Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Спар чья компания. История SPAR. SPAR в России
  • Составление и оформление протоколов заседаний, собраний, конференций
  • Специальность "Зоотехния" (бакалавриат) Что делает зоотехник на практике
  • Вертикальная и горизонтальная интеграция - сущность, значение, различия Горизонтальная интеграция
  • Лёгкая промышленность России – состояние и перспективы развития
  • Жизнь трутня в пчелиной семье
  • Контрольная работа: Процесс водоподготовки. Процесс водоподготовки. Особенности применения технологии озонирования подземных вод

    Контрольная работа: Процесс водоподготовки. Процесс водоподготовки. Особенности применения технологии озонирования подземных вод

    В данном разделе подробно описаны существующие традиционные методы водоподготовки, их преимущества и недостатки, а также представлены современные новые методы и новые технологии улучшения качества воды в соответствии с требованиями потребителей.

    Основные задачи водоподготовки - это получение на выходе чистой безопасной воды пригодной для различных нужд: хозяйственно-питьевого, технического и промышленного водоснабжения с учётом экономической целесообразности применения необходимых методов водоочистки, водоподготовки. Подход к водоочистке не может быть везде одинаковым. Различия обусловлены составом воды и требованиями к её качеству, которые существенно различаются в зависимости от назначения воды (питьевой, технической и т.д.). Однако существует набор типичных процедур, используемых в системах водоочистки и последовательность, в которой используются эти процедуры.


    Основные (традиционные) методы обработки воды.

    В практике водоснабжения в процессе очистки и обработки вода подвергается осветлению (освобождение от взвешенных частиц), обесцвечиванию (устранение веществ, придающих воде цвет), обеззараживанию (уничтожение находящихся в ней болезнетворных бактерий). При этом в зависимости от качества исходной воды в некоторых случаях дополнительно применяются и специальные методы улучшения качества воды: умягчение воды (понижение жесткости, обусловленной наличием солей кальция и магния); фосфатирование (для более глубокого умягчения воды); опреснение , обессоливание воды (снижение общей минерализации воды); обескремнивание, обезжелезивание воды (освобождение воды от растворимых соединений железа); дегазация воды (удаление из воды растворимых газов: сероводорода H 2 S, CO 2 , O 2); дезактивация воды (удаление из воды радиоактивных веществ.); обезвреживание воды (удаление ядовитых веществ из воды), фторирование (добавления в воду фтора) или обесфторирование (удаление соединений фтора); подкисление или подщелачивание (для стабилизации воды). Иногда требуется устранять привкусы и запахи, предотвращать коррозионное действие воды и т.п. Те или иные комбинации указанных процессов применяют в зависимости от категории потребителей и качества воды в источниках.

    Качество воды в водном объекте и , определяется целым рядом показателей (физических, химических и санитарно-бактериологических), в соответствии с назначением воды и установленными нормативами качества . Подробно об этом в следующем разделе. Сравнивая данные качества воды (полученные по результатам анализа) с требованиями потребителей определяют мероприятия для ее обработки.

    Проблема очистки воды охватывает вопросы физических, химических и биологических изменений в процессе обработки с целью сделать ее пригодной для питья, т. е. очистки и улучшения ее природных свойств.

    Способ обработки воды, состав и расчетные параметры очистных сооружений для технического водоснабжения и расчетные дозы реагентов устанавливают в зависимости от степени загрязнения водного объекта, назначения водопровода, производительности станции и местных условий, а также на основании данных технологических исследований и эксплуатации сооружений, работающих в аналогичных условиях.

    Очистка воды производится в несколько этапов. Мусор и песок удаляются на этапе предочистки. Сочетание первичной и вторичной очистки, проводимое на водоочистных сооружениях (ВОС), позволяет избавиться от коллоидного материала (органических веществ). Растворенные биогены устраняются при помощи доочистки. Чтобы очистка была полной, водоочистные сооружения должны устранить все категории загрязнителей. Для этого существует множество способов.

    При соответствующей доочистке, при качественной аппаратуре ВОС можно добиться того, что в конечном итоге получится вода, пригодная для питья. Многие люди бледнеют при мысли о вторичном использовании канализационных стоков, но стоит вспомнить о том, что в природе в любом случае вся вода совершает круговорот. Фактически соответствующая доочистка может обеспечить воду лучшего качества, нежели получаемая из рек и озер, не редко принимающих неочищенные канализационные стоки.

    Основные способы водоочистки

    Осветление воды

    Осветление - это этап водоочистки, в процессе которого происходит устранение мутности воды путем снижения содержания в ней взвешенных механических примесей природных и сточных вод. Мутность природной воды, особенно поверхностных источников в паводковый период, может достигать 2000-2500 мг/л (при норме для воды хозяйственно-питьевого назначения - не более 1500 мг/л).

    Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры , представляющие собой наиболее распространенные водоочистные сооружения. Одним из наиболее широко применяемых на практике способов снижения в воде содержания тонкодисперсных примесей является их коагулирование (осаждение в виде специальных комплексов - коагулянтов) с последующим осаждением и фильтрованием. После осветления вода поступает в резервуары чистой воды.

    Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

    Осветление фильтрованием с предварительным коагулированием способствуют значительному снижению бактериальной загрязненности воды. Однако среди оставшихся после водоочистки в воде микроорганизмов могут оказаться и болезнетворные (бациллы брюшного тифа, туберкулёза и дизентерии; вибрион холеры; вирусы полиомиелита и энцефалита), являющиеся источником инфекционных заболеваний. Для окончательного их уничтожения вода, предназначенная для хозяйственно-бытовых целей, должна быть в обязательном порядке подвергнута обеззараживанию .

    Недостатки коагуляции , отстаивания и фильтрации: затратные и недостаточно эффективные методы водоочистки, в связи с чем требуются дополнительные методы улучшения качества.)

    Обеззараживание воды

    Обеззараживание или дезинфекция - завершающий этап процесса водоочистки. Цель - это подавление жизнедеятельности содержащихся в воде болезнетворных микробов. Так как полного освобождения ни отстаивание, ни фильтрование не дают, с целью дезинфекции воды применяют хлорирование и другие способы, описанные ниже.

    В технологии водоподготовки известен ряд методов обеззараживания воды, который можно классифицировать на пять основных групп: термический ; сорбция на активном угле; химический (с помощью сильных окислителей); олигодинамия (воздействие ионов благородных металлов); физический (с помощью ультразвука, радиоактивного излучения, ультрафиолетовых лучей). Из перечисленных методов наиболее широко распространены методы третьей группы. В качестве окислителей применяют хлор, диоксид хлора, озон, йод, марганцовокислый калий; пероксид водорода, гипохлорит натрия и кальция. В свою очередь, из перечисленных окислителей на практике отдают предпочтение хлору , хлорной извести, гипохлориду натрия. Выбор метода обеззараживания воды производят, руководствуясь расходом и качеством обрабатываемой воды, эффективностью ее предварительной очистки, условиями поставки, транспорта и хранения реагентов, возможностью автоматизации процессов и механизации трудоемких работ.

    Обеззараживанию подлежит вода, прошедшая предшествующие стадии обработки, коагулирование, осветление и обесцвечивание в слое взвешенного осадка или отстаивание, фильтрование, так как в фильтрате отсутствуют частицы, на поверхности или внутри которых могут находиться в адсорбированном состоянии бактерии и вирусы, оставаясь вне воздействия обеззараживающих агентов.

    Обеззараживание воды сильными окислителями.

    В настоящее время на объектах жилищно-коммунального хозяйства для обеззараживания воды, как правило, применяется хлорирование воды. Если вы пьете воду из-под крана, то должны знать, что в ней есть хлорорганические соединения, количество которых после процедуры обеззараживании воды хлором достигает 300 мкг/л. Причем это количество не зависит от начального уровня загрязнения воды, эти 300 веществ образуются в воде благодаря хлорированию. Потребление такой питьевой воды очень серьезно может сказаться на здоровье. Дело в том, что при соединении органических веществ с хлором образуются тригалометаны. Эти производные метана обладают выраженным канцерогенным эффектом, что способствует образованию раковых клеток. При кипячении хлорированной воды в ней образуется сильнейший яд - диоксин. Уменьшить содержание тригалометанов в воде можно, снизив количество используемого хлора или заменив его другими дезинфицирующими веществами, например, применяя гранулированный активированный уголь для удаления образующихся при очистке воды органических соединений. И, конечно, нужен более детальный контроль за качеством питьевой воды.

    В случаях же высокой мутности и цветности природных вод распространенно используют предварительное хлорирование воды, однако этот способ обеззараживания, как было описано выше, не только не достаточно эффективный, но и просто вредный для нашего организма.

    Недостатки хлорирования: недостаточно эффективный и при этом приносит необратимый вред для здоровья, так как образование канцерогена тригалометанов способствует образованию раковых клеток, а диоксина - привести к сильнейшему отравлению организма.

    Обеззараживать воду без хлора экономически нецелесообразно, поскольку альтернативные методы обеззараживания воды (например,обеззараживаниес помощью ультрафиолетового излучения ) достаточно затратные. Был предложен альтернативный хлорированию метод обеззараживания воды с помощью озона.

    Озонирование

    Более современной процедурой обеззараживания воды считается очищение воды с помощью озона. Действительно, озонирование воды на первый взгляд безопаснее хлорирования, но тоже имеет свои недостатки. Озон очень нестоек и быстро разрушается, поэтому его бактерицидное действие непродолжительно. А ведь вода должна еще пройти через водопроводную систему, прежде чем оказаться в нашей квартире. На этом пути ее поджидает немало неприятностей. Ведь не секрет, что водопроводы в российских городах крайне изношены.

    Кроме того, озон тоже вступает в реакцию со многими веществами в воде, например с фенолом, и образовавшиеся в результате продукты еще токсичнее хлорфенольных. Озонирование воды оказывается крайне опасным в тех случаях, если в воде присутствуют ионы брома хотя бы в самых ничтожных количествах, трудно определяемых даже в лабораторных условиях. При озонировании возникают ядовитые соединения брома - бромиды, опасные для человека даже в микродозах.

    Метод озонирования воды очень хорошо зарекомендовал себя для обработки больших масс воды - в бассейнах, в системах коллективного пользования, т.е. там, где нужно более тщательное обеззараживание воды. Но необходимо помнить, что озон, как и продукты его взаимодействия с хлорорганикой ядовитый, поэтому присутствие больших концентраций хлорорганики на стадии водоочистки может быть чрезвычайно вредным и опасным для организма.

    Недостатки озонирования: бактерицидное действие непродолжительное, в реакции с фенолом еще токсичнее хлорфенольных, что более опасно для организма, чем хлорирование.

    Обеззараживание воды бактерицидными лучами.

    ВЫВОДЫ

    Все вышеперечисленные методы недостаточно эффективны, не всегда безопасны, и более того экономически нецелесообразны: во-первых - дорогостоящие и очень затратные, требующие постоянных расходов на обслуживание и ремонт, во-вторых - с ограниченным сроком службы, и в третьих - с большим расходом энергоресурсов.

    Новые технологии и инновационные методы улучшения качества воды

    Внедрение новых технологий и инновационных методов водоподготовки позволяет решать комплекс задач, обеспечивающих:

    • производство питьевой воды, отвечающей установленным стандартам и ГОСТАм, удовлетворяющей требованиям потребителей;
    • надежность очистки и обеззараживания воды;
    • эффективную бесперебойную и надежную работу водоочистных сооружений;
    • снижение себестоимости водоочистки и водоподготовки;
    • экономию реагентов, электроэнергии и воды на собственные нужды;
    • качество производства воды.

    Среди новых технологий улучшения качества воды можно выделить:

    Мембранные методы на основе современные технологий (включающие в себя макрофильтрацию; микрофильтрацию; ультрафильтрацию; нанофильтрацию; обратный осмос). Применяются для опреснения сточных вод , решают комплекс задач водоочистки, но очищенная вода не значит еще, что она полезная для здоровья. Более того данные методы являются дорогостоящими и энергоёмкими, требующими постоянные расходы на обслуживание.

    Безреагентные методы водоподготовки. Активация (структурирование) жидкости. Способов активации воды на сегодняшний день известно множество (например, магнитные и электромагнитные волны; волны ультразвуковых частот; кавитация; воздействие различными минералами, резонансные и др.). Метод структурирования жидкости обеспечивает решение комплекса задач водоподготовки (обесцвечивание, умягчение, обеззараживание, дегазацию, обезжелезивание воды и т.д.), при этом исключает химводоподготовку.

    Показатели качества воды зависят от применяемых методов структурирования жидкости и зависят от выбора применяемых технологий, среди которых можно выделить:
    - устройства магнитной обработки воды;

    - электромагнитные методы;
    - кавитационный метод обработки воды;
    - резонансная волновая активация воды
    (бесконтактная обработка на основе пьезокристаллов).

    Гидромагнитные системы (ГМС) предназначены для обработки воды в потоке постоянным магнитным полем специальной пространственной конфигурации (применяются для нейтрализации накипи в теплообменном оборудовании; для осветления воды, например, после хлорирования). Принцип работы системы - магнитное взаимодействие ионов металлов, присутствующих в воде (магнитный резонанс) и одновременно протекающий процесс химической кристаллизации. ГМС основана на циклическом воздействии на воду, подаваемую в теплообменные аппараты магнитным полем заданной конфигурации, создаваемым высокоэнергетическими магнитами. Метод магнитной обработки воды не требует каких-либо химических реактивов и поэтому является экологически чистым. Но есть и недостатки . В ГМС используются мощные постоянные магниты на основе редкоземельных элементов. Они сохраняют свои свойства (силу магнитного поля) в течение очень длительного времени (десятки лет). Однако, если их перегреть выше 110 - 120 С, магнитные свойства могут ослабнуть. Поэтому ГМС необходимо монтировать там, где температура воды не превышает этих значений. То есть, до её нагрева, на линии обратки.

    Недостатки магнитных систем: применение ГМС возможно при температуре не выше 110 - 120° С; недостаточно эффективный метод; для полной очистки необходимо применение в комплексе с другими методами, что в итоге экономически нецелесообразно.

    Кавитационный метод обработки воды. Кавитация - образование в жидкости полостей (кавитационных пузырьков или каверн), заполненных газом, паром или их смесью. Суть кавитации - другое фазовое состояние воды. В условиях кавитации вода переходит из её естественного состояния в пар. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении ее скорости (гидродинамическая кавитация), либо при прохождении акустической волны во время полупериода разрежения (акустическая кавитация). Кроме того, резкое (внезапное) исчезновение кавитационных пузырьков приводит к образованию гидравлических ударов и, как следствие, к созданию волны сжатия и растяжения в жидкости с ультразвуковой частотой. Метод применятся для очистки от железа, солей жесткости и других элементов, превышающих ПДК, но слабо эффективен при обеззараживании воды. При этом значительно потребляет электроэнергию, дорогой в обслуживании с расходными фильтрующими элементами (ресурс от 500 до 6000 м 3 воды).

    Недостатки: потребляет электроэнергию, недостаточно эффективный и дорогой в обслуживании.

    ВЫВОДЫ

    Вышеперечисленные методы наиболее эффективные и экологически чисты по сравнению с традиционными методами водоочистки и водоподготовки. Но имеют те или иные недостатки: сложность установок, высокая стоимость, необходимость в расходных материалах, сложности в обслуживании, необходимы значительные площади для установки систем водоочистки; недостаточная эффективность, и кроме этого ограничения по применению (ограничения по температуре, жесткости, pH воды и пр.).

    Методы бесконтактной активации жидкости (БОЖ). Резонансные технологии.

    Обработка жидкости осуществляется бесконтактным путем. Одно из преимуществ данных методов - структурирование (или активация) жидких сред, обеспечивающее все вышеперечисленные задачи активацией природных свойств воды без потребления электроэнергии.

    Наиболее эффективная технология в этой области - Технология NORMAQUA (резонансная волновая обработка на основе пьезокристаллов ), бесконтактная, экологически чиста, без потребления электроэнергии, не магнитная, не обслуживаемая, срок эксплуатации - не менее 25 лет. Технология создана на основе пьезокерамических активаторов жидких и газообразных сред, представляющих собой резонаторы-инверторы, испускающие волны сверхмалой интенсивности. Как и при воздействии электромагнитных и ультразвуковых волн, под влиянием резонансных колебаний рвутся неустойчивые межмолекулярные связи, а молекулы воды выстраиваются в естественную природную физико-химическую структуру в кластеры.

    Применение технологии позволяет полностью отказаться от химводоподготовки и дорогостоящих систем и расходных материалов водоподготовки, и добиться идеального баланса между поддержанием высочайшего качества воды и экономией расходов на эксплуатацию оборудования.

    Снизить кислотность воды (повысить уровень рН);
    - экономить до 30% электроэнергии на перекачивающих насосах и размывать ранее образовавшиеся отложения накипи за счет снижения коэффициента трения воды (повышения времени капиллярного всасывания);
    - изменить окислительно-восстановительный потенциал воды Eh;
    - снизить общую жесткость;
    - повысить качество воды: ее биологическую активность, безопасность (обеззараживание до 100%) и органолептику.

    Водоподгото́вка – процесс изменения состава воды путём удаления органических и минеральных примесей и микроорганизмов или добавления веществ для приведения её состава и свойств в соответствие с требованиями потребителей. По конечному назначению использования воды различают водоподготовку для питьевых (в т. ч. коммунально-бытовых) и промышленных нужд.

    Вода для питьевых нужд должна удовлетворять требованиям санитарно-эпидемиологической и радиационной безопасности, быть безвредной по химическому составу и обладать благоприятными органолептическими свойствами. Это достигается путём удаления биогенных элементов, тяжёлых металлов, галогенопроизводных, бактерий и пр., а также, в случае необходимости, добавления недостающих микроэлементов.

    При подготовке воды для промышленных нужд из воды удаляются грубодисперсные и коллоидные примеси, соли и микроорганизмы для предотвращения образования накипи, коррозии металлов, засорения трубопроводов и загрязнения обрабатываемых материалов при использовании воды в технологических процессах. Так, в теплоэнергетике, где вода является теплоносителем, важно удалить из воды соли жёсткости и другие примеси в ионной форме, т. к. повышение температуры в процессе нагревания приводит к образованию накипи в технических элементах системы – котлах, трубопроводах, градирнях. Технологические стадии водоподготовки для промышленных нужд и для питьевых целей нередко полностью совпадают.

    История водоподготовки

    Первое упоминание о применении методов подготовки питьевой воды для повышения её качества – улучшения вкуса и удаления запаха – датируется IV тысячелетием до н. э. Тогда применялись такие методы водоподготовки, как фильтрация через древесный уголь, отстаивание на солнце и кипячение. Для устранения мутности , т. е. удаления из воды взвешенных частиц, древние египтяне еще за 1,5 тыс. лет до н. э. использовали алюминиевые квасцы. В XVII в. для подготовки питьевой воды стал использоваться метод фильтрации, однако степень очистки воды была недостаточной. С начала XIX в. песчаные фильтры применялись в большинстве городов Европы. В 1806 г. в Париже была запущена в эксплуатацию первая крупная станция водоподготовки, где вода проходила стадии отстаивания и фильтрации через песчаные и угольные фильтры. В 1870 г. Р. Кохом и Д. Листером было доказано, что микроорганизмы, находящиеся в источниках водоснабжения , могут вызывать инфекционные заболевания. Впоследствии, в начале ХХ в. эти открытия привели к применению методов обеззараживания питьевой воды. В 1906 г. в Ницце для дезинфекции питьевой воды был использован метод озонирования, а в 1908 г. в США в качестве дезинфектанта стал применяться гипохлорит кальция. С 1926 г. для удаления взвешенных частиц начали применять метод коагуляции. В 1940-х гг. началось развитие ионообменных технологий обессоливания воды, а в 1957 г. появились первые мембранные фильтры, однако в широкую практику водоподготовки они вошли гораздо позднее. Во второй половине ХХ в. в большинстве развитых стран стали применяться комплексные схемы подготовки питьевой воды, включающие технологии отстаивания, фильтрации, коагуляции, обеззараживания и др.

    Целевые компоненты поверхностных и подземных вод при водоподготовке

    При подготовке воды для питьевых или промышленных нужд в зависимости от направления конечного применения до нормативных значений доводится содержание представителей следующих групп веществ:

    Химический и биологический состав воды определяет выбор применяемых технологий водоподготовки и используемых технологических схем.

    Технологии водоподготовки

    При водозаборе из поверхностного водного объекта (река , водохранилище , озеро и т.д.), первый этап подготовки воды – предварительная очистка, включающая, как правило, следующие методы:

    • процеживание – процесс пропускания воды через водопроницаемые перегородки различных конструкций для удаления крупных плавающих загрязнений и взвешенных примесей. Осуществляется через решетки и сита с размером ячеек от 0,005 мм до 1 см;
    • первичное отстаивание – процесс осаждения взвешенных веществ под действием силы тяжести, также приводящий к осветлению воды. Зависит от скорости течения, относительной плотности и диаметра частиц. Из воды удаляются частицы размером более 100 мкм (10 -4 м);
    • коагуляция – процесс укрупнения коллоидных и диспергированных частиц при введении реагентов – коагулянтов, происходящий вследствие слипания частиц под действием сил молекулярного притяжения. Слипшиеся частицы в дальнейшем осаждаются. Из воды удаляются взвешенные вещества и значительная часть микроорганизмов, что приводит к ее глубокому осветлению.

    Умягчение воды – процесс удаления из воды растворённых солей щёлочноземельных металлов (Сa 2+ и Mg 2+), обусловливающих жёсткость воды. Соли жёсткости могут удаляться четырьмя способами:

    • реагентное умягчение – добавление реагентов, увеличивающих концентрацию анионов; в результате образуются малорастворимые соли с ионами Сa 2+ и Mg 2+ , впоследствии выпадающие в осадок. Процессы осаждения осуществляются в отстойниках и осветлителях. Осаждение образующихся хлопьев происходит очень медленно, поэтому оборудование имеет низкую производительность. Реагентные методы используются только в подготовке воды для технических нужд, т. к. вода в результате приобретает сильнощелочную реакцию;
    • ионный обмен – процесс, при котором присутствующие в воде анионы и катионы замещаются другими ионами при прохождении через слой ионообменного материала. Обмен катионов Ca 2+ и Mg 2+ на Na + приводит к умягчению воды. Анионный состав воды при этом не меняется, и раствор остается нейтральным;
    • электрохимическая обработка – прохождение воды через межэлектродное пространство, при котором вследствие электролиза образуются менее растворимые формы солей жёсткости;
    • мембранная фильтрация – пропускание воды через нанофильтрационные и обратноосмотические мембраны под высоким давлением, в результате чего происходит селективное удержание многозарядных и крупных ионов. Удаляются также взвешенные вещества, коллоиды, бактерии, вирусы и пр. Содержание солей жёсткости уменьшается в 10–50 раз.

    Обезжелезивание воды. В воде поверхностных источников железо, как правило, находится обычно в форме органоминеральных коллоидных комплексов, в подземных водоисточниках – в форме растворённого бикарбоната двухвалентного железа. Для обезжелезивания воды из поверхностных источников используются реагентные методы с последующей фильтрацией в сочетании с предварительной обработкой воды:

    • аэрация окисляет двухвалентное железо кислородом воздуха, при этом из воды удаляется углекислота, что ускоряет процесс образования гидроксида железа;
    • коагуляция и осветление используются для железа, находящегося в форме взвесей и коллоидно-дисперсного вещества (см. выше);
    • обработка реагентами-окислителями (хлор, гипохлорит натрия или кальция, озон, перманганат калия) приводит к разрушению гуматов и других железосодержащих органических соединений. В результате формируются легко гидролизующиеся неорганические соли трёхвалентного железа.

    Обезжелезивание подземных вод осуществляются также путем мембранной фильтрации (микро-, ультра-, нанофильтрации или обратного осмоса).

    Обеззараживание – процесс уничтожения вирусов и патогенных микроорганизмов (бактерий, простейших) дезинфицирующими агентами или/и физическими воздействиями. Эффективность обеззараживания воды напрямую зависит от степени её предварительной очистки, т. к. удаление из воды коллоидных и диспергированных частиц увеличивает подвод дезинфицирующего вещества к целевым объектам обеззараживания – бактериям, вирусам, простейшим. Для обеззараживания применяются следующие методы:

    На практике чаще всего используется сочетание различных методов обеззараживания, позволяющих снизить отрицательный эффект одних и усилить достоинство других.

    Дегазация воды . Присутствие в воде растворённых газов – кислорода, свободной углекислоты и сероводорода обусловливает её коррозионные свойства. Используются следующие способы дегазации воды:

    • химические способы заключаются в добавлении реагентов, которые связывают растворённые в воде газы, или в пропускании воды через фильтры, загруженные стальными стружками;
    • физические способы дегазации – наиболее распространены аэрация и кипячение воды. Для удаления из воды кислорода используют кипячение, для удаления свободной углекислоты и сероводорода – аэрацию.

    Коррекция качества питьевой воды . Ряд важных для организма макро- и микроэлементов (йод, фтор, кальций, магний и т.д.) поступает в организм человека вместе с питьевой водой. Однако часто вода из водоисточника не содержит такие вещества в необходимом количестве. Для корректировки состава питьевой воды применяются следующие методы:

    • обогащение фтором (фторирование) – доступный и безопасный метод профилактики заболевания кариесом путём повышения концентрации фтора до 0,6–1,1 мг/л;
    • обогащение йодом (йодирование). Недостаток йода в ряде случаев является причиной развития врождённых аномалий, повышенной перинатальной смертности, снижения умственных способностей у детей и взрослых, глухонемоты. Содержание йода в питьевой воде должно находиться на уровне 40–60 мкг/л;
    • обогащение селеном. Селен является антиоксидантом, усиливает иммунитет и процессы обмена веществ в организме. Добавление селена в питьевую воду применяется как сопутствующий фактор снижения риска развития онкологических заболеваний, сердечно-сосудистых патологий, артрита, преждевременного старения населения;
    • обогащение кальцием. Недостаток кальция приводит к кардиоваскулярным заболеваниям (гипертонии, коронарной и ишемической болезней сердца, инсульта), рахиту у детей, остеомаляции, нарушению процессов свертываемости крови;
    • обогащение магнием. Недостаток магния проводит к повышению тяжести течения сердечно-сосудистых заболеваний и младенческой смертности;
    • обогащение гидрокарбонат-ионами применяется для коррекции водородного показателя воды (рН) и повышения её щёлочности.

    Раздел второй.

    экологическая оценка

    2.2.1. Осветление и коагуляция воды

    Особенностью отечественных водоподготовительных установок (ВПУ) является то, что в качестве исходной воды для них, как правило, используется вода из поверхностных водоемов. Природная вода, загрязненная техногенными примесями, содержит большое количество минеральных примесей, взвешенных и органических веществ.

    Раздел второй. ОХРАНА ВОДНОГО БАССЕЙНА ОТ СБРОСОВ

    2.2. Современные технологии водоподготовки на ТЭС и их экологическая оценка

    2.2.2. Ионообменное обессоливание добавочной воды котлов

    Шищенко В.В., институт ВНИПИэнергопром; Федосеев Б.С., ОАО «ВТИ»

    В нашей стране подготовка обессоленной воды для котлов ТЭС и других технологических целей осуществляется в основном с использованием ионообменных технологий, включающих две-три ступени катионитных и анионитных фильтров. Опыт применения ионообменных технологий насчитывает более 60 лет. В настоящее время развитие технологий ионного обмена и повышение экономичности ионообменных установок осуществляются в направлении совершенствования конструкций ионообменных фильтров, предназначенных для противоточного ионирования и улучшения качества и свойств ионитов для водоподготовки.

    Раздел второй. ОХРАНА ВОДНОГО БАССЕЙНА ОТ СБРОСОВ

    2.2. Современные технологии водоподготовки на ТЭС и их экологическая оценка

    2.2.3. Технология термической подготовки добавочной воды для подпитки энергетических котлов

    Седлов А.С., МЭИ(ТУ); Шищенко В.В., институт ВНИПИэнергопром; Федосеев Б.С., ОАО «ВТИ»

    Технология термической подготовки основана на дистилляции воды. В одном аппарате - испарителе - вода испаряется, в другом - конденсаторе - конденсируется. В испарителе в пар попадает минимальное количество солей, поступающих с исходной водой. Кроме того, пар перед поступлением в конденсатор с помощью специальных устройств очищается от примесей. Качество дистиллята, образующегося в конденсаторе, удовлетворяет нормам качества подпиточной воды энергетических котлов сверхвысокого давления.

    Раздел второй. ОХРАНА ВОДНОГО БАССЕЙНА ОТ СБРОСОВ

    2.2. Современные технологии водоподготовки на ТЭС и их экологическая оценка

    2.2.4. Обратноосмотическое обессоливание воды

    Шищенко В.В., институт ВНИПИэнергопром; Федосеев Б.С., ОАО «ВТИ»

    В последние годы в отечественной практике обессоливания воды отмечается повышенный интерес к технологии обратного осмоса. Сооружен и успешно эксплуатируется целый ряд установок обратного осмоса (УОО): на ТЭЦ-23 ОАО «Мосэнерго» (разработка ВНИИАМ, производительность 50 м 3 /ч, обратноосмотические мембраны поставки DOW Chemical); на Нижнекамской ТЭЦ (разработка и поставка фирмы Hidronoutics, производительность 166 м 3 /ч).

    Раздел второй. ОХРАНА ВОДНОГО БАССЕЙНА ОТ СБРОСОВ

    2.2. Современные технологии водоподготовки на ТЭС и их экологическая оценка

    Живя в огромном мегаполисе, с не очень хорошей экологией люди стараются подвергать свое здоровье как можно меньшим рискам. Большое внимание в наше время уделяют воде. Она является основным продуктом употребления в жизни каждого человека, поэтому вопросы жесткости и очистки стоят на первых местах. Благодаря технологиям водоочистки можно получить значительно очищенную воду, которая будет пригодной для употребления. Специалисты в этой отрасли постоянно борются с проблемой жесткости воды для того чтобы люди употребляли только чистую воду.

    Почему так вопрос жесткости воды так сильно волнует специалистов в наше время? Многие из нас видели накипь на чайнике или же другой посуде. Так же повышенная жесткость воды оставит пагубные последствия. Мало кто обращал на это большое внимание и разбирал эту проблему. Почему образуется накипь, и чем она так страшна?

    Многие признаки помогут вам определить, какой тип воды вы используете. Именно накипь и плохая проводимость тепла является главным признаком жесткой воды. Многие домохозяйки привыкли удалять накипь и не уделять ей особого внимания. Но нужно понимать насколько большой вред для здоровья приносит такая вода и не стоит упускать это из виду.

    Самое главное, что нужно помнить жесткая вода подвергает загрязнению не только трубы, по которым течет, а так же все вредные элементы оседают на стенках нашего организма. Именно это ведет ко многим болезням. Так же неправильный образ жизни так же и плохое качество воды приносит огромный вред вашему здоровью и служит причиной возникновения множества хронических болезней.

    Так же жесткость воды увеличивает потребление воды во время стирки. Мы этого можем не заметить, так как привыкли потреблять именно такое количество воды из года в год. Если рассмотреть, почему объем используемой воды именно таков, то все станет ясно. Так как жесткая вода плохо растворяет моющее средство, приходится добавлять гораздо больше воды, после стирки так же нам требуется больше воды для ополаскивания, так как соли, которые осели в нашей одежде, будет очень сложно вымыть с первого раза.

    Применение водоподготовки водогрейного котла покажет разницу между потребляемым количеством воды «до» и «после».

    В наше время люди думают, что фильтр для воды это непозволительная роскошь и их применение не так уж и важно. Перечитайте еще раз первые абзацы и подумайте еще раз. Неужели испорченные белыми разводами вещи, постоянная накипь на посуде и что самое главное испорченное здоровье действительно нужнее? С технологией водоподготовки вы навсегда забудете об этих проблемах и почувствуете огромную разницу между жесткой водой и мягкой.

    Так же накипь обладает большим недостатком в виде плохой теплопроводимости. Если вовремя не убирать накипь с приборов, то можно просто остаться без него.

    Когда накипь доходить до нагревательных элементов и покрывает их, передача тепла практически полностью прекращается. В начале, известковый налет все же немного пропускает тепло, но расход топлива или электроэнергии возрастает в разы. Нагреть такую поверхность становится все сложнее и сложнее. Рост топлива или электроэнергии возрастает вместе со слоем накипи
    Расход топлива не самая главная проблема. После того как на приборе наберется большой слой накипи он начнет отключаться тем самым пытаясь сохранить себя от перегрева. Это главные сигналы, которые сигнализируют о скором сгорании прибора, реагировать нужно немедленно. Очистка такого прибора должна быть незамедлительной. Если не очистить накипь вовремя, то она перейдет в известковый камень, который очистить намного сложнее. Тут также присутствует риск потерять прибор. Если же и после образования известкового камня не почистить прибор, то теплу некуда будет выходить, и оно разорвет прибор. Чтобы избежать всех этих неприятностей, нужно изучить технологии водоподготовки.

    В быту это может закончиться перегревов прибора и даже сгоревшей проводкой. В промышленности это выливается в свищи на трубах и взрывы котлов в теплоэнергетике.

    Это лишь мала часть тех причин, которые заставят вас задуматься об установке водоподготовки для котельных установок. Сделайте жизнь вашей семьи более комфортной. Пусть ваши приборы прослужат вам дольше, и вам не придется счищать накипь, а ваши вещи больше не будут иметь белые соляные разводы. При выборе определенной технологии водоподготовки следует помнить, что одним смягчителем воды не обойтись. Лучше экономить на всем остальном, но только не на здоровье.

    Технология водоподготовки

    Не следует забывать о том, что при очистке воды перед вами становиться две задачи. Вода вам требуется для употребления в пищу, т.е. питьевая, и для бытовых нужд. Исходя из этого минимальным водоподготовочным процессом, будет служить, очистка воды с помощью, к примеру, электромагнитного излучателя. Вода прошедшая такую стадию очистки прекрасно подойдет для бытовых нужд. Для питьевой воды применяются минимальными мерами очистка фильтром, и максимально качественная - очистка обратного осмоса. В данном случае максимально эффективной станет защита от накипи и жесткой воды.

    Где и как узнать исходные данные для того, чтобы правильно определить необходимый тип водоподготовки, и последовательности обустройства фильтрующих элементов?

    Первоочередным действием становиться проведение химического анализа воды. Только на его основе в дальнейшем можно будет рассчитать необходимые данные, объем воды, все добавки и примеси. Получив результаты подобного исследования довольно легко определиться с методом очистки, понять саму технологию, и составить план размещения водяных фильтров, а также рассчитать их мощность.

    Даже при условии использования воды с центральной системы очистки, она будет жесткой. Поэтому не стоит экономить на своем же здоровье и провести специальный анализ. Это, возможно, поможет сэкономить, поскольку при расчетах может оказаться, что хватит фильтра мощностью меньше, чем вы хотели брать, что предоставит хороший вариант экономии.

    Технологии водоподготовки в общих чертах можно разделить на следующие типы :

    • · механическая очистка воды;
    • · химическая очистка воды;
    • · дезинфекция;
    • · микроочистка.

    Химическая очистка подразумевает собой полное удаление различных примесей и нитратов, железа и хлора.

    Микрочистка предоставляет в конечном итоге готовый продукт под названием дистиллят, или абсолютно чистая вода.

    Более подробно следует остановиться на фильтрах для воды, которые в свою очередь работают под одной из действующих технологий очистки.

    Механическая технология. Задачей ее стоит удаления из состава воды всех органических тяжелых примесей. Проходить может в несколько этапов. Первым является грубая очистка. Также возможно применение отстаивания, с участием в процессе осадочных и гравийных сетчатых фильтров.

    Сетчатые фильтры подразумевают собой несколько сеток с разной пропускной способностью. Они используются для фильтрации твердых примесей всех размеров. В основном производятся такие сетки из нержавеющей стали. Устанавливаются такие фильтры при первом заборе воды, на начальном этапе.

    Осадочные занимаются удалением более мелких примесей, тех которые невозможно увидеть невооруженным глазом. Основополагающим материалом фильтрации становиться кварцевый песок. Применяется такого рода фильтр для повторной очистки. Таким способом очищаются стоки, либо подготавливается вода на производственных участких.

    Картриджи. Фильтры такой составляющей представляют собой что-то средневзятое между предыдущими двумя вариантами. Применяется также для повторной очистке на обратном осмосе. Преимуществом является способность удаления частиц размером 150-1 микрон.

    Химическая очистка. Представляет собой довольно интересную и более перспективную технологию, чем предшественники. Очистка подразумевает собой корректировку химического состава воды, не изменяя ее состояния. Очистка проводиться в автономном режиме, при этом путем ионного обмена проводиться смягчение воды, ее обезжелезивания и удаление хлора.

    Отдельно для обезжелезивания применяется марганцевый цианид. Представляет собой зеленоватый песок, он максимально вступает в контакт с железистыми соединениями, и убирает их из воды. Также ускорению процесса и более качественно очистке способствует добавление кремния.

    Еще одним вариантом становиться окисление железа водой, для очистки ее от примесей. Данный процесс является безреагенным, при этом дополнительно применяются специальные фильтры, в которых вода обдувается кислородом, благодаря чему железо оседает на внутреннем картридже.

    Для смягчения воды используются ионообменные аппараты. Такие фильтры являются одними из самых распространенных, как в быту, так и на производстве. В основании фильтра лежит смоляной картридж, который в свою очередь перенасыщен натрием, благодаря чему его атомы легко заменить. Таким образом при вступлении в контакт с водой, легки атомы натрия заменяются тяжелыми элементами метала и побочных добавок. Со временем картридж полностью наполняется солями жидкости и прекращает процесс ионизации.

    Если рассматривать промышленную водоочистительную систему, то следует отметить, что ионизирующие установки являются самыми популярными, кроме того одними из самых громоздких, поскольку представляют собой большие высоки баки. Но, не смотря на это, огромным преимуществом из становиться наивысшая скорости очистки, по сравнению с другими системами.

    Что касается картриджей таких установок, то в быту они заменяются новыми, а на производственных объектах восстанавливаются и используются повторно. Поскольку ионообменный фильтр считается реагентным смягчителем, его нельзя было использовать в целях очистки воды для употребления пищи, до того, как придумали создать сменные картриджи.

    Восстановление картриджей проводиться благодаря сильно соленому раствору. В домашнем использовании он просто заменяется, что делает использование такой системы достаточно дорогостоящим. Сама установка стоит не сильно дорого, но вот постоянная смена очистительного реагента создает постоянную надобность расходов. При это менять его приходиться довольно часто. В производственной же среде, достаточно большие расходы приходятся на закупку соли. Материал не дорогой, но требуется его достаточно много, и закупать приходиться постоянно. Также после восстановления картридж выделяет вредные отходы, которые без особого разрешения и доочистки выбрасывать в атмосферу строго запрещено. На его очистку также требуются дополнительные финансовые затраты. Тем не менее, по сравнению со стоимостью обратного осмоса, эти расходы в производстве считаются не значительными.

    Новые и современные технологии водоподготовки

    Для бытовых нужд, в целях экономии можно приобрести так называемый фильтр-кувшин. Но по правде говоря, покупка и установка обратного осмоса окупиться в разы быстрей чем подобное приобретение, с учетом опять таки постоянных расходов на смену фильтра.

    Для удаления из воды остаточного хлора и мутного цвета обычно используется активированный уголь, который и является основой сорбированного фильтра.

    Для выполнения дезинфекции используются использовать озонаторы или ультрафиолетовые фильтры для воды. Главной задачей современных фильтров становиться полная очистка воды от различных бактерий и вирусов. Озонаторы в большинстве случаев используют для очистки бассейна, хоть они и довольно дорогие, но являются экологически чистыми. Ультрафиолетовые фильтры представляют собой безреагентную установку, очистка проводиться за счет облучения воды ультрафиолетом, под действием которого погибают все бактерии и вирусы.

    Еще одним, довольно популярным на сегодняшний день вариантом очистки стало электромагнитное умягчение воды. В основном подобные технологии применяются в теплоэнергетике. Но также подобные установки популяризировались и в бытовых условиях. Основными деталями подобного устройства являются постоянные магниты и электрический процессор. Очистка проходит путем воздействия на соли жесткости магнитными волнами, под действием которых они видоизменяются.

    Далее, обретя уже видоизмененную форму, они не способны прилипать к поверхности. И их тонкая шероховатая поверхность только может тереться о старую накипь, что дает положительный эффект, поскольку разрушенные новые соли, своим трением устраняют старые. При этом процесс выполняется довольно качественно.

    Если вы установите электромагнитный смягчитель воды, уже через месяц, попробуйте снять бойлер и посмотреть эффект действия. Будьте уверены результатом вы останетесь довольны. А с учетом того, что прибор не требует обслуживания, его можно без проблем снять и поставить самому, не требует промывок и замен комплектующих. Единственное условие использования, устанавливать его необходимо на чистый отрезок трубы, так что, возможно, придется поменять небольшой кусок.

    И последним способом, который является новейшим, и находиться на пике технологий, является нанофильтрация и обратный осмос, в результате которой на выходе получается дистиллят. Данные технологии подразумевают тонкую очистку воды. В процессе вода очищается на молекулярном уровне, проходя дисперсионную мембрану с огромным количеством отверстий размером не больше молекулы воды. Единственным минусом становиться обязательная предварительная подготовка воды. Только после очистки менее высокого уровня можно проводиться очистку осмосом. Из-за таких факторов данные установки являются самыми дорогими, и материалы для замены мембраны стоят тоже не дёшево. Но при этом качество очистки самое высокое из всех.

    Таким образом, следует отметить, что были разобраны все виды и способы водоподготовки, благодаря чему, теперь, вы полностью осведомлены, как работают каждый из типов очистительных приборов. Руководствуясь данной информацией, достаточно легко будет самому собрать необходимую систему водообработки для своего дома или производства.

    Если мы Вам не ответили в течение 2-х часов, мы Вам гарантируем 10% скидку от полной стоимости работ. Для этого просим вас написать на , указав в теме письма ТЕХНОЛОГИЯ ВОДОПОДГОТОВКИ скидка 10%.