подходит для формовочных процессов , таких как гибка, штамповка, прессование или глубокая вытяжка. Для предотвращения холодной сварки рекомендуется использовать инструменты из стали или твердого металла. Ниобий с трудом поддается резке . Стружка плохо отделяется. В связи с этим мы рекомендуем использовать инструменты со стружкоотводными ступеньками. Ниобий отличается превосходной свариваемостью в сравнении с вольфрамом и молибденом.

    У вас есть вопросы о механической обработке тугоплавких металлов? Мы будем рады помочь вам, используя наш многолетний опыт.

    Химические свойства.

    Ниобий от природы покрыт плотным слоем оксида. Слой оксида защищает материал и обеспечивает высокую коррозионную стойкость. При комнатной температуре ниобий не является устойчивым лишь в нескольких неорганических веществах: это концентрированная серная кислота, фтор, фтороводород, фтористоводородная кислота и щавелевая кислота. Ниобий устойчив в водных растворах аммиака.

    Щелочные растворы, жидкий гидроксид натрия и гидроксид калия также оказывают химическое воздействие на ниобий. Элементы, образующие твердые растворы внедрения, в частности водород, также могут сделать ниобий хрупким. Коррозионная стойкость ниобия падает при повышении температуры и при контакте с растворами, состоящими из нескольких химических веществ. При комнатной температуре ниобий полностью устойчив в среде любых неметаллических веществ, за исключением фтора. Однако при температуре выше примерно 150 °C ниобий вступает в реакцию с хлором, бромом, йодом, серой и фосфором.

    Коррозионная стойкость в воде, водных растворах и в среде неметаллов
    Вода Горячая вода < 150 °C стойкий
    Неорганические кислоты Соляная кислота < 30 % до 110 °C Серная кислота < 98 % до 100 °C Азотная кислота < 65 % до 190 °C Фтористо-водородная кислота < 60 % Фосфорная кислота < 85 % до 90 °C стойкий
    стойкий
    стойкий
    нестойкий
    стойкий
    Органические кислоты Уксусная кислота < 100 % до 100 °C Щавелевая кислота < 10 % Молочная кислота < 85 % до 150 °C Винная кислота < 20 % до 150 °C стойкий
    нестойкий
    стойкий
    стойкий
    Щелочные растворы Гидроксид натрия < 5 % Гидроксид калия < 5 % Аммиачные растворы < 17 % до 20 °C Карбонат натрия < 20 % до 20 °C нестойкий
    нестойкий
    стойкий
    стойкий
    Соляные растворы Хлорид аммония < 150 °C
    Хлорид кальция < 150 °C
    Хлорид железа < 150 °C
    Хлорат калия < 150 °C
    Биологические жидкости < 150 °C
    Сульфат магния < 150 °C
    Нитрат натрия < 150 °C
    Хлорид олова < 150 °C
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий
    Неметаллы Фтор Хлор < 100 °C
    Бром < 100 °C
    Йод < 100 °C
    Сера < 100 °C
    Фосфор < 100 °C
    Бор < 800 °C
    нестойкийстойкий
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий

    Ниобий устойчив в некоторых расплавах металлов, таких как Ag, Bi, Cd, Cs, Cu, Ga, Hg, K, Li, Mg, Na и Pb, при условии что эти расплавы содержат малое количество кислорода. Al, Fe, Be, Ni, Co, а также Zn и Sn все оказывают химическое воздействие на ниобий..

    Коррозионная стойкость в расплавах металлов
    Алюминий нестойкий Литий стойкий при температуре < 1 000 °C
    Бериллий нестойкий Магний стойкий при температуре < 950 °C
    Свинец стойкий при температуре < 850 °C Натрий стойкий при температуре < 1 000 °C
    Кадмий стойкий при температуре < 400 °C Никель нестойкий
    Цезий стойкий при температуре < 670 °C Ртуть стойкий при температуре < 600 °C
    Железо нестойкий Серебро стойкий при температуре < 1 100 °C
    Галлий стойкий при температуре < 400 °C Висмут стойкий при температуре < 550°C
    Калий стойкий при температуре < 1 000 °C Цинк нестойкий
    медь стойкий при температуре < 1200 °C Олово нестойкий
    Кобальт нестойкий

    Ниобий не вступает в реакцию с инертными газами. По этой причине чистые инертные газы могут использоваться в качестве защитных газов. Однако при повышении температуры ниобий активно вступает в реакцию с содержащимися в воздухе кислородом, азотом и водородом. Кислород и азот можно устранить путем отжига материала в высоком вакууме при температуре выше 1 700 °C. Водород устраняется уже при 800 °C. Такой процесс приводит к потере материала из-за образования летучих оксидов и рекристаллизации структуры.

    Вы хотите использовать ниобий в своей промышленной печи? Обратите внимание на то, что ниобий может вступать в реакцию с деталями конструкции, изготовленными из тугоплавких оксидов или графита. Даже очень устойчивые оксиды, такие как оксид алюминия, магния или циркония, могут подвергаться восстановлению при высокой температуре, если они вступают в контакт с ниобием. При контакте с графитом могут образовываться карбиды, которые приводят к повышению хрупкости ниобия. Хотя обычно ниобий можно легко комбинировать с молибденом или вольфрамом, он может вступать в реакцию с гексагональным нитридом бора и нитридом кремния. Указанные в таблице предельные температуры действительны для вакуума. При использовании защитного газа эти температуры примерно на 100 °C-200 °C ниже.

    Ниобий, ставший хрупким при контакте с водородом, можно регенерировать посредством отжига в высоком вакууме при температуре 800 °C.

    Распространенность в природе и подготовка.

    В 1801 году английский химик Чарльз Хэтчетт исследовал тяжелый черный камень, привезенный из Америки. Он обнаружил, что камень содержит неизвестный на тот момент элемент, который он назвал колумбием по его стране происхождения. Название, под которым он известен сейчас, - "ниобий" - было дано ему в 1844 году его вторым открывателем Генрихом Розе. Генрих Розе стал первым человеком, которому удалось отделить ниобий от тантала. До этого отличить эти два материала было невозможно. Розе дал металлу название "ниобий " по имени дочери царя Тантала Ниобии. Тем самым он хотел подчеркнуть тесное родство двух металлов. Металлический ниобий был впервые получен путем восстановления в 1864 году К.В. Бломстрандом. Официальное название ниобий получил только спустя примерно 100 лет после долгих споров. Международное объединение теоретической и прикладной химии признало "ниобий" официальным названием металла.

    Ниобий чаще всего встречается в природе в виде колумбита, также известного как ниобит, химическая формула которого (Fe,Mn) [(Nb,Ta)O3]2. Другим важным источником ниобия является пирохлор, ниобат кальция сложной структуры. Месторождения этой руды находятся в Австралии, Бразилии и некоторых африканских странах.

    Добытая руда обогащается различными методами, и в результате получается концентрат с содержанием (Ta,Nb)2O5 до 70%. Затем концентрат растворяется во фтористоводородной и серной кислоте. После этого путем экстракции извлекаются фтористые соединения тантала и ниобия. Фторид ниобия окисляется кислородом, в результате чего образуется пентоксид ниобия, а затем восстанавливается углеродом при температуре 2 000 °C, в результате чего образуется металлический ниобий. Посредством дополнительной электронно-лучевой плавки получается ниобий высокой чистоты.

    Краткая историческая справка

    Элемент ниобий (колумбий) открыл в 1801 году английский химик Гатчет в минерале, найденном в Колумбии, и назвал его колумбитом. В 1802 году шведский химик Экеберг в двух минералах, найденных в Финляндии и Швеции, открыл элемент, названный им танталом, что символизировало трудности («муки Тантала»), которые встретились при попытке растворить оксид нового элемента в кислоте. Некоторое время оба открытых элемента считали тождественными. В 1844 году было доказано немецким химиком Розе, что минерал колумбит содержит два различных элемента: ниобий (названный по имени мифологической богини слез Ниобы – дочери Тантала) и тантал. В 1865 году Мариньяк открыл способ разделения тантала и ниобия, основанный на различии в растворимости комплексных фтористых солей этих элементов. Этот способ приобрел промышленное значение и используется еще и в настоящее время.

    Попытки получить тантал и ниобий в форме чистых компактных металлов долгое время были безуспешными. Тантал в чистом виде впервые получен в 1903 году, ниобий – в 1907 году Больтоном. В промышленном масштабе тантал начали выпускать в 1922 году, а ниобий – в конце тридцатых годов.

    Тантал и ниобий относятся к V побочной группе периодической системы элементов. Они обладают близкими химическими и физическими свойствами.

    Физические свойства. Тантал и ниобий - металлы серо-стального цвета. Тантал имеет слегка синеватый оттенок. Чистые металлы пластичны и могут быть прокатаны в тонкий лист в холодном состоянии без промежуточных отжигов.

    Важнейшие физические свойства тантала и ниобия приведены в табл. 2.1.

    Таблица 2.1

    Свойства тантала и ниобия

    Среди приведенных свойств (табл. 2.1) необходимо отметить высокие температуры плавления и кипения, более низкую работу выхода электронов по сравнению с другими тугоплавкими металлами.

    Химические свойства. При обычной температуре тантал и ниобий устойчивы на воздухе. Начало окисления наблюдается при нагревании до 200-300 0 С. Характерное свойство тантала и ниобия – способность их поглащать газы – водород, азот и кислород. Небольшие примеси этих элементов сильно влияют на механические и электрические свойства металлов. Тантал и ниобий устойчивы против действия соляной, серной, азотной, фосфорной и органических кислот любой концентрации на холоду и при нагревании до 100 – 150 о С. По стойкости в горячих соляной и серной кислотах тантал превосходит ниобий. Металлы растворяются в плавиковой кислоте и особенно интенсивно – в смеси плавиковой и азотной кислот. Менее устойчивы тантал и ниобий в щелочах. Горячие растворы едких щелочей заметно разъедают металлы; в расплавленных щелочах и соде они быстро окисляются с образованием натриевых солей ниобиевой и танталовой кислот.